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The effect is considered of sound attenuation in a narrow surface layer of a solid on the heat flow 
through the interface between liquid helium and the solid. The additional heat flow depends 
materially on the state of the solid surface. It is less sensitive to external pressure and may have 
a different temperature dependence than the flow previously calculated. The process of heat ex
change due to interaction between fermions and the solid surface is also discussed. 

As is well known, a temperature discontinuity, called 
the Kapitza discontinuity, develops at the interface be
tween a solid body and liquid helium when heat flows 
between them. 

According to the theory of Khalatnikov, P] the tem
perature discontinuity is explained by the difficulty of 
transition of the phonons from liquid helium to the 
solid and conversely. In this case, the heat flow W 0 

from the liquid helium to the solid can be written in the 
form 

n W n • 
Wo= (2nC)2~n( ;)!J)'d!J) JW(!J),e)cosedCOS(). (1) 

Here n is the Planck function, T the temperature, c 
the speed of sound in helium, and w( w, e) the coefficient 
of transmission of a phonon with energy fiw, incident at 
an angle e to the interface into the solid. 

The flow of heat (1), in which the transmission coef
ficient w obtained in [ 1] is substituted, is small in fact 
for two reasons. First, as follows from the boundary 
conditions, the amplitude of the sound wave entering the 
solid (and, correspondingly, w) is proportional to the 
ratio of the helium density p to the solid density 
D(p/D « 1). Second, at incidence angles larger than 
critical, sin e c = c/ Ct « 1 (ct is the speed of trans
verse sound in the solid), total internal reflection of 
the incident sound takes place, i.e., w ( e > ed = O. 
Therefore, only a narrow cone of angles, amounting 
only to a small part (c/ {2 cd of the solid angle of the 
entire hemisphere, makes a contribution to the integral 
over e in (1). 

Furthermore, as mentioned by Andreev,[2] the am
plitude of the transmitted sound wave has a sharp max
imum at incidence angles close to sin e 1 = c/ ~ ct. The 
numerical values of ~ is of the order of unity and de
pends only on the ratio of the speed of transverse sound 
Ct to the longitudinal Ce (the graph of ~ is shown in[3] 
on p. 143). Inasmuch as ~ < 1, the e 1 lies in the plane 
of total internal reflection. A Rayleigh surface wave, 
which does not carry energy to the interior of the solid, 
is then excited in the solid. However, if we take into 
account the ever present sound attenuation, then the 
Rayleigh wave makes the same contribution to the heat 
flow as the region of subcritical angles e ~ e c. 

The heat flow due to the Rayleigh waves was fully 
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studied by Khalatnikov,P] although specifiC mechanisms 
of sound attenuation were not discussed. Somewhat 
later, Andreev f2 ] considered the interaction of conduc
tion electrons with phonons as a specific mechanism 
which leads to heat flow due to Rayleigh waves. It is 
evident that the heat flow obtained in[2] is already in
cluded in the final result of(l]: 

(2) W=~C 4n' T'F 
D 15 (2nnc,) 3 • 

Here F f:::: 1 is some function of the elastic constants of 
the solid. 

As is known, the theoretical value of the heat trans
fer coefficient of the boundary, Q = aW/aT, is at least 
an order of magnitude smaller than the experimental 
values, which, in turn, differ somewhat from one other. 
So far as the temperature dependence is concerned, the 
exponent in the different experiments deviates within 
the limits of 0.5 on both sides of the theoretical (see 
the reviews of Pollackf4 ] and Snyder fS ], and also the 
later works of Zinov'eva f6] and Jonson and Anderson[7]). 
Furthermore, according to all known experiments (see, 
for example, the works of Kuang Wey-yen[8] and Challis 
et al.[9]), the heat transfer coefficient depends more 
weakly on the external pressure than follows from Eq. 
(2). 

The reasons why the experimental values dis
agree with one another and with Khalatnikov's theory 
have been considered in many researches. So far as 
we know, they contain no principally new theory that 
explains the Kapitza discontinuity. Everything reduces 
essentially to allowance for the non-ideality of the 
interface. 

Thus, for example, the weak dependence of the tem
perature discontinuity on the pressure and the exces
sive values of Q are explained inr9] by the existence on 
the surface of the solid of a translucent denser layer of 
helium which is formed under the action of Van der 
Waals forces. Incidentally, the acoustically induced 
transparency connected with the transition layer was 
proposed in[lO] to be used to improve the heat transfer 
between the helium and the solid. 

