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Under strong skin effect conditions an HF gas discharge is studied in which deviation from local 
thermodynamic equilibrium is caused by diffusion and among the various recombination processes 
the main role is played by electron attachment to atoms leading to  negative ion formation. A situation 
of this type is encountered, for example, in a weakly ionized hydrogen discharge at approximately 
atmospheric pressure.  The discharge structure is investigated and expressions a r e  derived for the 
dependence of the discharge parameters on the input power. It is shown that with increase of the 
power supplied to the discharge, the plasma temperature, with allowance for  diffusion, increases 
very weakly, being proportional to the logarithm of the logarithm of the power. In contrast to pulsed 
discharges, strong electron diffusion in a stationary HF discharge not only does not tend to  conceal 
the influence of recombination processes on the discharge, but even enhances their effect. The form- 
ulas presented in the paper may be useful for determining the ratio of the diffusion coefficient to  the 
gas recombination coefficient from the experimental data. The effect of a stationary magnetic field 
parallel to the discharge current on the HF discharge is investigated. It is shown that the presence 
of diffusion leads to a considerable increase of surface resistance of the plasma. One might be 
tempted to explain the effect of a magnetic field on the discharge observed by KapitzaC1' a s  being due 
to the influence of the field on the ambipolar diffusion coefficient. However, consistent account of dif- 
fusion greatly increases the discrepancy between the surface resistance values experimentally deter- 
mined by Kapitza and the values calculated in the present work under the assumption of a cold plasma. 

1. INTRODUCTION 

WE construct in this paper a theory of high-frequency 
(HF) gas discharge under conditions of strong skin 
effect with allowance for the deviation, due to  electron 
diffusion, from local thermodynamic equilibrium. 

The structure of a high-frequency gas discharge in 
the presence of local thermodynamic equilibrium was 
investigated by Pitaevskif and the author inCz1. Local 
thermodynamic equilibrium certainly takes place a t  
sufficiently high pressure.  At pressures  on the order of 
atmospheric, however, the presence of electron diffu- 
sion can lead under certain conditions to  an appreciable 
deviation of the electron concentration from the equili- 
brium value given by the Saha formula. The question of 
the influence of electron diffusion on the properties of 
an HF discharge is thus of considerable interest1). 

We assume that the plasma in the HF discharge is a 
sin le-temperature one. According to  estimate (2.1) 
o f rR ,  the difference between the temperature of the 
electrons in the discharge and the temperatures of the 
ions and atoms is of the order of 10-15% at atmospheric 
pressure. We shall  neglect this difference. 

In the thermodynamic equilibrium state,  the degree 
of ionization of the gas depends only on the temperature 
and does not depend on the concrete ionization and re- 
combination processes. The number of electrons pro- 
duced per unit time in a given volume element of the gas 
by ionization is exactly equal to the number of recom- 

 he effect of diffusion of HF breakdown in gases in the absence 
of skin effect is described in detail in MacDonald's book ['I. In this 
article we are investigating gas discharge in the stationary state and do 
not touch upon questions connected with gas breakdown and with non- 
stationary processes. 

bination acts per unit time in the same volume element. 
In accordance with the detailed- balancing principle, each 
direct process is exactly compensated for by a corre- 
sponding inverse process. 

The presence of spatial inhomogeneity of the gas 
leads to diffusion of the electrons and ions to  a colder 
region, where they ultimately recombine. The neutral 
atoms, to the contrary, move from the colder region 
into a hotter one, where they a r e  ionized. The diffusion 
can thus greatly influence the ionization-recombination 
baIance in the discharge. 

In view of the tremendous variety of recombination 
and ionization processes in gases (few of which have 
been investigated s o  far) ,  it is impossible to study the 
influence of the diffusion in general form. We confine 
ourselves here to a study of diffusion in an HF dis- 
charge in such a gas, in which foremost among the re- 
combination processes is capture of electrons by neu- 
t r a l  atoms to form negative ions; the latter,  in turn, 
recombine rapidly with positive ions. Such a situation 
obtains, for example, in a hydrogen discharge a t  atmos- 
pheric pressure  and a temperature on the order of 
6000°K. 

