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The damping r D of critical phonons due to their scattering on static dislocations for T > To (To de
notes the transition temperature) is investigated for displacive ferroelectrics. An explicit expression 
is given for the "strictional" contribution of the dislocation scattering to the attenuation. The depen
dence of the attenuation on the concentration of dislocations and on the temperature is investigated. 
The "strictional" dislocation attenuation of sound, due to the interaction of acoustic and soft optical 
phonons, is also calculated. 

1. INTRODUCTION 

AN appreciable number of articles have been devoted 
to experimental and theoretical investigations of the 
damping of the critical vibrations and the dielectric 
losses in displacive ferroelectrics. For example, for 
the case of SrTiOi the temperature dependence of tan 0 
was studied in[lJ , and the width of the critical vibra
tions can be estimated from experiments involving the 
inelastic scattering of neutrons. [2] The attenuation in 
barium titanate was investigated by optical methods 
(see, for example,[3]) and also by neutron scattering.[4] 
Apparently the attenuation was first considered theor
etically by Silverman, [5J who investigated the tempera
ture dependence of tan 0 associated with the scattering 
on phonons and on impurity atoms. In this connection 
the investigation was carried out within the framework 
of a one-dimensional model. The low-temperature 
attenuation (T -;; w c) was investigated in[6]. Attempts 
were made in[7,8] to estimate the attenuation of the 
critical vibrations, and also to estimate the attenuation 
of sound and the thermal conductivity, on the basis of 
Silverman's model. The attenuation of the critical 
vibrations and the attenuation of sound for w « w c is 
calculated in [oJ on the basis of a three- dimensional 
model; however, the most important quartic anharmoni
cities were not taken into consideration. Using a more 
realistic model of a ferroelectric proposed by Vaks, [l1J 
the attenuation of the critical vibrations in an ideal 
crystal is calculated in article [10] . It was shown that 
the strictional interaction of the critical phonons with 
the acoustic phonons and the mutual interaction of the 
critical phonons with one another introduce the major 
contribution. The same model is used in(12) in order to 
calculate the attenuation of high- frequency sound. 

It is interesting to compare the "self" damQing of 
the critical vibrations, which is investigated in [lOJ , and 
the damping due to the presence of a different type of 
defect in the crystal. The attenuation of the critical 
vibrations in a ferroelectric crystal containing linear 
defects (dislocations) is calculated below. For Simplic
ity a diatomic crystal is considered in the cubic phase, 
T > To. The cited estimates are obviously only quali
tatively valid in the immediate vicinity of To, when 
correlation effects are essential. [13) 

2. THE ELASTIC AND THE ELECTRIC FIELDS 
CREATED BY A DlSLOCATION IN A FERROELEC
TRIC CRYSTAL 

As a consequence of the electrostriction and the 
piezoelectric effect, a dislocation not only generates an 
elastic field in a crystal, but it also creates an electric 
field. The simultaneous solution of the system of equa
tions for the theory of elasticity and electrostatics is 
extremely complicated for the case of an anisotropic 
medium; however, in the case when homogeneity exists 
along a certain direction, the problem reduces to a 
planar problem, which allows us to use the method of 
functions of a complex variable. [14J This method was 
applied to the case of a linear dislocation in[15], and 
the generalization of[15J to the case of a piezoelectric 
is given in[16] The influence of the piezoelectric effect 
on the attenuation will be considered in another article, 
but now we consider a cubic crystal having a center of 
inversion, so that it is sufficient to take only the stric
tion into consideration. Then the density of the crystal's 
free energy can be written in the form 

1 1 iJEa (1) 
F = -2 Aa".Ua,u,. - -8 8a,E.E, + Ca". --u.. + da,,,ua,E,E., 

11 iJx, 

where ua,s(r) and E(r) are the deformation tensor and 
the electric field generated by a dislocation in the med
ium, Aa,syo is the tensor of the elastic moduli, Ea,s is 
the dielectric tensor, and ca,syo and da,syo are the 
electrostriction constants, where the term associated 
with ca {3yo corresponds to the harmonic approximation 

and the term with d {3 0 corresponds to the anharmoni-
cities. a y 

In the absence of external charges and volume for
ces, the deformation tensor uik and the electric field 
vector E are described by the following system of equa
tions: 

div D = 0, rot E = 0, iJo,,/ iJx. = 0. (2) 

Here the stress tensor aik and the electric displace
ment vector D are expressed in terms of uik and E by 
the usual equations of state. 

