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A kinetic equation for an ion in a degenerate Fermi gas is presented. It is shown that for an ion with 
a radius a which is s o  large that pFa >> 1 ( p ~  is the Fermi  momentum) the kinetic equation is valid 
a t  both low and high temperatures. In the intermediate temperature range for which the kinetic equa- 
tion is not valid, the ion mobility varies by a factor (pFa)6. A diagram technique is proposed for cal- 
culating the mobility of an ion interacting with a fermi gas. This technique is applicable if one of the 
parameters, either the ion mass or radius, is sufficiently large. The calculations a r e  performed 
under the assumptions that the ion is a large-radius rigid sphere ( p ~ a  >> 1). It is shown that the 
corrections to the mobility in the high temperature range qualitatively change on transition from the 
region T, >> 1 to the region T, << 1 ( T  is the transport time). In the region T, << 1 the growth of the 
corrections with decreasing temperature is slower than in the region T, >> 1. Consequently, the high 
temperature result for mobility is valid for a much broader temperature region than was previously 
assumedC13 when the estimates were based on the kinetic equation. 

A remarkable property of the negative ion in J5e3 is i t s  
large radius, a - 15-20 A,  which is much larger  than 
the dimension of the atom. For such a large particle 
one can expect a qualitative change in the temperature 
dependence of the mobility compared with particles of 
atomic dimensions. This question is investigated here 
from two points of view. The f i rs t  part of the paper dis- 
cusses the kinetic equation and the ensuing results. In 
the second part we develop a diagram technique that 
makes it possible to find the corrections to the high- 
temperature value of the mobility. The analysis is car- 
r ied out for an ion in a Fermi gas, since Gould and 
MaC1] have shown that the corrections to the ion mobil- 
ity for the interaction between the gas particles a re  
small  and decrease with decreasing temperature. 

2nF (P - P') 
w(P,P' )=4n I rn I ~ J + ~ ( ~ ) I I - ~ ( P + P - P , ) I  ,.-., 

where the spin factor is taken into account; m is the 
Fermi-particle mass ,  which we assume to be much 
smaller than the ion mass M, ~ ( p )  and n(p) a r e  the en- 
ergy and distribution function of the Fermi  particles, 
and 8(P) is the ion energy. Since 8 - T and E - EF,  the 
integral in (2) can be calculated by neglecting the terms - Z/E - T/EF << 1, and we thus obtain for the probabil- 
ity 

IF(P - P') I "  8-8' 
w (P, P') = 4n 0(2p, -IP-P'I ) .  

(3) 
IP-P'I ( 1  -exp[j3(&'-&)I} 

Here p = 1 / ~ ,  and the step function 0 limits the momen- 
tum transfer to the value 2 p ~ .  OF ITS APPL1cABILITY The kinetic equation for the ion momentum distribu- 

We assume that the degeneracy condition E F  >> T is 
satisfied. The ion has an energy on the order of T, as  a 
result of which the only particles that take part in the 
scattering a r e  those in the region of thermal smearing 
of the Fermi function. The momentum of the scattered 
particle remains on the Fermi surface-it can change 
direction, but i ts  magnitude changes little, to the extent 
that T/cF is small. The amplitude of the scattering of a 
Fermi particle by an ion, a s  will be shown below, can 
depend strongly on the particle scattering angle cp, but 
depends little on the initial or final particle momentum. 
We assume therefore that the amplitude depends only on 
the angle cp, which in turn is fully specified by the mo- 
mentum transfer in accordance with the relation 

cp IP-P'I sin - = - 
2 2 p P  ' 

where P and P' a r e  the initial and final momenta of the 
ion, and pF is the Fermi  momentum. We introduce the 
symbol F ( P  - P') for the amplitude. The probability of 
scattering of an ion from the state P to the state P '  is 
given by the usual formula 

tion function f(P) is written, using (3), in the form 

The integral in (4) is over I P - P' I < 2pF. Here E is 
the external force acting on the ion. We s e e  that when 
E = 0 the solution of the kinetic equation is the Maxwell- 
ian function f - e-pb". The limitation of the integration 
with respect to P' becomes significant when P' >N P&, 
i.e., for-temperatures T > rncF/M. ~t such tempera- 
tures,  the ion loses in one collision a smal l  fraction of 
i ts  momentum, and Eq. (4) can be transformed into a 
Fokker-Planck equation by expanding in powers of the 
parameter p k / ~ ~ .  The mobility in this limit was cal- 
culated by Davis and ~ a ~ o n n i e r  ['I. 