We obtain in this paper the dependence of the plasma 
temperature in the discharge and of the surface resis-  
tance on the power a t  an arbi t rary  ratio of the diffusion 
length (see the next section) and the depth of penetration 
of the field into the plasma at  the maximal temperature. 
The analytic expressions obtained in the limiting case 
of strong diffusion make i t  possible to determine from 
the experimental data the ratio of the diffusion coeffi- 
cient to the coefficient of trapping of the electron by the 
atom. We emphasize that in pulsed discharges the pres- 
ence of diffusion makes it difficult to measure the 
trapping or  recombination coefficients. In a stationary 



HF discharge the situation is exactly the reverse:  the 
larger the diffusion, the larger the deviation from 
thermodynamic equilibrium and the larger the role 
played by the concrete electron-capture processes. 
Thus, in a stationary H F  discharge the presence of elec- 
tron diffusion uncovers additional possibilities of ex- 
perimentally studying the elementary processes in a 
plasma. 

In the limiting case of strong diffusion, the power 
needed to heat the plasma to a specified temperature de- 
pends very strongly (exponentially) on the diffusion co- 
efficient. Consequently even a relatively small  change 
of the diffusion coefficient in a weak magnetic field can 
exert a strong influence on the plasma parameters. For 
the same reason, the deviation of the electron tempera- 
ture from its equilibrium value is somewhat larger than 
expected from the estimate (2.1) inL2] if the electron 
diffusion is taken into account. 

KapitzaCl1 has observed that a constant magnetic 
field influences a high-frequency plasma filament. This 
influence cannot be explained by assuming local thermo- 
dynamic equilibrium and a low degree of gas ionization. 
It will be shown below that allowance for the diffusion of 
the electrons in the "jacket" makes it possible to ex- 
plain the influence of the magnetic field on the Kapitza 
discharge. On the other hand, this increases the dispar- 
ity between the experimental values of the surface re- 
sistance of the plasma and the values calculated theor- 
etically with allowance for electron diffusion assuming 
a cold plasma. 

2. INITLAL EQUATION AND THEIR INVESTIGATION 

We consider an HF discharge in the stationary state,  
when the Joule heat released in the plasma by the elec- 
tromagnetic field is transferred by the thermal conduc- 
tivity of the gas to the cooled walls. We neglect the in- 
fluence of the radiation on the energy balance, and as- 
sume also that the plasma dimensions a r e  large both in 
comparison with the depth of penetration of the field and 
in comparison with the diffusion length. The latter 
make i t  possible to reduce the problem to a planar one, 
s o  that all  the quantities can be regarded a s  functions of 
one coordinate x. Eliminating the electric vector from 
the wave equation and from the heat- conduction equa- 
tion (seec2]), we obtain an equation for the plasma tem- 
perature T: 

d' 1 d dT 64n202u dT ---x--- x - = o .  
l w u d x  ax c4 ax (2.1) 

Here K is the thermal conductivity of the gas, and w is 
the frequency of the electromagnetic field. The conduc- 
tivity of the gas o can be expressed in terms of the elec- 
tron concentration N, and the effective number veff of 
the collisions (w << veff): 

G = ezN, / mv,ff .  (2.2) 

We confine ourselves to temperatures a t  which colli- 
sions between the electrons and neutral atoms a r e  most 
important. Then veff does not depend on the electron 
concentration. 

The ionization-recombination balance equation with 
allowance for the diffusion of the electrons and their 
adhesion to the atoms is 

where a, and p a r e  the coefficients of ionization and 
trapping of the electrons by the atoms, and Eo is the 
electric field due to the separation of the charges in the 
diffusion process. The change of the electron concentra- 
tion per  unit time consists of the processes of diffusion, 
ionization, and formation of negative ions. In the sta- 
tionary state  at = 0. Taking into account the one- 
dimensional character of the problem, eliminating E,,, 
and neglecting small  changes of the coefficient of ambi- 
polar diffusion D over the diffusion length d = ( ~ / p ) ' ~ :  

we rewrite (2.3) in the form 

In the absence of diffusion, the electron concentration 
should be in equilibrium and satisfy the Saha formula: 
Ne = NeSeq(T), D = 0. Putting D = 0 in (2.5) we obtain 
a, = pNeOea(T). Thus, in the presence of diffusion, the 
electron concentration satisfies the equation 

dZNs I d ~ '  = (N. - Ne.eq. (2') ) / dZ. (2.6) 
The number of negative ions a decaying per  unit time 
is proportional to their concentration N-. The diffusion 
equation takes the form (2.6) under the condition that in 
the discharge the concentration of the negative ions dif- 
f e r s  little from its equilibrium value. A detailed deriva- 
tion of (2.6) is given in the Appendix. 