Introducing the displacement vector u and the elec
trostatic potential cp, we obtain a system of equations 
for u and cpo In the presence of dislocations, the condi-
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tion of the lack of uniqueness of the vector u, associated 
with a complete circuit around a closed contour enclos
ing the dislocation line, is added to this system. 
Neglecting the last term on the right-hand side of Eq. 
(1) and writing the tensors AO/f3 0 and cO/f3 0 in 
"isotropic" form Y. Y 

(3) 

having omitted the intermediate calculations we write 
the solution of the system (2) in the k- representation in 
the following form: 

u,.(k) = - ;k' ~dl e-'" {k'[Tb]. + k.[Tb); +[bl.b. +[b].b. 
D 

-4 k,k. [Tj+I1+(e,-e t )k'] (k[Tbl)} 
k' [Tj+211-e,k'] , 

(4)* 

4n [ kik, ] (Jl(k)=- c.u,,+C,~(Uil+Uli) . 
e k' 

(5) 

Here b is the Burgers vector; 11 and IJ. are the Lame 
coefficients; T is the unit vector tangent to the axis of 
the dislocation, the contour of the integral is taken 
along the dislocation line D; 

e. = 4n (Ct + 2c,)', 
e 

4nc. ) e,=-(c.+2c, ; 
e 

E is the dielectric constant, and V is the volume of the 
crystal. 

3. HAMILTONIAN OF A FERROELECTRIC CRYSTAL 
CONTAINING A DISLOCATION AND THE 
ATTENUATION OF THE CRITICAL VIBRATIONS 

We shall start from the Yaks model, [llJ and for the 
sake of simplicity we confine our investigation to a 
diatomic crystal. For small k the two transverse 
vibrations, described by the "optical" coordinate Yk' 
are critical. According to[llJ, for k in the (100) direc
tion (and for all directions of k when the anisotropy is 
small) the spectra of the transverse critical (we) and 
acoustic (wa) .vibrations has the following form: 

ro,~.(k) = '/,{ro,' + k' (s. + a,) ± [(ro,' + k's, - k'a,) , + 4k'~t'J"'}, (6) 

where w~ = AC-1(T - To), C is the Curie- Weiss con
stant, A = 41TZ~ Iv cM, Zc is the effective charge of the 
critical branch, v c and M denote the volume and the 
mass of the elementary cell, and St, at, and Vt are the 
constants introduced inC 11J. In particular, Vt character
izes the repulsion of the critical and acoustic branches. 

In what follows we shall confine our attention to the 
isotropic approximation (therefore we set the constants 
va and aa equal to zero in formulas (9) and (11) Of[ll]). 
Then one can find an explicit expression for the polar
ization vectors of .the phonons with the repulsion of the 
critical and acoustic branches taken into consideration. 

In writing down the Hamiltonian which describes the 
interaction of the phonons with the dislocation, it is 
convenient, just as in[llJ, to introduce "optical" and 
"acoustic" coordinates (Jacobi coordinates) according 
to the formulas 

y, = u! I) - u!') , U, = 11, u;1) + l1'U,('), (7) 

Where u¥) denotes the displacement of the i- th atom 

*[Tb] =T X b. 

from its equilibrium position in the r-th cell, lJ.i 
= miM-r, and mi denotes the mass of the i- th atom. 

We shall start from the cubic anharmonicity, which 
we write in the form 

1 {"1 (.) 
H 3 = 3T .l...J. Vi",., (k" k" k,) ~ • .',~.:'6.,\ (8) 

1,2,3 

where ~ i denotes either Uk or else Yk (the Fourier com
ponents of ur and Yr)' Let us represent the quantities ~ 
in the form ~ = ~ D + ~, that is, we shall measure the 
displacement from the new equilibrium position, ~ D' 
associated with the presence of the dislocation, and 
moreover YD = vcPD/zc ' where PD is the polarization 
vector generated by the dislocation in the medium. Con
fining our attention to terms of first-order smallness in 
~ D' we obtain the following expression for the Hamil
tonian describing the interaction of the phonons with the 
dislocation in terms of the coordinates 11t and Yk: 

H'n' = E [K"J(k., k,) u~.,u.,' + L"p(k., k,) y':...,y.!+ M"p(k., k,)u~.,y.,p],(9) 
k"kt 

where we shall not take umklapp processes into con
sideration. The functions K, L, and M have the following 
form 