The effect of the always present roughnesses of the 
helium-solid interface was considered in[ll,12]. As 
shown in[12], when the wavelength of the phonon is of 
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the order of the characteristic dimensions of the rough
nesses, an unusual spatial resonance takes place, lead
ing to an increase in the heat flow. True, the calcula
tions in [12J are strictly satisfied only for sufficiently 
flat roughnesses, when the contribution to the heat flow 
is small in accord with the smallness of the angles of 
inc lination. 

In one of the recent theoretical papers, [l2J heat 
transfer was considered which is due to the interaction 
of the helium atoms with the solid surface. It was as
sumed in this case that the interaction between the 
atoms of helium is absent. If T - 0, then the coef
ficient of heat transfer is the same as in the radiation 
of phonons into a gas, Le., the result of Khalatnikov is 
actually valid. In the region of higher temperatures, 
Q deviates in the direction of higher values. However, 
as the authors of the mentioned paper themselves note, 
a model in which the interaction of the atoms among 
themselves is neglected is scarcely adequate for the 
helium-solid system. 

Finally, as follows from the results obtained in a 
number of researches[7,B,14J, it is necessary to take 
into account the fact that the narrow surface layer of 
the SOlid, of thickness of the order 10-5_10- 6 cm, is as 
a rule greatly deformed and differs materially from the 
bulk solid. 

In the present work, the effect of sound attenuation 
in the narrow surface layer of the solid on the heat 
flow across the interface is explained. It is shown here 
that the phonon can enter the solid at any angle of inci
dence at the interface and not only in the subcritical 
region and close to the angle corresponding to the ex
citation of Rayleigh waves. This leads to the result that 
the range of integration over fi in (1) increases by the 
factor 2( ct/ c? 

Thus, let a plane monochromatic wave be incident 
from the liquid, w~ich occupies the half-space z> O. 
The potential of this wave is 

(3 ) 

where k2 = k~ + k~ = w2/ c2. In addition to the incident 
wave, there is the reflected wave 

(4) 

and the transmitted longitudinal and transverse waves. 
The velocity field produced in the solid by the trans
mitted waves can be written in the form 

v = Vq>, + rot1jl. (5) 

Here A -ikzzz i(kxx-wt) 
CP2 = Ze e , 

¢y = Ate-i.ltIZzei(.ltx~-(a}t), "",x = '¢: = O. (6 ) 

where kl and kt are the wave numbers corresponding 
to the longitudinal and transverse waves, 

k" = Yk,' - kx', ,k" = Yk,' - kx'. (7) 

It follows from (6) and (7) that for real kl(t) = W/cl{t) 
and for kx> kt, total internal reflection of the incident 
sound wave takes place, inasmuch as ktz and kZz are 
purely imaginary. Here, in the narrow skin layer of 
the solid, of thickness (5 ~ 1/1 kzz I the so-called in
homogeneous wave f15J is propagated which, as in the 
case of Rayleigh waves, does not carry energy into the 
interior of the solid. If kZ and kt have imaginary parts, 

due to attenuation of the sound wave in the SOlid, then 
a leaking of the energy into the interior of the solid 
takes place. In this case, the transmission coefficient 
W(fi> fic)"'O. 

It is convenient to use the following definition of the 
transmission coefficient: 

Here 
1 0 av, av,' 

Ed=- S 1],klm---dz 
2 _00 ax. aXm 

is the average energy dissipated in the solid per unit 
time, 1) ik[m is the viscosity tensor, 

(8) 

(9 ) 

Einc= '/,IAol'pckk, (10) 

is the energy incident per unit time per unit area of the 
interface. 

The velocity field in the solid, in accord with (5) and 
(6), can be written in the form 

( k" At ) vx =ikxq>2 1+-k -exp[iz(k,,-k,,)] , 
• x Al (11 ) 

. ( ~ At. ) v, = - lk"q>2 1- k:""At exp[lz (k" - kt ,)] • 

The coefficients A[ and At in (11) can be found from 
the system of boundary conditions, which stipulate con
tinuity of the normal displacements and pressures at 
z = O. If we neglect the damping of the sound wave, 
which corresponds to account only of terms of first 
order of smallness in the absorption, the solutions of 
this system can be written asP5J 1) 

A, / A, = 2k.k" / (2kx' - k t2), 

28,'82k'k,(k,' - 2kx') 
(12) 

Ao k,(k,'-2k.')'+4kx'k,k"k,,+8,'8,k'k,'k,, ' (13) 

where to 1 = c/ Ct, t2 = p/D. 
We now consider the region of transcritical angles, 

where kx ~ k» kt. It then follows from (11) and (12) 
that the longitudinal and transverse inhomogeneous 
waves vibrate in counterphase, so that the total 
velocity field differs from zero only in the next approx
imation in t t i.e., 

(14) 

As a result, the factor d appears in the transmission 
coefficient (8). 