Equations (2.1) and (2.6) constitute a complete sys- 
tem describing an HF  discharge in the stationary state 
with allowance for  diffusion and the formation of negative - 

ions. 
It follows from (2.6) that the electron concentration 

Ne changes significantly over distances on the order of 
d = (~/p)'". This is of the same order as the distance 
over which the electron diffuses from the instant of 
atom ionization to the instant of formation of the nega- 
tive ion. We shall call d the diffusion length. We assume 
that besides the diffusion coefficient D, other quantities 
that vary little over the diffusion length a r e  the thermal 
conductivity of the gas K and the coefficient p of trapping 
of the electron by the atom: 

The conditions (2.4) and (2.7) allow us t o  regard the co- 
efficients D, K ,  and p as independent of x. These coeffi- 
cients a r e  functions of the temperature and vary signifi- 
cantly, generally speaking, over the same distances as 
the temperature itself. It can be shown (seeC']) that the 
temperature changes significantly over distances on the 
order of 6,1/Tm. Here Tm is the maximum tempera- 
ture in the discharge, 6, = c ( 8 r w o ( ~ ~ ) ) - ' "  is the depth, 
corresponding to the temperature Tm, of penetration of 
the field in the plasma, and I is the gas ionization poten- 
tial. The conditions (2.4) and (2.7) a r e  thus equivalent, 
generally speaking, to the condition 

which will be assumed satisfied from now on. The 
parameter introduced in (2.8) is the ratio of the depth of 
penetration of the field into the plasma at the maximum 
temperature Tm to the diffusion length, and constitutes 
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the main parameter of the theory. y decreases with in- 
creasing diffusion coefficient. 

In (2.1) and (2.6) it is convenient to change over to 
the dimensionless variables s, n, and 5' (I  >> Tm): 

z Z(Tm - 2') 5=- ,  8 -  , , n =  N, Ne.  cp. (2') 
rr = e-'. (2.9) 2Tm2 Ne, ,. Urn) ' Ne. es. Vm) 

In terms of the variables @, n, and S ,  Eqs. (2.1) and 
(2.6) take the form 

dS I d'e d e  ---- n - - 0 ,  
dfJ n  d f 2  d5 

Outside the plasma, a s  x - - w , the electron concen- 
tration Ne tends to zero, and the heat flux d ~ / d x  tends 
to a specified value So. In terms of the dimensionless 
variables (2.9) these conditions take the form 

Inside the plasma, as x - + W, the ratio of the elec- 
tron concentration to its maximum value at  infinity tends 
to unity: 

The dimensionless temperature @ tends exponentially to 
zero as  1; - +wCzJ : 

The boundary conditions (2.12), (2.14) and (2.15) de- 
termine uniquely the sought functions @ and n that satisfy 
Eqs. (2.10) and (2.11). These boundary conditions con- 
tain no parameters, and the equations themselves depend 
on only one parameter y. Since furthermore 5 does not 
enter explicitly in (2.10) and (2.1 I), the sought functions 
s and n a r e  functions of t; - g o  and depend on y as  a 
parameter: 

and outside the plasma, as  5 - - w , the dimensionless 
heat flux d@/dt; does not depend on t; and is a function 
of y only: 

Comparing (2.13) and (2.17), we obtain the energy flux 
density needed to heat the plasma to the temperature 
T, : 

S@(T,)  = 2f ( y ) x m T m V / 1 6 .  (2.18) 

In the limiting case of low diffusion, d << 6,, a s  it 
should be, we have 

s o  that formula (2.18) goes over into formula (4.17) 
: 

The function f( y) is determined during the course of 
the solution of Eqs . (2.10) and (2.11) with boundary con- 
ditions (2.12), (2.14), and (2.15). The electron concen- 
tration n is specified in our problems on both ends of 

the integration region. This complicates the numerical 
solution of the equations. For convenience in the numer- 
ical integration, we obtain the next term of the asymp- 
totic behavior of the concentration n as t; - +w. Sub- 
stituting (2.15) in (2.11) and recognizing that @ tends to 
zero a s  5 - +w, we get 

d'n / df2 = y2(n - 1 + e-(t-b)) , (2.20) 
6 + + - ~ .  