K.p(k" k,) =Y .... J .... k.·k,·u,.(k. -k,), 

~ 
L"p (k" k,) = - 4n q"I,'U" (k. - k,) , 

(10) 

(11) 

where utJ f3(k) denotes the tensor field of the deformation 
created by the dislocation in the medium, and the follow
ing notation has been introduced: 

_ ~ u'V:!;' (kl' k" k.) I 
".'.P'". - 2 ok,'uk,'ok,' I •. _. 

i v, O"h I 
q".p, = -2 -, ok' V... (kl' k" k,) , 

Zc i k=O 

e = i o'V.~:' (k" k" k,) I 
",.p"" i ok.' I}k,' dk,' k=O 

(13) 

(the subscript a on the potential VO/f3y corresponds to 
the acoustic branch, the subscript 0 corresponds to the 
optical branch). 

In determining the functions K, L, and M we have 
taken into consideration that[17J 

lim Uk' YV··(k, ... )= - iu",(k) ~ V· .. ·(k, ... ) I . (14) 
k-+o ak~ )[=0 

Although the problem of determining the cross sec
tion for the scattering of long wavelength phonons on 
defects is essentially a classical problem, it is however 
convenient to carry out this calculation with the aid of 
quantum-mechanical perturbation theory. Therefore, 
we change to the operators which create and annihilate 
phonons: 

( Ii)"" i'k· + u" (k) = -- E ~ (c;. - c;._.) , 
2MN· fro;k 

;-1 

( Ii) 'h • e·.· + 
y·(k)= -- .E ' (C;.-Ci.-.), 

2MN fro;. 
i_t 

(15) 

where w. denotes the frequency of the j-th branch, N is 
the totalJnumber of cells in the crystal, and 



CRITICAL VIBRATIONS IN nISPLACIVE-TYPE FERROELECTRICS 1191 

e;t="I'/1.e;~I)+"I';'-e;t'), e;k= ~e;~)--=eJ~)' (16) 
"1'/1. "1'/1, 

where the e~k) are the usual phonon polarization vec

tors (m is the number of the atom). one can easily de
termine explicit expressions for 8jk and ejk for the 
model of a diatomic crystal under consideration here; 
however, in view of their cumbersome nature we shall 
not present these expressions here. 

In terms of the operators cik and c'k the Hamiltonian 
(9) takes the form J 

(17) 

where the amplitude for the scattering of phonons on the 
dislocations is given by 

", Ii 1 
1l>;J' = [e;k·e;~k'K.~(k, k') 

M "I'OO;kOO;'" 
(18) 

+ e;," e/k,L.J(k,k'J + ejk· e:'"M.J(k, k') ]. 

As is well-known, in BaTiOa the magnitude of the re
pulsion between the low-lying optical and acoustic 
branches is small, [18] and therefore the "critical" 
scattering amplitudes with j, j' = c give the major con
tribution to the attenuation of the critical vibrations: 

.T. 'k' __ iiI.. 1 ~ 

.... ". - 4~ ( )'1 [q12(e,.e,.')6.~Tq .. e,.·e,.']u.~(k-k'), 
.... <OckWct' 2 

In formulas (19) we have confined our attention to 
only the interaction of the "strictional" type, which is 
proportional to qa 6; the striction constants q12 and 
q44 are determine~lccording to Eq. (13). The polariza
tion vectors ei are determined by the following equa
tions: 

e.k = k / k, e,. = [ne • .], e" = [ene,.], (20) 

where n is an arbitrary unit vector, non-collinear with 
the vector k. Neglecting the interaction between the low
lying optical branch and the transverse acoustic 
phonons, expression (5) for the deformation field takes 
the well-known form 

u.~(q)= - qiV'P'JV,(qo) ~bmvT m'(q)e-iq'm, 

_ 2(T) + /1) • • p 

'P.~(q,) - - (T) + 2/1) qo qo qo eva. 

1 
+ 2 (e."q,J + e,.vq,· + e ... 6,vq,' + e ... 6.vqo') , 

q 
qo=-, (21) 

Dm 
q 

where bm and rm denote, respectively, the Burgers 
vector and the radius vector of the m- th dislocation, 
and ea {3y is the completely antisymmetric tensor of the 
third rank. 