In the case of low temperatures T << rnEF/M, the 
limitation of the integration with respect to P'  is im- 
material, since the scattering is only through small  
angles. Denoting by Fo the zero- angle scattering ampli- 
tude, linearizing (4) with respect to E ,  and making the 
resultant equation one-dimensional, we obtain for the 
mobility a t  low temperatures 



M O B I L I T Y  O F  A N E G A T I V E  I O N  I N  ~e~ 369 

where the function ~ ( x )  is defined by the equation 

The relation p - T - ~  at low tem eratures was ob- 
tained by a number of workers [l-'? Recently i(ramerLal 
expressed doubts concerning the validity of this result ,  
and presented a calculation according to which p - const 
a s  T - 0. Kramer did not solve the kinetic equation, but 
used the momentum- balance relation. This relation is 
identically satisfied for the exact solution of the kinetic 
equation, but is not an equation by itself. Reasonable re- 
sults can be obtained from the balance relation by ap- 
proximating correctly the distribution function con- 
tained in it. At high temperatures, practically any ap- 
proximation gives the correct order of the mobility. 
At low temperatures, a very important factor hindering 
the scattering is the smallness of the momentum-space 
volume (aP3) to which the ion can go after the scatter-  
ing, ( A P ) ~  - T~".  Taking into account the factor T ' ~  
that results from (6- c')/IP- P'I in (4), we obtain pre- 
cisely the factor T' in the scattering probability. All 
these factors drop out if we consider the momentum 
balance for an ion moving with constant velocity, i.e., 
neglecting recoil. This is precisely the reason for 
Kramer's incorrect result. 

We indicate also a result that follows from (4) in the 
limit a s  T - 0. This condition means in fact that the 
ion momentum in the field exceeds i ts  thermal momen- 
tum. Putting T = 0 in (4) we obtain for the ion velocity 
the nonlinear relation 

Let us discuss now the results obtained with the aid 
of the kinetic equation. We begin with the simplest case, 
when the scattering amplitude F of a Fermi  particle by 
an ion is small ,  s o  that pFF << 1. We then have for the 
mobility the expressions 

p - (MT)  -'F-', MT < pFZ, (8) 

which become of the same  order of magnitude a t  
MT - Pb. If we take the criterion for the validity of 
the kinetic equation to be 

then we see  that a t  pFF << 1 the kinetic equation is 
valid at all  temperatures. With increasing ion dimen- 
sion, the position changes radically. If p ~ a  >> 1, then 
a t  low temperatures (MT << a-') the Fermi  particles 
become scattered through the angles cp < (pFa)-', and 
the amplitude Fo is determined by the diffraction scat- 
tering, s o  that 

F,  - a(p,a), y - (MT)'za-Z(p,a)-z, MT < a-'. 
(11) 

The criterion for the applicability of the kinetic equa- 
tion MT << a-Z(pFa)-2 is violated while the diffraction 
approximation for the amplitude i s  st i l l  valid. The mo- 
bility at the limit of applicability of the kinetic equation 

It is interesting that plim does not depend on the ion 
mass. At high temperatures the mobility is given by the 
same  formula (9) with F - a (see formula (39) below). 
The mobility ratio a t  the limits of applicability of the 
high- and low- temperature results is of the order of 
(pFa)6 >> 1. The temperature dependence of the mobil- 
ity in the intermediate region is unknown. 

DIAGRAM TECHNIQUE. HIGH TEMPERATURE 
CORRECTIOIS 

We write down the Hamiltonian of an ion interacting 
with a Fermi  gas: 

Pa 
H - I T o + - +  ~ ~ ( k ) e ' ~ ~ a ~ + a , + t ,  

2M k p  
(13) 

where H, is the Hamiltonian of the Fermi  gas,  P ,  R,  and 
M a r e  respectively the momentum, the coordinate, and 
the mass of the ion, a' and a a r e  the Fermi-particle 
creation and annihilation operators. The ion mobility, 
determined by the Kubo formula, is best calculated for 
imaginary frequencies 

The mobility a t  real  frequencies is obtained by continu- 
ing p(un) from the points of the upper half-plane. 