Equation (2.20) has a solution that tends to unity as  
5 - +w,  in the form 

E - + - .  
This solution contains the arbitrary constant C, the 
value of which is determined from the condition that a s  
5 - - w the electron concentration tends to zero in ac- 
cordance with (2.12). We integrate numerically from 
~ ; - + W ~ O E - - W  , starting from the asymptotic ex- 
pressions (2.15) and (2.21). We choose the constant C 
to  satisfy the condition (2.12). This makes it possible 
to  obtain relatively simply the solution of (2.10) and 
(2.11) a t  y - 1. The results of the numerical calcula- 
tions a r e  shown in Figs. 1 and 2. Figure 1 shows a plot 
of the function f(y)  that enters in (2.18). Figures 2a and 
2b show plots of the temperature @ and the concentra- 
tion n for different values of the parameter y2. Figure 
2c shows plots of the heat release d2s/dg2 at different 
values of y2. 

With increasing diffusion length (with decreasing y ), 
the concentration of the electrons n decreases more 
and moves slowly in the direction 5 - - G O .  At the same 
time the temperature e (and its second derivative) is 
independent of y as 5 -- + W. As a result the maximum 
heat release shifts to  the left in proportion to the diffu- 
sion length. The diffusion of the electrons leads also to 
an increase of the electron concentration outside the 
discharge, a s  a result of which the heat release increa- 
s e s  with decreasing y at  given value of Tm. 

3. CASE OF LARGE DIFFUSION LENGTH 

When the diffusion length d is large in comparison 
with the depth of penetration of the field in the plasma, 
d >> 6,, there appears another possibility of analytic- 
ally investigating Eqs. (2.10) and (2.11). Remaining 

FIG. 1. Plot of the function f(y) that 
determines the influence of the diffusion 
on the power dependence of the tempera- 
ture. ~t 



FIG. 2. The dimensionless temperature (a), dimensionless electron 
concentration, and heat release O" (c) vs. the dimensionless coordinate 
at various values of the parameter y2. 

within the framework of condition (2.8), we assume the 
parameter y to  be small: 

It follows from (2.10) and (2.11) that the electron 
concentration n varies significantly over distances of 
the order of l/y (measured in the scale of 5),  whereas 
the temperature 0 varies over distances on the order 
of n-lh. It follows from condition (3.1) that in a wide 
range of electron concentrations, s o  long a s  

n(5) is a slowly varying function in comparison with the 
temperature s .  This circumstance enables us, when 
solving (2.10) within the framework of the condition 
(3.2) to assume n(L) to be a slowly varying function. 

We seek the solution of (2.11) separately in three 
overlapping regions. 

1. Inside the plasma, in the region L - go >> 1, we 
can put e-@ = 1, and (2.11) takes the form 

Its solution, which satisfies condition (2.14), can be 
written in the form 

2. In the intermediate region 1 5 - CO1 << 1 /y , 
neglecting terms of order y 2  in (2.11), we have d2n/dc2 
= 0, whence 

3. Finally, outside the discharge, in the region 50- 5 
>> 1, we can neglect the term eFo in (2.11), and its 
solution that satisfies the condition (2.12) can be written 
in the form 

n = c ,e ~ ( c - c . )  , G-C,Si. (3.5) 
From the conditions that expressions (3.3) and (3.4) 

must coincide in the region 1 << 5 - 5 0 << 1 /y and ex- 
pressions (3.4) and (3.5) must coincide in the region 
1 << 50-  f; << l /y  we obtain C1 = C2 = Cq = %, C3 = y/2. 
Thus, under condition (3.1) the electron concentration is 

When solving Eq. (2.10), the concentration of the 
electrons can be assumed known and equal to (3.6), and 
slowly varying in the region (3.2). Putting 

and confining ourselves to terms of order nl/n, we obtain 
from (2.10) 

We seek the solution of (3.8) in the form 

g = -dew. (3 -9) 
Substituting (3.9) in (3.8) we obtain (q7')4 = nz in the f i rs t  
approximation in nl/n, whence 

In the next approximation, taking (3.10) into account, we 
have 

and thus, accurate to terms of higher order  in the 
parameter nl/n, the factor A is a constant. Choosing 
the sign in formula (3.10) from the condition that 6' - 0 
as H - a, we get 