Now let us calculate the width of the critical phonons, 
associated with the scattering on dislocations. Here it 
is necessary to allow for the fact that the utilization of 
ordinary perturbation-theory formulas in the "15-func
tion" approximation may turn out to be incorrect,t> 

l)y. G. Yaks and R. O. Zaitsev caJled our attention to this point. 

since at finite temperatures the intrinsic anharmonic 
width of a phonon is given by r c/wc ~ 0.01 to 0.1. [10] 
However, the effective form factor associated with the 
scattering on dislocations has a sharp maximum in 
q-space (the q-momentum of the scattering), falling off 
rapidly at distances q ~ R-1, where R is the character
istic size of the dislocation; in the temperature region 
under consideration the width of this maximum is 
smaller than the width r c. Qualitatively one can take 
the finiteness of r c into account by "smearing out" the 
corresponding 15-function. [19] Then we have the follow
ing result for the dislocation damping rn: 

rv (00, k) = ';'L(I Il>;,"; 12 + I rp~~~ 12) I',(uJ, k') 
~ . 

X [1 1] 
(OO-OO,k,)'+I','(w,k') - (w+w, •. )·+rc'(w,k') , (22) 

where the bar indicates averaging over the dislocation 
distribution in the crystal. The averaging in Eq. (22) 
amounts to finding the average of the expression 
T?(q)Ti{3(q), where the asterisk denotes complex 
conjugation. According to[20] we have the following re
sult for dislocations of circular form: 

• 
T,"(q)T:J(q)=2nR,'(6.J-q,·ql) S 1,(2qR,x)dx. (23) 

Here Ri is the radius of the i-th dislocation loop and J2 
is the Bessel function of second order. 

Let us present the formulas for the dislocation damp
ing which are obtained from expressions (19)-(23) for 
k = o. If rst/Rwc « 1 (this is always true for the tem
perature interval under consideration and typical 
values of R), then 

a) for w « Wc we find: 

r D (00) = 4 (_A_)'q:" b'Rr,(w) wIn (W,~), (24) 
41U1l/ Vol, "l's, 

b) for w - Wc »r c(W) we find: 

r (oo)=n(_A_)' ,b'R O~/ (25) 
D 4noo/ q", L' (00' - 00/) • 

We obtain the following result for dislocation damping 
of the critical vibrations (w = wc) under the conditions 
rst/R « r c(W) « wc: 

( A )" b'Roo,' (oo,R) rD(oo,)= -- q.,,---In --=- . 
4nw,' vr,(w,) "l'St 

(26) 

Here r c(w) is the average anharmonic width at the 
frequency w, q~tr = a1q!, + Ql2q~2 + aaq12~4' the dimen
sionless constants ai ~ 1, v is the volume per disloca
tion (v = Vn -1, where n is the total number of disloca
tions in the solid). It is clear from formula S24) that, 
since the anharmonic damping r (w) ~ W,clO the dis
location damping is proportiona{to the square of the 
frequency of the external field. 

The case of most interest is when ~ > R-2, where ~ 
is the dislocation concentration. This corresponds to 
the presence of rather extended dislocations in the 
crystal. Then the quantity Rv-1 appearing in formulas 
(24)- (26) is equal to ~. For this case let us present 
numerical estimates for BaTiOa at T = 5000 K. [21] For 
w « wC' rn(w)/wc f':j 10-11 (W/WC)2~, and the critical 
dislocation damping rp(wc)/w c f':j 1O-9E, where ~ has 
the dimensions of cm- . Thus, the quantity rn(wc)lw c 
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may amount to tens of percent for ~ ~ 108. In the case 
~ < R-2 (dislocation loops of small dimensions) the con
tribution due to the scattering on dislocations turns out 
to be small. 

Let us also present a formula for the dislocation 
contribution YD(w) to the attenuation of transverse 
sound, resulting from the strictional interaction of the 
transverse acoustic and the soft phonons. In the first 
nonvanishing approximation in powers of the parameter 
Vt/at characterizing the repulsion of the branches, we 
obtain the following result for frequencies w «wc: 

YD(oo)= 4 (~)' q:" b's (~). (~)' L(w)ln( oo~). (27) 
.4Jtoo, a, 00, '{ St 

In contrast to the striction damping of sound in a perfect 
crystal, Cl2J where y(w) ~ Vt in the isotropic approxi
mation, the dislocation part of the damping is given by 
YD ~ vt· 

The authors are grateful to V. G. Bar'yakhtar for a 
helpful discussion of this work and to V. G. Yaks and 
R. O. Za'itsev for valuable remarks. 
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