The expression for can be significantly trans- 
formed by averaging in the general form over the states 
of the ion. To  this end, we replace Spion in the gas by a 
continuous integral along the ion trajectories ['I : 

where 
d R ( 4  

H ( r )  - Ho + z ~ ( k )  e""")%+g+k, V ( T )  = - 
kP 

d7 . (16) 

If we write 

H (T)  = H (7 )  + IJCV ( 7 )  - inv ( r )  , (17) 

where 

is the total momentum of the gas, and change over to the 
interaction representation in terms of ir v (T ) ,  then 

= (2'.exp ( i [ ~ ~ ( ~ ) v ( r ) d - c )  ) 
It is recognized here that 

ex*{- i {m(T)d.t}= 1, 
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since R(0) = R(p) in accord with the definition of the 
trace,  and we have put R(0) = 0. The angle brackets 
denote the Gibbs average over the states of the gas with 
Hamiltonian 

T(T) is the operator n in the Heisenberg representation 
with this Hamiltonian. We note that 

is the Hamiltonian of a gas interacting with a static 
potential U fixed a t  the origin. We assume that the so- 
lutions of the single-particle problem for such a poten- 
tial a re  known. 

We see  now that after we substitute (18) in (15) the 
integral becomes Gaussian. Calculating the auxiliary 
integral 

Let us indicate several  diagrams for .Q in the f i rs t  
orders of perturbation theory 

We note that diagrams with two gas loops appear only 
in third order perturbation theory (we take the order of 
perturbation theory to be equal to the number of wavy 
lines). This is s o  because the vertices contain the vec- 
tors r, and each loop should have an even number of 
vertices, meaning that an even number of wavy lines 
should emerge from it, including the external vertex of 
the loop. 

We make the concrete calculations in  the representa- 
tion of functions with definite angular momentum qklm, 
a s  defined in Sec. 33 ofC8'. The matrix element of 
the momentum for these functions consists of a term 
corresponding to the free motion and a term determined 
by the matrix element of the force in accord with the 
equation p = - VU: 

sign (1' - 1) d U  '"' 
( k ' ~ ' r n ~ ~ ~ ~ k i r n ) = ( n ) " .  k 6 ( k  - k T ) +  

, - h L  1.  (27) 

Here r '  and E denote the energies €(kt) and r(k), 
(the second term in the argument of the exponential ap- (28) 

P 1% - m2 
dU R'I' 

d U ( r )  ,.? d,., 
pears if it is recognized that i ~ ( r ) d r  = 0) , and taking (n')'' '"= ( 2 l +  I )  (21 - i )  

] ; (dr) ., = ~ ~ - ~ , ( r ) ~ ~ ~ ( r ) -  
d r  

0 
the variational derivatives 62/6nz(~1)6nz(0) of both Rkl(r )  is the solution of the radial Schrodinger equation 
halves of (19), we obtain for the mobility in the field U(r). The matrix elements n and ny a r e  

i l  1  obtained by comparison with Sec. 29 ofcA. The integral 
~ ( w ) = - { M - M 1 ( ~ r ~ a ( ~ l ) ~ z ( ~ ) ~ ( $ )  )rn), (20) of an expression of the type ( r  - r') is taken in the sense  

0 
of principal value. The product of such expressions is 

1  transformed by using the identity 
A'($)= T.erp - - - d r + -  ( j n ( r ) d T ) )  . (21) )  2Mp 1 --?l(-- 

(29) 
\ + ~ f i ( X - " , 6 ( x - Z ) .  

( x - y ) ( x - z )  y - a \ x - y  x - z l  2 - '  " '  ~ 

It is convenient to represent (20) graphically. The 
Green's functions of the gas particles a r e  represented We shall henceforth use the notation: 
by solid lines, and we introduce the new graphical rela- 
tions 

The vectors r joined by a dashed line form a scalar  
product, and a dashed line carr ies  any frequency except 
zero. The first  terms of the expansion of ,u(w) in terms 
of M-' a re  represented by the diagrams 

I-\ --<>-- 
cwp'w' = - - - -  + ----- + + ------- 

--a- 
(23) 

The sum of such a ser ies  will be represented by a wavy 
line. We express i t  in terms of the sum of diagrams, 
for a loop, which a re  not reducible with respect to this 
line. To this end we write down a diagram equation for 
summing the chain 

We recall  that i t  is necessary to integrate with respect 
to all the k in the diagram from 0 to .o. 