Since the temperature o itself tends to zero as 5 - W,  

we have 

To calculate the constant A we integrate (2.11) from 
- co to + CO. Noting that nf(- CO) = nf(+ 00) = 0, we obtain the 
relation 

+f(r~ - - @ I  dc - 0, (3.13) 
-c+ 

the physical meaning of which is that the diffusion does 
not alter the total number of particles. Substituting ex- 
pression (3.6) for the electron concentration in (3.13), 
we obtain 

The integrands in (3.14) differ significantly from zero 
only in the region 15 - - 1 << l /y .  To determine 
the constant A i t  suffices therefore to know 8 ( 5  - co) 
only in the region 1 5 - tol << 1 /y. Substituting (3.6) in 
(3.12), we get 

a l'z yLf - 
@ = A  Sexp(--exp(T))  a m ~ l ' z e x ~  

c-c. Y 
I f  -fo1( 1/v. . . 

-tIJZ, B = A J Z ~ J Z / ~ ,  we transform Putting x = Be 
(3.14) into 
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8.-N/fS 

After integrating by par ts  we obtain - 
- I n B +  j l n x e - ' d z = 0 .  (3.16) 

0 

The integral in (3.16) is equal to -C, where C = 0.577 ... 
is the Euler constant. Thus, we obtain ultimately 

Thus, in the region (3.2), i.e., a t  50- 5 
<< (2 y)-lln (2 y)-l, the dimensionless temperature @ is 
determined completely by formulas (3.12) and (3.17). 
To find the function f( y) = - @ I ( -  m), we must know 
@ ( 5  - lo )  also in the region n <, y2. In this region, the 
electron concentration is 

Substituting (3.18) in (2.10), we otbtain for the function 
(3.17) a linear homogeneous equation 

Introducing in lieu of 5 the new variable 

where 

- m 

(4.3) 

The plot of the function q ( y )  a t  y - 1 obtained by 
numerically integrating (2.1) and (2.11), is shown in 
Fig. 4. If the diffusion length is small  in comparison 
with the depth of penetration of the field into the plasma 
(y  >> I), then the electron concentration is determined 
by the Saha formula. The results should then go over 
into the results ofC2]. In t e rms  of the dimensionless 
variables we have n = e-@, and the integral in (4.3) is 
equal to  unity. Taking (2.19) into account, we have2' 

p = 6.28~~~6, / ez = 6.28~. 10-'o6, [ohm], 
v s 1. (4.4) 

To calculate the function q ( y )  in the opposite limit- 
ing case of large diffusion length, y << 1, we note that 
i t  follows from (2.10) that 

Changing to the variables g and z in accord with (3.7) 
and (3.20), we obtain from (4.5) 

We reduce Eq. (3.19) for the function g(z) to the dimen- and consequently 
sionless form 

d4g 1 dlg 1 dg -+------ 
dz' zZ dzZ zJ dz  

g - 0 .  

In the region n >> y2,  i.e., at z >> 1, we obtain with the 
aid of (3.11) 

g  = -Ae-', z ) l .  (3.22) 

The function go(z), which satisfies Eq. (3.21) and has 
the asymptotic form go(z) = e-', z >> 1, is a universal 
function that does not depend on the parameters. Its 
plot, obtained by numerical integration, is shown in 
Fig. 3. In particular, g,(O) = 0.725 ... By virtue of the 
linearity and homogeneity of (3.21), we conclude that 
the function f(y) in (2.18) has the following form when 
y << 1: 

.YC f (7) = ~ g d  (0 )  = 0.725 - e f i ~ y , - -  0 .288e f ih ,  < 1. (3.23) rn 
With increasing diffusion length, the function f(y), 

and hence also the power needed to heat the plasma to  a 
given temperature, increases exponentially. Owing to 
the large argument of the exponential, even small  
changes of the diffusion coefficient can greatly influence 
the discharge parameters. 

y a  I. 
Since Eq. (3.21), which defines the function g(z), does 
not contain any parameters,  the expression in the curly 

FIG. 3. Plot of the function go(z). 

0 Z 3 2  

4. SURFACE RESBTANCE OF THE PLASMA 4- \ 
FIG. 4. Plot of the function &), which To calculate the surface resistance p of the plasma, determines the dependence of the surface 

we s tar t  from the relation resistance on the diffusion length. 

