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The interaction of an electron with the longitudinal optical lattice vibrations in many-valley crystals 
is studied in the adiabatic approximation. It is shown that the polaron is localized in one of the 
valleys in k-space. The constant-energy surface of the band electron near the energy minimum is 
assumed to be an ellipsoid of revolution. The energy and the anisotropic effective mass of the 
polaron are calculated. The latter quantity becomes more isotropic as the coupling force is in
creased. 

OVER a period of many years, a theory of polarons 
has been developed for crystals with a simple conduc
tion band (with the energy minimum at the point k = 0 
and a spherical constant-energy surface). It has been 
found, however, that in most cubic crystals the conduc
tion band has a many-valley structure. Therefore, we 
must extend the theory to many-valley crystals. In the 
weak-coupling case, a polaron in a many-valley cubic 
crystal was studied in[ll. In the present paper we con
sider the opposite limiting case--the strong interaction 
of an electron with the polarization oscillations of the 
lattice in crystals of the same type. 

It is known that, in the case of strong coupling, we 
can assume that the state of the electron follows adia
batically the comparatively slow oscillations of the 
potential of the inertial polarization of an ionic crystal. 
Once in a local state in a polarization potential well, 
the electron, by its average electrostatic field, rein
forces the local polarization of the crystal, and the 
latter, in its turn, determines the form of the >II-func
tion of the electron. Such a self-consistent state of the 
electron and medium was considered in detail in[2- 41. 
It was shown there that the >II-function of the electron 
can be determined by minimizing the functional 

1['I'j = ('I'I il '1') + 'hV['I'], (1 ) 

where the first term of the right-hand side is the mean 
kinetic energy of the band electron, and T is the opera
tor of the total electron energy with the nuclei fixed; 

-[ ) = _ 2 SS 1'I'(r) l'I'I'(r') I'd d ' 
V'I'- ec Ir-r'l ,t, (2) 

d,=dxdydz. 
Here c = 1/n2 - liE, where E is the isotropic dielec
tric permittivity and n is the refractive index. It is 
assumed that the effective radius of the polaron is con
siderably greater than the lattice constant and, there
fore, we shall use a macroscopic calculation of the 
polarization and the effective mass method. 

In a many-valley crystal, as usual, 

'I' = L Q.¢,(r), (3 ) 

where l/!i is the wave function of an electron in the 
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i-th valley, and Qi are constants. Substituting (3) and 
(2) into (1), we obtain 

1['1']= Ls,T, + '/, L s'sy,!, (4) 

where 

v - 'SS hp,(r) l'II\';(r') I'd d' (5) 
Ii - - eel r _ r' 1 -,,; . 

In obtaining (4), we have discarded integrals containing 
products of Bloch functions UK OJ (r) exp ( -iKoj . r) and 

UK oj' (r) exp (iKoj' . r) referring to different valleys j 

and j', since these products oscillate rapidly and aver
age to zero. But in those cases when these functions 
refer to the same valley (j = j') the products are equal 
to 1 UK oj (r) 12, which can be replaced by its volume-

averaged value, equal to unity. As a result, the Bloch 
factors disappear in the expression for V ij' and l/!i 
and l/!j can be understood to be the smoothed functions 
of the effective-mass method. 

From the normalization condition for the function 
(3), ~ ~ i = 1. If we use this condition to express one of 

i 
the variables in terms of the others, e.g., 

i>1 

then b, b, ... will be independent variables. If we 
eliminate ~ 1 in this way from (4), it is easy to obtain 
(i>1) 

y') 
iii'/ = V;; + V II -2V" = 

- 'Sf [1I\',(r) 1'-II\',(r) 1')[11\',(1") 1'-II\',(r')I') d d' 0 ---ec 'tt< 
II'-r'l . 

(6) 

Consequently, within the range 0 ::s h ::s 1, a minimum 
of J is not attained with respect to any of the variables 
h (i > 1). In this case, the lowest value of J is 
realized at the boundary of the range of variation of ~2, 

~3, •••• This range is bounded by the set of hyperplanes 
h = 0 (k > 1) and by the hyperplane 

Es,=1 
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on which ~1 = O. Thus, the smallest value of J lies in 
a subspace in which one of the variables ~ i is equal to 
zero. By omitting the corresponding terms in (4), we 
arrive at the problem of determining the smallest 
value of J in a space with a smaller number of coordi
nates ~ i, whose range of variation is bounded by the 
analogous hyperplanes. Repeating these arguments, 
we finally reduce the space of the coordinates ~ i to a 
one-dimensional space, and the last coordinate ~ 

should be equal to unity. 
Thus, the linear combination (3) reduces to one 

term, Le., the polaron wave function is formed from 
Bloch functions of one valley. Because of the equi
valence of the different valleys, the polaron can be 
formulated equally successfully in any of them. 