It is possible to decrease appreciably the number of 
diagrams in each order of perturbation theory by chang- 
ing from the momentum correlator to the force correla- 
tor in accordance with the formula 

(nn), = --0-'(VUVU).. (31) 

Accordingly we shall henceforth designate the outer ver- 
tex by a light triangle 

The solution of which is s i g n ( l f  - 1) dU "' 

-, = (n) 
0 

' Y , W ,  = - C+ 1. - [.+.w]-' 
(x) *; 

(25) 
The most important characteristic of the ion in ~ e ~ ,  

in our opinion, is its large dimension a, and the condi- 
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tion p ~ a  >> 1 is well satisfied. This condition means 
that the gas approximation does not hold, since (pFa)2 
>> 1 gas particles interact simultaneously with the ion. 
It will be shown that the procedure developed above 
yields an expansion in inverse powers of the gas param- 
eter.  Accordingly, we choose for the concrete calcula- 
tions the simplest type of potential U(r): 

It is convenient to calculate the force matrix element 
for a finite value U(r < a) and then take the limit as 
U(r < a) - 03. We present the final result: 

The matrix element vanishes if ka < 1 o r  k'a < 1'. 
Let us calculate the contribution made to ~ ( w )  by the 

loop without inserts. After summing over the internal 
frequency of the loop 

The factor 4 takes into account the presence of spin and 
the fact that the indices 1 - 1 and I ,  which pertain to  the 
upper and lower lines, can be interchanged without 
changing the value of the diagram. Summation over m 
yields the factor 1/3. Substituting (34) in (35) and chang- 
ing from summation over 1 to integration, we get 

&:m' i d E  f derq (e, €1) 

n (e) - n (e') 
do(@)=-3nwo o+E-E' ' (36) 

where P(E, E ' )  is the function produced after integration 
with respect to I :  

(e-e')= e"Ce'" -- 
8 ln lnl. 

It is possible to perform one more integration in (36) 
by using (37), s o  that J//,,(w) is expressed in terms of an 
integral with respect to the variable E' - c = v, which 
we write down by separating the real  and imaginary 
parts after replacing w by w + i b ,  

Here w is already considered real,  p o  denotes mobility 
a t  zero frequency, 

and we have introduced the notation 

The result  (39) was obtained by Gould and ~ a C ' 3 ,  
who calculated a quantity that is given exactly by (35), 
but confined themselves to finding the low-frequency 
limit of its imaginary part. The real  part  (38) contains 
a frequency-dependent correction to the ion mass ,  due 

to the interaction with the Fermi  gas. It is convenient 
to replace the function +(v/cF) in the integrand of (38) 
by @(v/EF) - 1. This does not change the value of the 
integral a t  w # 0, but eliminates the singularity of the 
integrand a t  w - 0, since +(O) = 1 and, according to (40), 
@(x) can be expanded near zero in even powers of x. 
Recognizing that 

we obtain for the mobility a t  low frequencies 

We s e e  that the increment to the ion mass is - - 0 . 0 9 9 3 m ( ~ ~ a ) ~ .  It will be shown that the corrections 
to (42) a t  high temperature a r e  smal l  regardless of the 
value of M. 

Formula (38) was obtained in the first  approximation 
of the formal calculation scheme. Let us indicate the 
possibility of a simpler derivation. If we specify the ion 
motion in the form v(t) - e-lwt, where v is the ion v 
velocity and t is the present time, the coefficient of the 
proportionality of the ion velocity to the momentum t 
transfer per unit time from the ion to the gas turns out 
to be iw.No(w + i6). The result (25) follows then from the 
equation for the ion motion under the influence of the 
force E(w): 

-ioMv(o) = &oxo (a + i6)v(o) + E(o). (43) 
The value of .No is thus calculated neglecting the recoil 
of the ion, and is thus independent of the ion mass. The 
recoil is taken into account in the next stage-in Eq. 
(43). In a situation that admits of the use of the kinetic 
equation, the analogous approximation is the Fokker- 
Planck approximation. 