It is appropriate to note the special role of the 
transverse wave in the solid. The absence of the latter 
in the narrow skin layer of the more dense medium 
would lead to a sharp increase in the transmission co
efficient in the transcritical range of angles and, cor
respondingly, to a decrease in the thermal resistance 
of the boundary. 

The derivatives of the velOCity components with re
spect to the coordinates are conveniently written in the 
following compact matrix form, with accuracy to the 
first non-vanishing terms in to: 

(
avxavx ) 

ax tii At 'k { (-1 1i) _ (~;2 av,av, =:rex'kt' (1-~')kxz i \. 

ax az I 
- i)} i(kxx~t) 
~,e , 

(15) 

1) Account of the dissipative components in the wave numbers and 
the boundary conditions would be necessary if the problem were solved 
by another, more complicated but, of course, equivalent method, in 
which the transmission coefficient is defined as w = I J IAI Ao12. 
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where (3 = Ct I cl. Substituting (15) in (9), and taking into 
account the relations (10), (13) and (8), it is not diffi
cult to obtain the transmission coefficient of the pho
nons in the transcritical range of angles: 

2B,'k,' 4 1 - 2~' 
w, = (1- ~')'pckk.k, (3'1 + 1; + '1-~-. -). (16 ) 

In an isotropic body, the tensor '1 iklm has only two 
independent components, the combinations of which are 
denoted in (16) by 11 and !;. 

It is convenient to write the result in terms of the 
relative damping of the longitudinal and transverse 
sound waves: 

"'" Imk, =~(~ ) _ Imk, k,'1 
V' k 2D 3 '1+~ , v'=--=--, ,c, k, 2Dc, 

(17) 

after which we have finally for the transmission coef
ficient 

4 k,'ez" ) 
w, = (1- ~')2 k.k, [v,~ + v,(1- 2~ ) 1. (18 

We recall that f32 < Y2 for all known bodies)31 
Further calculations are determined to a Significant 

extent by the frequency dependence of the damping co
efficients Y l(t). If it is assumed that the relative ab
sorption does not depend on the frequency, as takes 
place in the damping of phonons on dislocations,[16,17] 
then substitution of (18) in (1) gi ves 

w. 4Jt' T'e, [ ,+ (1- 2R') 1 
15(1- ~2)2 (2nli)'c,' v,~ V' p. 

(19 ) 

It is interesting to compare the obtained heat flow 
with the flow (2) 

W. n[v,~'+v,(1-2~')1 c, 

W (1-~')'F 7" 
(20) 

We note that although the region of transcritical angles 
is 2( ct I C)2 times greater than the region of subcritical, 
the large parameter 11 € 1 enters in the final result only 
in the first degree. This is connected with the fact that, 
as is seen from (15), the inhomogeneous wave moves 
in the narrow skin layer, the depth of which is of the 
order of 11k. To sum up, the transmission coefficient 
in the transcritical region of angles is proportional to 
Im kt/k = €iyi. 

A formula of type (20) will also occur when the 
damping coefficient y is not small. Unfortunately, not 
only are the formulas obtained for the problem under 
consideration very cumbersome, but there are obscuri
ties in the exact formulation of the problem. However, 
the order of magnitude of the effect can easily be ob
tained from a consideration of a model problem in 
which the solid is replaced by a liquid characterized by 
a density D and sound speed ct. We easily find a sim
ple expression for the transmission coefficient w in 
the transcritical region of angles, assuming only small
ness of the ratio c2/cl (but not y): 

pc' 1 
W = Dc,' cos 8 sin 8 4v (8 ~ 8e) 

The resultant transmission coefficient is smaller than 
the corresponding coefficient for the subcritical region 
of angles in the ratio (cl ct)y. However, inasmuch as 
the region of transcritical angles is 2( ct I C)2 times 
larger than the region of subcritical, the gain in the 
ratio of heat flows will be y ( cl cd ( cd C)2 ~ Y ( Ct I c) 

and consequently a formula of the type (20) will hold for 
damping that is not small (y ~ 1). 

It was noted above that the surface layer of the solid 
is as a rule strongly deformed. The thickness of the 
deformed amorphous layer is ~10-6 cm. The total 
thickness of the transition zone of the deformed metal 
is ~10-5 cm. This circumstance ought to lead (as fol
lows, for example, from the work of Zusman and 
Rokhlin, [18]) to strong damping of the inhomogeneous 
sound wave, which moves in a skin layer of depth 
I) ~ 11k ~ 4 x 1O-7 T-l cm. 