(4.1) 
I 
0 

which follows directly from Flrmulas (4.1) and (4.20) 
ofc2'. Changing to  the dimensionless variables of (2.9) 

L " 
and noting t h d  a m  = c2/8rodm, we obtain 

2 ) ~ h e  surface resistance given in iormulas (4.21) and (4.22) of ['I 
p = 4n6~-96,p(y), (4.2) and on p. 1896 of [4 ]  is only one-half of the correct value. 



brackets in (4.6) is a constant of the order of unity. A 
numerical solution yields 

Substituting (4.7) in (4.2) we obtain the following expres- 
sion for the surface resistance of the plasma in the 
case of a large diffusion length 

Thus, if the diffusion length d is large in comparison 
with the depth of penetration 6, of the field in the 
plasma, 6, drops out of the expression for  the surface 
resistance, and its place is taken by the diffusion length 
d. The electromagnetic field in this case penetrates 
into the discharge by an amount on the order of the dif- 
fusion length, regardless of the frequency. The surface 
resistance of the plasma is then appreciably larger 
(by l/y times) than the corresponding equilibrium value. 

5. HIGH-FREQUENCY DISCHARGE IN A 
LONGITUDINAL MAGNETIC FIELD 

We consider an HF gas discharge placed in a con- 
stant and homogeneous magnetic field whose vector H 
is parallel to the vector E of the electromagnetic field 
that maintains the discharge. 

We note f i rs t  that at a low degree of gas ionization 
and in the presence of local thermodynamic equilibrium, 
the characteristics of the discharge a r e  practically 
independent of a magnetic field parallel to the current. 
Indeed, in actually realized fields the magnetic field 
does not influence the collision processes, and conse- 
quently does not upset the equilibrium distribution of 
the electron concentration. At a low degree of gas ion- 
ization, the main contribution to  the thermal conductiv- 
ity is made by neutral atoms and molecules, whose mo- 
tion is not affected by a magnetic field. The Joule heat 
released in the plasma in the case of the ordinary (not 
anomalous) skin effect, o r  more accurately under the 
condition 

is practically independent of the magnetic field, just a s  
the longitudinal conductivity. Here wo is the plasma fre- 
quency, vT is the average thermal velocity of the elec- 
trons. Indeed, a weak field has little effect on the con- 
ductivity, by virtue of the condition 52 << veff (52 = eH/mc 
is the Larmor frequency), and in a strong field the effect 
is small  because wovT/cS2 << 1. For  hydrogen a t  atmos- 
pheric pressure and temperature - 6000°K, the 
parameter (5.1) is of the order of lo2. 

Allowance for the influence of electron diffusion, par- 
ticularly if the diffusion length is large in comparison 
with the depth of penetration of the field in the plasma, 
changes the situation qualitatively. By decreasing the 
transverse- diffusion coefficient, the magnetic field can 
strongly influence the ionization-recombination balance. 
At atmospheric pressure,  for electron concentrations of 
real  interest, the diffusion is ambipolar. The depen- 
dence of the ambipolar diffusion on the magnetic field 
is given by3' 

3 ) ~  one-temperature plasma is assumed in (5.2). More general ex- 
pressions for the diffusion coefficients are given, for example, in the 
review of Gurevich and Tsedilina [ = I .  

E R O V I C H  

The coefficient of ambipolar diffusion is equal to double 
the diffusion coefficient of the particles having a lower 
mobility. In a weak magnetic field, if 
h = ( m / ~ ) ' "  ( ~ l ~ / v ~ ~ ~ . ~ ) ~  << 1 ,  we have D(H) = 2Di, 
since the ions, being the heavier particles, have a lower 
mobility without a magnetic field. In a strong magnetic 
field, h >> 1, the mobility of the electrons becomes 
smaller than the mobility of the ions, s o  that the ambi- 
polar diffusion coefficient becomes equal to double the 
electron diffusion coefficient: 

The parameter h for hydrogen a t  atmospheric pressure  
and - 6000" K becomes of the order of unity in fields 
Ho = 80 kOe. 

If the diffusion length is large in comparison with the 
depth of penetration of the field into the plasma, the dis- 
charge parameters depend very strongly, exponentially, 
on the diffusion coefficient. Under these conditions a 
dependence on the magnetic field can appear in fields 
much weaker than Ho, in which the ambipolar-diffusion 
coefficient decreases by a relatively smal l  amount. 
This circumstance might explain the influence of the 
magnetic field on the Kapitza dischargeC1] through i ts  
effect on the ambipolar-diffusion coefficient in a cold 
plasma. 