Let us estimate the corrections to the result (38) 
and (39). We begin with a diagram containing one wavy 
line : 

We have summed here over the internal frequency of the 
loop and integrated with respect to the energy of one of 
the gas lines a t  a fixed energy difference v. A smooth 
function similar to @(v/EF) in (38) has been taken out- 
side the integral sign and i.ncluded in the numerical fac- 
tor A. Representing p(wl) in the form 

where p(x) is th'e mobility a t  real  frequencies, we can 
calculate the sum over wl. Since the smooth function v 
was taken outside the integral sign in (44), this expres- 
sion can be used only to calculate the imaginary part  of 
.fll(w + id). Taking the integral with respect to v and 
going over to the limit w << T,  we obtain 

The integral is determined by the relation between 
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the frequency that is characteristic of p and the tem- 
perature. For  the relation 

Po 
P ( x ) =  T = Mpo, 

( 1  - i z x )  ' 

(we assume for simplicity that M >> m(pFa)2) we obtain 
in the limiting cases 

Formula (48a) is in fact valid for all ~ ( x ) ,  while formula 
(48b) is valid for all p(x) with logarithmic accuracy. 

Comparing (48a) with (38) and (39), we s e e  that the 
corrections to the mobility a re  of relative order of 
p b / ~ ~  at high temperatures. The corrections to 
formula (9) for the mobility of a particle of smal l  
dimensions ( ~ F F  << 1) a re  of the same order. The 
criterion for the suitability of such a correction in the 
latter case is MT >> Pk. For a large-radius particle, 
the criterion TT >> 1, which if satisfied causes the cor- 
rection to take the form (48a), is much more stringent: 
MT >> Pb(PFa)2. With decreasing temperature, the 
growth of the correction slows down, and a t  T T  << 1 it  
depends, according to (48b), on the temperature logar- 
ithmically and its relative value is pbpo. The result 
(48b) is meaningful if pbpo << 1. Writing this criterion 
in the form 

we see  that its satisfaction means smallness of the in- 
crement to the Fokker-Planck value of the mobility a t  
TT - 1, meaning also at lower temperatures. Satisfac- 
tion of a criterion that is the reverse  of (49) means that 
p b / ~ ~  - 1 at TT - 1, meaning also at lower tempera- 
tures. Satisfaction of a criterion that is the reverse  of 
(49) means that p k / ~ ~  - 1 at TT >> 1, i.e., that the 
Fokker- Planck approximation is not valid if the kinetic 
equation is valid. We shall therefore consider hence- 
forth the case p b p o  << 1 ,  i.e., the case of low mobility. 
It is seen from (39) that a large value of the parameter 
pFa ensures satisfaction of this inequality. For  the ion 
in ~ e ~ ,  according toCg1, po  - 0.01 cm2/v-sec and p~ 
= 10' em-', s o  that 

We shall try to explain the cause of the transition 
from (48a) to (48b). We write down the mean-squared 
momentum of the ion in the form 

(p '  is the real part  of the mobility). The f i rs t  integral 
can be regarded a s  convergent a t  frequencies - 7-' - (Mpo)-' and is of the order (4rrM)-l, regardless of the 
relation between 7 and T. The second integral depends 
significantly on this relation: 

Comparing these formulas with the aforementioned of 
the f i rs t  integral in (51), we s e e  that P2 - MT if TT 
>> 1 and - (2npo)-' if TT << 1. We can therefore as- 
sume that the correction to  (39) is of the order  of 
p b / ~ 2 ,  just as in the case when the kinetic equation is 
applicable, and the transition from (48a) to  (48b is due L to the change in the temperature dependence of P on 
going from TT >> 1 to TT << 1. The logarithmic tem- 
perature dependence of the correction, and also the 
numerical factors in (48), cannot be explained in such a 
rough manner. Josephson and ~ e k n e r  [lo] obtained a 
correction similar to (48b) for the mobility by a less 
rigorous method. 

