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A mechanism of the diffusion after-effect is proposed. Basic equations describing the process are 
derived. A solution is obtained in a special case and compared with the experimental results. The 
anomalous aftereffect which occurs during a finite time interval after switching an external load on 
and off is discussed qualitatively. 

1. A theory of diffusion-dislocation flow of crystals 
was developed in earlier papers [l-3J • The mechanism 
responsible for such a flow contains also a diffusion 
aftereffect, i.e., a directed change in shape of the sam
ple after the removal of the external load. The physical 
cause of the diffusion aftereffect in this flow mechanism 
is quite obvious. Indeed, since each dislocation-loop 
source emits an entire train of such loops during the 
steady-state diffusion-dislocation flow, removal of the 
load leaves the crystal in a non-equilibrium state with a 
certain dislocation-loop distribution that depends on the 
previously-applied load. This nonequilibrium state of 
the crystal relaxes by diffusion and produces the corre
sponding diffusion aftereffect. 

The system of equations describing this process is 
obtained by setting the external load equal to zero in the 
previously obtained equations [lJ describing the diffu
sion-dislocation flow. For a sample previously under 
tenSion we have 

s-'h 

d:; = -4n'ln-' S:0 { S du S DV( d V_ ~:)ltvRdR-j" (1) 
o 

Here u = cos qJ, qJ is the Burgers vector of the loop 
relative to the axis of the previously applied load, 
6 v = CV - c~ and 6 in = cin - c~n are the excess vacan
cies and inters titial atoms ,. the equilibr!um concentra
tions of which are c~ and d n; DV and Dlfi are the diffu
sion coefficients of the vacancies and interstitial atoms; 

'a'= co'~ (i = v,in), ~ = a wG In~ 
4n ( 1 - v) kT a 

a is the lattice constant, W = a3 , G is Young's modulus, 
and v is the Poisson coefficient. The dimension distri
bution functions fV and fin for the vacancy and inter
stitial loops are obtained by solving the corresponding 
kinetic equations (i = v, in): 

!i+~ (I' dR')=O. 
at aR, dt (2) 

After the external load is removed, the sources that 
p~oduce new loops cease to operate, since the excesses 
6 1 are equal to zero. 
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The functions fi satisfy the initial conditions [lJ 

I'lt •• = f.'(R) , 

with 

/o'(R)= f p'(z)~ 
R Z 

for R>R or , 

cr 

/o'(R) = 0 for R < Rer, R > Ro', 

where p~ is the density of the sources of the dislocation 
loops, R~ is the maximum dimension attained by the 
loop during the process of prior steady-state flow, and 
Rcr ~ aGio is the critical loop dimension starting with 
which the loops can increase at the load a. 

If the average dimension l of the priming loops pro
d.uced under load is such that Rcr « l «Ro, then 
f~ = const, i.e., the crystal contains at the instant of 
load removal equal nUIpbers of loops of a given type for 
all dimensions up to R~. On the other hand, if the load 
was such that l ~ Ro and p(l) is a smooth function in 
this region, then fo can also be regarded as a constant 
quantity, neglecting the logarithmic dependence fo(R) 
~ In R, which is not very noticeable at large values of 
R. 

The change of the loop dimensions following removal 
of the external load is described by the equations 

dRY 2nD' (' ~) dRin 2nD' ( • ~ J 
-;ft= aln(8Ro/a) d -IF' Tt= aln(8Ro/a) -d - Rin ' 

D' =c:D'+c!nDi~ d' = (dVDV_ d il1Din) / D', (3) 

from which we see that the proposed aftereffect mech
anism, which provides for the dissolution of the loops 
of both types, operates o.nly when 16*1 < /3/Ri , Let us 
assume that 16*1 «/3/Rl. Then, substituting 

dR' a 2nD'f:l (4) 
-at=- R" a= a In (8Ro/a) , 

in (2) and solving the latter, we obtain 

I'(R,t)= (R,'!2at)'I.!o'8<RiO'-R"-2at), (5) 

8(x)={i x>O. 
o x<o 

The function (J is introduced to take into account the 
initial condition, namely the maximum loop dimension 
at t = 0 is Rio' 

The distribution function (5) describes the relaxation 
of an ensemble of prismatic loops produced in the sam
ple by the external load. The change of the dislocation
loop distribution is accompan.ied by a matched rapid re
adjustment of the excesses 6 1, This holds true the 
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dimensions of the loops do not change significantly dur
ing this readjustment time T: 

(6) 

(as shown in llJ , 6* = aw/3kT = K/3). We shall subse
quently see that this condition is usually satisfied. 