According to (20), at relative damping y on the 
order of unity, the heat flow is increased and the Kapitza 
resistance decreased) by half an order of magnitude. 
This circumstance could explain the significant differ
ence of the experimentally observed Kapitza resistance 
from the ideal, which is given by Eq. (2).2) In this case, 
the resulting heat transfer coefficient will be sensitive 
to the state of the surface of the solid, which is in qual
itative agreement with the experimental data.[7,8] 

According to (19), W3 generally does not depend on 
the sound speed in the less dense medium in the con
sidered approximation in € 1. This leads to a weaker 
dependence of W3 on the external pressure in compari
son with (2), which agrees qualitatively with the results 
of the work of Kuang[8] and Challis et al. [9] and, finally, 
the temperature dependence of W 3 can differ from that 
given in (19) if the relative damping depends on the 
frequency. 

The results are applicable for He3 in the range of 
temperatures T« fiT (here T is the time of free flight 
of the quaSi-particle), when the theory of a Fermi 
liquid is valid. The surface of the solid, executing 
small oscillations with a characteristic frequency 
W ~ T/Ji, cannot radiate (absorb) a phonon, inasmuch 
as WT» 1. 

The heat transfer process in this case, as shown by 
Bekarevich and Khalatnikov,[l9] is determined by the 
interaction of the vibrating boundary of the solid with 
the quasi particles. 

Special interest was paid in[l9] to the possibility of 
radiation of the vibrating boundaries in a Fermi liquid 
of the collision-free collective mode-zero sound. The 
constant a in the final results was represented as the 
sum of two components. They depended on the energy 
of interaction of the quasiparticles f( p, p') or, more 
accurate ly, on the first two coefficients F 0 and F 1 of 
the expansion of f( p, p') in spherical harmonics. Upon 
substitution of numerical values for F 0 and F 1, the 
constant a is equal to 0.3 and is determined essentially 
by the first component, which is equal to the residue at 
the pole corresponding to zero sound. 

In one of the latest theoretical researches, Rice [20] 
considered the heat exchange process due to "inelastic" 
collisions of noninteracting (f( p, p') = 0) quasiparti-

2)The explanation of the sources of absorption and phonon damp
ing in the surface layer of the solid is very important for understanding 
the reasons for the decrease in the Kapitza resistance. The fact is that 
in the attempt at a description of the dissipative properties of the solid, 
we encounter a difficulty, which is that all the known viscosity mech
anisms (absorption of phonons by electrons or scattering of phonons by 
impurities and dislocations) lead to the appearance of a small dimen
sionless parameter in the damping coefficient 'Y. 
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cles with the solid. Here it is appropriate to note that 
the "inelastic" mechanism of heat transfer is auto
matically contained in the final result of Bekarevich 
and Khalatnikov.P°) This can easily be established by 
letting F 0 and F 1 approach zero in the expression for 
the heat transfer coefficient given in[19). Then the con
stant a is determined only by the second component, 
which is equal to 0.25 in this case. 

By virtue of what was pointed out above, it is not 
surprising that the heat transfer process, obtained by 
Rice f20 ) actually coincides with the result off19). The 
circumstance has been discussed in detail in the work 
of Sheard, Toombs and Challis(21). 

In conclusion, we shall show that the heat transfer 
process due to "inelastic" collisions of noninteracting 
fermions with the vibrating wall, can be described by 
another method, essentially equivalent to that described 
in (20), but much simpler from our point of view. For 
this, it suffices to note that such a process is com
pletely analogous to exchange of energy between the 
solid and He II in "inelastic" collisions of rotons and 
phonons with the solid wall. According toP), the heat 
flow for He II connected with this mechanism is small 
in comparison with the flow due to radiation (absorption) 
of sound in He II. 

A fermion reflected from a solid can acquire (lose) 
some energy, a fact accompanied by absorption (radia
tion) of a phonon in the solid. Inasmuch as all subse
quent discussions and calculations are absolutely ana
logous to the calculations of[1), we shall write out here 
only the final result for the heat transfer coefficient: 

Q=6n.i!....~~ (21) 
m D (2nllc,)" 

where pm- 1 = N is the number of quasiparticles per 
unit volume, Po = fit 31T2N)1/3 is the boundary momentum 
and 

(x - Xl) 3 ea:+:t\ 
l=Sd~f dx,""B.4. 

o (eX - eX,) (eX + 1) (eX, + 1) 

This expression is naturally identical (in the sense 
noted above) with the result of( 19). If we now make use 
of the definition of the Debye temperature and the 
boundary momentum, then the relation (21) can be re
written in a form practically identical with the results 
of the work of Rice. [20] 

The authors express their sincere gratitude to A. F. 
Andreev for extraordinarily useful discussions. 
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