Below we treat a polaron in one valley, in which the 
constant-energy surface of the band electron is an 
ellipsoid of revolution and is characterized by two ef
fecti ve masses I-L 1 and I-L II' In the chosen valley (let 
this be the first valley), the functional (4) acquires the 
form 

I[ 1/l.] = T, + 1/2 VII, 

where, as explained above, by l/!1 we can understand 
the smoothed electron wavefunction. Then, with the 
appropriate choice of Cartesian coordinate axes, 

- 1 [- ~ 1 ~ 1 Ilu T=- px'+p!+-p.', x=-. 
2~ X ~ 

(7) 

(8 ) 

In the following, the index 1 will be dropped from 1/J 1, 

Tl and Vu. 
The minimum of the functional (8) has been found by 

a direct variational method. After several trials, the 
following approximation for 1/J ( r) was chosen: 

1/l = 1:, c, exp {- ')..' (aiP' + b,z')}, P' = x' + y', (9) 

where q, ai, bi and ,\ are variational parameters. 
This function has continuous first and higher deriva
tives at the point r = 0, decays away at infinity, and is 
sufficiently flexible to reflect the speCific features of 
the polaron potential, which is parabolic at small rand 
Coulomb at large r. Test calculations for the aniso
tropic hydrogen atom with a three-term approximation 
(9) gave an error in the energy of about 0.5% (the com
parison was made with [5]). 

We introduce the following notation: 

where 

a.=a, + aj, ~.=b. + bj , 

,nit' = aiaj, th' = bibj, 'Vii. = CiCj(2 - 6ij) , 
(10) 

k='/,U-1)(2s-i) +j,j~i. (11) 

In the relation (11), there exists a unique correspond
ence between the value of k and the values of the pair 
of indices i and j. In this notation, the mean kinetic 
energy and the normalization factor have the form 

To calculate the potential energy of the polaron, we 
make use of the equality 

(12) 

(13) 

Then, 

n'l, ""1:,<'+" '1''1d(x.,) 
V=---e'cv, v-

A.' - a.a,y~, + ~, . 
k,l=i 

(16) 

Substituting (12), (13), and (16) into (7), we obtain 
A 2 t e2c v ) 

I=---).-=-- (17 
Ill. n Yn n' 

After minimization with respect to '\, this functional 
acquires the form 

1 v' 
1,=--. 

4n tn' 
(18) 

We emphasize that the extremal value JX depends 
only on the effective-mass anisotropy parameter X, as 
the other parameters are variational. 

As was shown in[2,4], the minimum value of J is the 
total energy of the "dielectric + extra electron" sys
tem in the ground polaron state (To = 0). 

The extremal values Jx for different X are shown 
in the Figure. The energy of the system is expressed 
in terms of JX by the formula (18). The absolute mini
mum of J with respect to the parameters ai. bi, and 
Ci was found by a computer. The polaron energy repre
sented in the figure was calculated with the approxima
tion (9) with s = 3. In the one-term approximation 
(s = 1), the energy was found to be approximately 2 % 
higher at all the .values of X considered. For X = 1, the 
value of J was calculated also with the five-term ap
proximation (9) (s = 5), and coincided with the result 
of the three-term approximation to within five signifi
cant figures. This value is only 0.1 % higher than the 
isotropic-polaron energy obtained in[2,4]. 

To calculate the effective masses of the polaron, the 
method developed in[3,4] was used. In the coordinate 
system defined by the principal axes of the ellipSOidal 
constant-energy surface of the band electron, the 
polaron effective masses are equal to 

c (aD)' Ml.u=-- -- dT 
, 4mll'S ax~,u ' 

(19) 

where w is the limiting frequency of the longitudinal 

-n 

Mi,II J. 
aflpl. 
n.N 0.11 

'3 5 7 9 If n 
0,2 0,3 0.5 O.B 2 3 If 5 7 10 X~I,3n 

Dependence of the absolute value of the dimensionless energy Ix 
and of the polaron effective masses Mil and Ml on the anisotropy of 
the band-electron masses X = Ilill Ill' 
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polarization oscillations of the ions, and D( r) is the 
electrostatic induction created by the charge cloud 
with density e II/! (r) 12. In the approximation (9), we 
obtain 

M.L} 2 1 (V )"'E"(·+I) Y'Yl~'~' ! -/,(x,,) 
=f.l.LU '-- -

Mil n' n' tn ',bl u.a,(~,+~,)'/, l-f(x,,)' 

x" 

(20) 

Here a = (ce 2/2Ii) (21ll ltiW)I/2 is the dimensionless 
polaron coupling constant. The values of the polaron 
effective masses, calculated from the formula (20) 
(s = 3), are given in the figure. In the one-term ap
proximation (s = 1), M 1, II we,re found to be smaller 
by 10--15%. For X = 1, the three-term and five-term 
approximations give values of M that differ by 0.01%. 
This value of M is 2% smaller than in(3,41. 

It should be emphasized that the anisotropy M 111M 1 
of the polaron masses is 2.5 to 3 times smaller than 
the anisotropy Ilill III of the band masses, with X = 10 

or X = 0.1. For X - 1, the mass anisotropies of the 
polaron and band electron become closer. 

IS. I. Pekar, Zh. Eksp. Teor. Fiz. 55, 1997 (1968) 
[Sov. Phys.-JETP 28, 1054 (1969)]. 

2S. I. Pekar, Zh. Eksp. Teor. Fiz. 16, 335,341 
(1941). 

3 L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Fiz. 
18,419 (1948). 

4 s. I. Pekar, Issledovaniya po elektronnol teorii 
kristallov (Studies in the Electron Theory of Crystals), 
Gostekhlzdat, M., 1951. 

5 A. I. Ansel'm and L. I. Korovin, Zh. Eksp. Teor. 
Fiz. 25, 2044 (1955). 

Translated by P. J. Shepherd 
158 