Let us verify the consistency of the system of as
sumptions made in the analysis of the aftereffect proc
ess. The speed with which the excesses adjust them
selves to a given distribution of the loops makes it pos
sible to equate to zero the derivatives d6i/dt in (1). 
Subtracting one equation of the system (1) from the 
other, we obtain 

/[ ;" jrildR+ (1- ;,,)j /"RdR]. 
o 0 

integrating with the functions (5) and putting 

we obtain 

<\'= ~( ~'" -1) (i-x"') /[ (1-X)"'- Xln( 1+(1x:-X)'" )1'(7) 

where we have introduced the dimensionless time 
x = 2()1t/R~. 

Let us compare the value of (7) with the term {3/Ri 
for a loop that becomes resolved from a maximum pos
sible dimension Ro. Taking the introduced notation into 
account, we obtain for this loop from (4) 

(8) 

so that 

~/R":== ~1R0(1-x)"'. 

A direct numerical comparison shows that for all 0 < x 
« 1 we have 

<\ • ..,~~. 
4 R' 

Thus, the assumption 16*1 « {3/Ri is satisfied for a g 
given sample more accurately the smaller the number 
of loops of radius ~ Ro among all the already present 
loops. 

Formula (8) enables us to estimate the time To of 
termination of the aftereffect 

1 2a 4nD'~ 
-=-=--,--,--'-:--

To Ro' aRo'1n (SRo/a) 
(9) 

During this time, loops of both types become completely 
dissolved. We note, however, that the result i.s valid 
only in first approximation, when 16*1 «{3/R1• Actually, 
however, the dissolution of the loops does not proceed 
in uniform manner, and loops of some particular type 
(interstitial, if the prior deformation was tension), dis
appear more rapidly after which the aftereffect termin
ates, and then the loops of the remaining type coalesce 
without caUSing a directed change in the shape of the 
sample. The time of the aftereffect therefore turns out 
to be shorter than the time calculated from (9), a fact 
that must be borne in mind in the comparison with ex
periment. 

It is now easy to calculate the diffusion aftereffect 
(the change 6E in the strain) due to the dissolution of 

the residual dislocation loops from initial dimensions 
Ro to dimensions R. We use for this purpose the general 
formula for E (see[l]). As a result we have 

Ro 3-t / 1 Ro 1 

Lle = eo - e (t) = 4na ( - ~ ~ 'nR' ju' du dR + ~ ~ nR'fu' dudR } . 
R 0 R 3-1/2 

Allowance was made here for the fact that the distribu
tion of the dislocation loops with the initial dimensions 
relative to the directions of the Burgers vectors is de
termined by the previously applied load: cos2 <po = 6 * /K 
= 7'3. Hence, calculating the integrals and substituting 
the expression for R from (8), we obtain 

- [( t )'1.. t t ( t ) 'I, 1 (10) <\8= <\eo(2-1'2)-' 1+- +3--3- 1+- -1, 
To To To To 

Lleo = '/.n'ajo(2 - 2Y') (1- 2/3'1')Ro'. (11) 

Here AEo is the total strain change due to the aftereffect. 
We can now write the condition (6) in the form 

LlR / Ro ~ CoO·OJ / kT,Lleo ~ 1. 

Physically this condition becomes obvious. It means 
that the residual deformation due to the excess point 
defects present in the crystal at the initial instant of 
time is much smaller than that due to the residual dis
location loops. 

The value of Ro, which is the maximum dislocation
loop dimension, is determined, as shown earlier[2,3] by 
the dimensions of the blocks or grains when the load is 
sufficiently large and the loops do not interact elastic
ally. In this case Ro does not depend on the load and 
should satisfy the condition 

GOJ 
ho=a l p 

2n(1-v)kT ' 

where n is the number of sources of loops per unit vol
ume, p ~ 1, and 0 ~ m ~ 2. At suffiCiently small loads, 
Ro is determined by the elastic interaction of the dis
location 100ps[2,3] and is given by 

,_ x1+m ( I ) m 
Ro --- - . 

nhon ho (12) 

The number m depends on the number of atomic planes 
in which dislocation loops can grow, with m = 0 and 
m = 2 corresponding to the anisotropic and isotropic 
cases, respectively. The block dimensions should now 
satisfy the condition 

x1+m ( I ) m 
R2~ __ _ . 