We consider now diagrams containing two wavy lines. 
Without presenting the calculations, we indicate that 

for w << T. If i t  is assumed that the integral is of the 
order of ~ o / M ,  then the diagram yields a correction of 
the order of ( p ~ / M ~ ) ~ k p ~  to the main result. It can be 
shown that a diagram with two intersecting wavy lines 
contains a contribution that cancels (53), s o  that their 
sum does not contain terms proportional to T-'. This 
cancellation is possible because interchange of, say,  
the lower ends of the wavy lines in (53) does not change 
the factor made up of the matrix elements of the unit 
vector. This is easiest to s e e  in the plane-wave repre- 
sentation, where a point vertex is a free-particle mo- 
mentum matrix element diagonal in the plane-wave mo- 
mentum. Therefore interchange of point vertices be- 
tween which there a r e  no triangular ones does not 
change the angular dependence of the diagram. By cal- 
culating a diagram with one wavy line with triangular 
vertices we can verify that in the case TT >> 1 it is of 
the order of p $ / ~ ~ ,  the same  order a s  the diagram 
with the point vertices. No calculations were made for 
more complicated diagrams. Nonetheless, i t  is likely 
that diagrams with triangular vertices will be of the 
same order of magnitude a s  the diagrams with point 
vertices which were estimated above, but will not cancel 
each other. If this is so,  then the corrections to formula 
(39) a r e  of the order of ( p k / ~ ~ ) p ~ p o ,  and since pbpo  
<< 1, this formula is valid also for lower temperatures 
than previously assumedC1] when the criterion of i ts  
applicability was pb << MT. 

C ONC LUS ION 

The mobility of a negative ion in ~e~ was measured 
inLg1 at  temperatures 0.03-1" K. When the temperature 
was lowered to this region, the mobility was decreased 
about lo%, but the ra te  of decrease slowed down with 
decreasing temperature. Such a relation contradicts 
the results obtained for an ion in a f ree  Fermi  gas and 
was explained by Gould and MaC1], who have shown that 
the interaction between fermions increases the mobility 
by - T' 1nT. Knowledge of the Fermi-liquid interaction 
constants is insufficient to calculate the value of this 
correction, but the experimental points fit this tempera- 
ture dependence well. It is almost obvious that the mo- 
bility should increase with further decrease of the tem- 
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perature. The earlier estimate inC1] presupposed that 
the mobility should increase noticeably at p $ . / ~ ~  - 1 
o r  a t  T - O.Ol°K. This estimate was based on the 
kinetic equation. 

The present results a r e  shown schematically in the 
figure. The applicability of the kinetic equation to a 
large-ion radius was considered. The criterion of the 
applicability was assumed to be T T  >> 1,  where T is 
the transport time. It turned that for an ion of radius a, 
such that p ~ a  >> 1, the kinetic equation holds a t  low and 
a t  high temperatures. The corresponding sections of 
the temperature axis a r e  cross- hatched in the figure. 
In the intermediate temperature region, where the 
kinetic equation does not hold, the mobility changes by 
a factor (pFa)6. It is seen from the figure that the re- 
lation p k / ~ ~  - 1 is satisfied precisely in the inter- 
mediate region, and therefore the estimate given inC1] 
for the temperature below which the mobility begins to 
increase is not valid. 

The diagram technique developed by us has made i t  
possible to estimate the corrections to the mobility a t  
high temperatures. We have shown that a t  T T  >> 1 the 
first  correction to the mobility is of relative order 
p $ / ~ ~ ,  a s  follows also from the kinetic equation. With 
decreasing temperature, the relation TT - 1 is sti l l  
reached a t  p b / ~ ~  - pkpo - (PFa)-2 << 1. With further 
decrease of temperature, the f i rs t  correction to the mo- 
bility remains unchanged, s o  that it can be assumed that 
the high-temperature result holds for the mobility to  a 
temperature lower than indicated inC1]. An examination 
of the higher-order corrections will allow us to assume 

that the increase of mobility with increasing tempera- 
ture should s t a r t  a t  T <, ( p b / ~ ) ( p F a ) - 2 ,  and it is pre- 
cisely on this basis that the line p = const was drawn 
on the figure. 

The author thanks D. E. Khmel'nitskir, with wQom 
this work was started,  and also A. I. Larkin and E. I. 
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