6. EFFECT OF DIFFUSION ON A DISCHARGE IN 
HYDROGEN 

By way of a concrete example, we consider an HF 
discharge in hydrogen a t  atmospheric pressure  and a 
field frequency w = lo1', as is the case in Kapitza's ex- 
periments [']. 

The energy dependence of the cross  section for the 
capture of an electron by a hydrogen atom, calculated 
by ~ a s s e ~ [ ~ ] ,  is shown in Fig. 5. The coefficient P of 
trapping of an electron by an atom, which enters in the 
ionization-recombination balance equation (2.3), is ex- 
pressed in the following manner in terms of the capture 
cross  section o(E) : 

where fo(v) is the Maxwellian electron velocity distribu- 
tion function. The temperature dependence of the trap- 

o--+--- I 6 8 I0 I 

E, eV 

FIG. 5. Cross section for the trapping of an electron by a hydrogen 
atom vs the electron energy [ ' I .  
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ping coefficient for hydrogen at atmospheric pressure 
is shown in Fig. 6. 

Using the values of the impact-radiative recombina- 
tion, given by Bates and ~ a l ~ a r n o ~ ~ ] ,  we can show that 
in hydrogen at atmospheric pressure, up to temperature 
on the order of 10 00O0K, the main contribution to the 
ionization-recombination balance is made by trapping of 
electrons by neutral atoms with formation of negative 
ions. 

The coefficient of particle diffusion in a gas, in the 
mean free path approximation (['I, p. 61), is equal to 

where vT is the average thermal velocity of the diffusing 
particle and 1 is the mean free path. 

The ratio of the depth of penetration of the field into 
a hydrogen plasma to the diffusion length y = 6,/d is  
shown in Fig. 7 as a function of the temperature Tm. By 
determining the values of f(y) at y - 1 from Fig. 1, and 
from formula (3.23) at y << 1, and by using the tempera- 
ture dependence of the thermal conductivity [ O3 (see 
alsoC4], Fig. ll), we find the dependence of the plasma 
temperature in a hydrogen discharge on the supplied 
power, shown in Fig. 8. We call attention to the fact 
that the parameter y decreases with increasing tem- 
perature (see Fig. 7). According to (3.23), f(y) depends 
exponentially on 6,. Since the depth of penetration 
itself depends exponentially on the temperature, we 
arrive at the conclusion that the plasma temperature 
in the discharge is proportional to the logarithm of the 
logarithm of the power So, i.e., it depends extremely 
weakly on So. 

Figure 9 shows the temperature dependence of the 
surface resistance of the plasma with allowance for the 
electron diffusion (curve I ) ,  calculated from formula 
(4.2). For comparison, the figure shows the tempera- 
ture dependence of the surface resistance, as  calculated 
from formula (4.4) without allowance for diffusion 
(curve 2). With increasing temperature, the depth of 
penetration of the field into the plasma decreases and 
ultimately becomes smaller than the diffusion length, 
which increases slightly. The depth of penetration of 
the field into the plasma then drops out of the expres- 
sion for the surface resistance, and the latter becomes 
proportional to the diffusion length. As a result, the 

surface resistance has a characteristic minimum. The 
minimum value of the surface resistance (= 60 62) is 
several dozen times larger than the resistance meas- 
ured by Kapitza and ~ i l i m o n o v . ~ ~ ~ ~  Thus, a consistent 
allowance for the diffusion aggravates the contradiction 
encountered when an attempt is made to explain the 
Kapitza discharge from the point of view of a low tem- 
perature plasma. 

For experimental applications, it is of interest to 
calculate the parameters of an infinite cylindrical dis- 
charge with allowance for diffusion. Let R be the radius 
of a cooled vessel (or resonator). In accordance withC21, 
the radius ro of the discharge satisfies the relation 

TI. 

1 
r o = ~ e x p  ( - - j x d ~ ) .  