!thon ho 
(13) 

We note that expressions for Ro were obtained[2,3] in 
an approximation in which the priming dimension of the 
dislocation loops l was much smaller than their average 
dimension Ro. In this case n ~ f l = const. On the other 
hand, if the load is such that l ~ Ro and p is a smooth 
function in the integration region, then 

n= S pdR '" pRo 
ReI 

under the condition Rodp/pdRo« 1 and m = O. Then the 
range of angles in which the loops interact elastically is 
of the order of unity. This means that 

pRo' = x / nho. 
(14) 
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We thus obtain for ~Eo, as a function of the previously 
applied load and of the structural properties of the 
crystal, the following expression at l « Ro: 

4n' ( 'I ( 2) xo(l+m)/2 (~.) '(m-O/' 
Lleo=-a 2-2') 1-- , 0~m~2; 

9 3'/, n'I'ho'j'" he 
(15) 

andatl~Ro 

4n' ( , '/) ( 2) X Lleo=-a 2-2' 1---. 
9 3'" nho 

(16) 

Substituting the corresponding values of Ro, we ob
tain the following expressions for To and the rate of 
establishment of the creep in the case of uniaxial load 

In (BRola) a R' 
To = =const 

4n D'~ 

xl+m ( I ) m for R'=const4;::-- - , 
nhon ho 

In (BRola) a 1 (I) on T - x1+m 
0- 4n D'~ nhon h. 

xl+m l m 

for R':> Ro' = --(-) , 
nhon ho 

To = In(BRola) a 1 X'I, 
4n D'P (nhoP)'/ 

for I ""Ro, pR3:>~, 
nho 

where R is the average dimension of the satellite; 

. Bn' 1 BRo • R' 
Eu =45 ln- -a-D Z-nx, 

. 8n' 8R (,)m e = k -In-I -D' _ x'+m 
U hol a ho ' 

14;::Ro, 

. = p Bn' In(RoiR,p) D' P X'I" 
en 9 In (BRola) (nh,p)'/, 

I ""Ro. 

Here k is a number that depends on the value of m; 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

k "" 1/7 at m = 0; P is a numerical factor of the order 
of unity. We have taken into account the fact that 

R. dR Ro 
S p-""pln-. 

Ref R Ref 

Thus, a study of the rate of the steady-state creep 
simultaneously with a study of the process of diffusion 
aftereffect in a given sample can not only identify 
uniquely the mechanism producing the diffusion flow of 
the crystal, but also determine quantitatively all the 
structural microscopic parameters (D*, l, p) on which 
these processes depend. 

We note that for the case of compression it is neces
sary to replace /C everywhere by the absolute value JK J 
and to reverse the sign in the expressions for EzZ and 
~Eo. 

2. The theory of diffusion aftereffect was tested 
experimentally on polycrystalline samples of copper 
(average grain dimension ~ 0.5 mm) 60 mm long with 
cross section 1.5 x 1.5 mm. The tests were made with 
previously described setups[4], using a paired set of 
induction-differential displacement pickups, so that the 
creep and diffusion-aftereffect parameters could be 
measured with high accuracy even under conditions of 
instability or with continuous variation of the tempera
ture. The accuracy with which the absolute displace
ments was measured was ~ 0.2 IJ.. The samples were 
tested (in accordance with a procedure described in[5]) 
at a constant temperature T = 850 ± 1°C and at different 
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FIG. I. Total-strain curves copied from the potentiometer chart. 
The points on the sections of the aftereffect strain correspond to the 
calculated values of 6€. The values of a for the curves (in gf/mm2 ) are 
as follows: 1-30, 2-60, 3-110,4-170, 5-220, 6-2BO, 7 -320. 
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FIG. 2. Plots of log 6€o, log €, 
and log To vs. log K. 

FIG. 3. Plot of log (M/i) vs. log a. 

values of the stress a. The stress was varied in a range 
of values at which, according to the proposed theory, 
the plastic deformation of the crystals is determined by 
the diffusion-dislocation flow mechanism that ensures, 
as in C6], a power-law dependence of the creep rate. 
Here, however, the exponent was not 3- 5, as follows 
from We ertman's theory[6], but n = 5/3.1) The value of 
n is determined in the given range of loads by the 
microstructure of the crystal. Under our conditions, 
relation (14) is satisfied. 

Figure 1 shows the total- s train curves, copied from 
the chart of the EPP- 09 potentiometer, for seven values 
of the load: 30,60, 110, 170,220,280, and 320 gf/mm2 • 

The points on the sections of the strain aftereffect 
represent the values of ~E calculated from formula 
(10). The calculation of ~E is based on the values, taken 
from the corresponding strain curves, of the maximum 
aftereffect ~Eo and of the time To during which the total 
aftereffect strain ~Eo is reached. Figure 2 shows plots 
of log ~Eo (log K), log E (log K), and also log To (log K). 
According to the experimental data, ~Eo ~ K (Fig. 2a); 
the exponent in the expreSSion for the creep rate E is 
equal to 1.7 (Fig. 2b); To ~ K2/3 (Fig. 2c), and the ratio 
~Eo/E at small loads is ~K-O.6 (see Fig. 3). 

For our samples and loads, the microparameters of 
the theory (ho, D*, p, Ro) should be determined by USing 
the relations (14), (16), (19), and (22), which describe 

l)The value of n changes appreciably when the experimental condi
tions are changed. It has a clear-cu t tendency to decrease with decreas
ing a and with increasing T (compare the various data in [6'9]), i.e., 
with increasing role of the diffusion processes in the plastic flow of the 
crystals. 
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sufficiently well the experimental curves of Figs. 1-3. 
In addition, from the experimental values of 6 Eo ob
tained for different K (see Fig. 2a) it is pOSSible, by 
using (16), to determine he = 9.7 X 10-9 cm, while the 
plots of log E = f(%log K) (22) and log To = f(% logK) (19) 
(see Figs. 2b and 2c) enable us to find the quantities 

a, =_8_= 8n' !n(R.lRer ) D·_p_'I_, -=4.16.10-' sec:"1 
X'I, 9 In (8R.la) (nh.),/, 

T. In (8R.la) (1- v)kT 1 
u, = - = ..,....,:--:-::-:-= 

X'I, In (R.la) wG 
2.24·10' sec, 

(nh.p)'/'D' 
from which we determine 

D·=-.!" r= 9 In(8RoIa)u,(nh.)'/, =017.10-7. 
p' 8n' In (R.iR er ) , , 

D'=~ q=In(8R.la) (1-v)kT 1 10-'. 
p'l, ' In (Rola) wG (nh.),/,u, 

From these relations we readily obtain D* = r2/ q 
= 3 X 10-12 cm2/sec and p = (q/r)3 = 2 x 1011 cm -4. 

Using (14), we obtain the mean value Ro = 5 X 10-3 cm. 
We obtain also the number of sources of dislocation 
loops per unit volume: n = pRo = 107 cm-3. We see thus 
that all these calculated parameters have reasonable 
values. 

Let us note an effect observed in the investigation of 
the creep and diffusion aftereffect of the samples. When 
the load is applied and removed, a shortening and 
lengthening of the sample is observed, respectively, for 
several minutes. The absolute magnitude of such an 
anomalous change of shape amounts to several microns 
(at a sample working length of 40 mm). A detailed study 
has shown that the effect cannot be attributed either to 
thermal expansion connected with the possible radial 
displacement of the sample in the furnace, or to the 
thermoelastic effect in the adiabatic expansion or con
traction of the sample at the instant of loading or un
loading. It remains to assume that an anomalous after
effect is registered in this case. In similar earlier ex
periments [10J it was impossible to observe the anomal
ous aftereffect directly, possibly because the absolute 
displacements were not registered with sufficient accur
acy. The anomalous aftereffect was then manifest by a 
decrease of the normal aftereffect under definite experi
mental conditions. 

In the proposed theory of diffUSion aftereffect it is 
impossible to provide a natural explanation for this 
anomalous effect. Indeed, application of the load starts 
immediately a transient process producing a super
saturated point- defect solution corresponding to the ap
plied load. The source of the point defects is mainly the 
dislocation "forest" inside the sample, including the 
dislocations in the block boundaries. The equations 
describing the changes of the supersaturatio.n of the 
vacancies 6 v and of the interstitial atoms 6 ln are the 
same as obtained in [1J. Here, however, F v and Fin 
must be taken to mean the perimeter of the dislocation 
segments per unit volume, Fv + Fin = L"2 R:< N, where N 
is the dislocation density and L is the characteristic 
dimension of the cell of the dislocation "forest." For 
estimates we assume that the Burgers vectors of such 
segments are uniformly distributed among the direc
tions. Then 

df),V 2n s" 7=- In(8L1a)DW. (f),V-xCos'ljl)sin'Pdljl, 

~~ ~ S", . __ = - DMN (f),m+ X cos' Ijl)smljl d'P. 
dt In (8L1a) • 

we see therefore that within a time 

"1" ~ In (8L / a)e. / 2nD'N 

the supersaturation takes on the value 6 v = - 6 in = Y3 K , 

and c.* = %K. 
We can easily obtain equations for the diffusion sags 

of the vacancy and interstitial segments h v and hin , by 
using relations (4) from [1J and expressing the curvature 
of a segment with chord L in terms of the sag h 
(1/R = 8h/e): 

dhV 3nD' 
-dt = [f),' - X cos' 'P - 8~NhB], (23) 

a In (8Lla) 

3nD' 
_---[ - f),' + X cOS'Ijl- 8~NhMl. 
a In (8L1a) 

We have used here the expression for the volume of a 
flat segment V = Sa = % Lha, Consequently, within a 
time 

"I' = a In (8L / a) / 24ro~D'N>'t" 

the values of h v and hin become 
f), • - X cos' <p - f), • + X cos' <p 

hV = 8~N > 0, hin= 8~N > 0, 

corresponding to c.* = %K. 
From the law of matter conservation it follows that 

the areas of the vacancy and interstitial segments are 
approximately equal (as already shown, the excess 
number of point defects in the solution can be neglected). 
Thus, the maximum value of the anomalous deformation 
after loading, 6E~n, can be easily calculated from the 
general formula (see[1J) 

V "I' 
f),e~ = La[ - S cos''!' sincp d<p .. 

'" V 1 2 'I, V 
+ S cos' cp sin 'P dcp ] "" - u '3 [2 ('3) - 11"" - 0.03 v' . 

where cos2 cpo = 6*/K = %, and V/L3 is the relative vol
ume of the dislocation segments per unit volume: 

V Sa _ 2 Lha _ a ~ a ,~a 
V=U-'3U-12R = 12~ xeos CP=24~ x. 

We have substituted here the equilibrium value of the 
curvature of the segment Ii ~ (3/K cos2 cpo 

After the time T required to complete the transient 
process and to operate the dislocation-loop sources, 6* 
becomes equal to K/3 (seeLlJ ), the dislocation segments 
assume equilibrium shapes and cease to be sources of 
point defects, and a stationary creep rate is estab
lished. If the load is now removed, these segments be
come sources of point defects that are absorbed by the 
dislocation loops previously produced by the external 
load. This anomalous aftereffect 6Etn can also be 
easily calculated: 

V 11/2 

f), 8~= L' [ - J cos' cp sin cp dcp .. .. ' 
+ S cos' <p sin cp d<p ] . 

V 1 [ (1 )'/' V 
= - - 2 - - 1] "" 0 18-

L' 3 3 . L" 

cos2 cp~ = %. To obtain the equations for the dissolution 
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FIG. 4. Strain and time of anom
z alous aftereffect vs. prior stress a (in 

gf/mm2 ). 
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of the dislocation segments it is necessary to put D. * 
= K = 0 in (23)_ 

We see thus that the characteristic time of the anom
alous aftereffect after the unloading is also equal to To 

The experimental curves of Fig. 4 provide a fair 
confirmation of the linear dependence of the anomalous 
aftereffect following application and removal of the ap
plied stress; the equality of the corresponding charac
teristic times and their independence of the external 
load are also confirmed_ We note also that the diffusion 
aftereffect starts to decrease starting with a certain 
load or with a certain temperature at a fixed load, 
because the nonequilibrium number of dislocation loops 
previously produced by the applied load decreases as a 
result of the appearance of additional mechanical mo
tion. Such a behavior was clearly revealed by experi
ment[lO] . 

We note that in the formulas we used for the diffu
sion creep the stresses inside the grains are assumed 
to coincide with the external stresses_ In a polycrys
talline sample, however, inhomogeneously stressed 
states (stresses of the second kind) are actually pro
duced. The creep rate and the diffusion aftereffect must 
therefore be calculated by averaging over all the grain 
dimenSions, recognizing that the grain creep rate de
pends on the grain dimension R if R < Ro(K) and is inde
pendent if R > Ro(K). It is necessary here to use the 
condition that the creep rates of all the grains be equal 
regardless of their dimensions (the condition that there 
be no loss of continuity), and also the equality of the 
stressed state, averaged over the grain dimensions, to 
the externally applied stress. 

In the calculation of the rate of the diffusion after
effect of a polycrystal it is necessary also to average 
over the maximum dimensions of the dislocation loops, 
assuming that this dimension coincides with the grain 
dimension when R < Ro(K) and with Ro(K) for all grains 
with R > Ro(K). In our sample, the distribution of the 
grain dimensions was such that almost all the grains 
had dimensions R > Ro(K) in the investigated range of 
loads_ It is therefore unnecessary to average in our 
case. 

In conclusion, we are grateful to Ya_ E. Geguzin and 
I. M. Lifshitz for valuable advice and discussions. 
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