Sore 
(6.3) 

As the initial variable it is convenient to use instead of 
So the power so per unit length of the cylinder: 

SO = 2nrpso. (6.4) 

For R = 10 cm, the dependence of the temperature at 
the discharge axis on the power input per unit length of 
the cylinder, is  shown in Fig. l a  (solid curve). The dis- 
charge radius a s  a function of the power ro(so) is shown 
in Fig. lob. For comparison, Fig. 10 shows the corre- 
sponding curves (dashed) without allowance for the dif- 
fusion. Allowance for the diffusion leads to a certain 
decrease of the discharge temperature and to an in- 
crease of its radius. 

Remaining in the framework of the strong skin effect 
(ro >> 6,), we are unable to investigate the influence 
of diffusion on the diffuse state of the discharge (seeC4]). 

The author thanks Academician P. L. Kapitza for a 
discussion of the results, Professor L. P. Pitaevskir 
for creative collaboration, and Professor A. V. Gurevich 
for a discussion and remarks. 

APPENDIX 

AMBIPOLAR DIFFUSION IN THE PRESENCE OF 
NEGATIVE IONS 

The particle balance equations a r e  derived from the 
kinetic equations by the Chapman-Enskog methodC "I. 
Let the degree of ionization of the gas be low, and let the 

z 
I 
So, kW/cml 

FIG. 8 

L- 
o 5 5.Z 5,Y 5.6 88 6 6,Z 

L,IP-K 
FIG. 9 

FIG. 6 FIG. 7 FIG. 8. Dependence of the maximum temperature in a hydrogen 
FIG. 6. Temperature dependence of the coefficient of electron t r a p  discharge at a tmosph~ic  pressure on the power per unit surface with 

ping by a hydrogen atom at atmospheric pressure. allowance for diffusion (w = 101° sec-I). 
FIG. 7. Temperature dependence of the ratio 7 of the depth of FIG. 9. Temperature dependence of the surface resistance of a hy- 

penetration of the field to the diffusion length, for hydrogen at atmo- drogen plasma at atmospheric pressure with allowance (curve 1) and 
spheric pressure. without allowance (curve 2) for diffusion (w = 101° sec-I). 
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T O .  an a r e  respectively the numbers of electrons and negative /'+ - -,--_.- 

ions in equilibrium a t  the given temperature. It is as- ', sumed here that during the trapping process the momen- 
\ i tum is transferred to a third particle, a neutral atom. 

1- - , / We derive analogously equations for the concentra- 
tions of the negative and positive ions. Taking into ac- 

a I count their mutual recombination, we have 

FIG. 10. Maximum plasma temperature (a) and radius (b) of a hy- aN-  8  a N -  eEo 
drogen discharge at atmospheric pressure vs. the power per unit cylinder - - D -  + N -  

a t  a x  
length with (solid) and without (dashed) allowance for diffusion (w = 

( x  kT 

101° sec-', R = 10 cm). 

) 
N -  

= - B i ( N i N - - N i q .  N-eq. ) + ~ ( ~ e - ~ e e q .  ) . (~4.6) 
N- eq. 

problem be one-dimensional. We denote by E the HF 
Y 

electric field, and by Eo the electric field due to  separa- 
tion of the charges in the plasma. We write the kinetic 
equation for the electron distribution function fe in the 
form 

a f .  a f .  e af .  e a f  - + v , - - -  E , - - -  E n - ? = - - -  &". (A.1) 
a t  a x  m a v ,  m av ,  av 

In (A.l), the collision integral is represented in the 
form of a sum of two terms describing collisions with 
and without conservation of the number of electrons, 
respectively. We a r e  interested in a case when the elec- 
tron distribution function differs little from Maxwellian: 
fe = fo + f ~ ,  If11 << fo, and the increment fl can be con- 
veniently divided into an alternating part  TI proportional 
to E , and a constant part  7, connected with the electron 

Y 
concentration gradient (in an H F  discharge, the tem- 
perature gradient is smaller t h a ~  the concentration 
gradient by a factor I/Tm), f1 = f, + Fl. Noting that 
aje{fo)/av = 0, we have 

Here pl is the coefficient of recombination of positive 
and negative ions with one another, and Di and D- a r e  
the diffusion coefficients of the positive and negative 
ions. The electric field Eo satisfies the Poisson equa- 
tion 

Equations (A.4)-(A.7) constitute a complete system of 
equations describing the diffusion in a weakly ionized 
gas in the presence of negative ions. Adding Eqs. (A.4) 
and (A.6) and subtracting (A.5), we verify that Eqs. 
(A.4)-(A.6) do not violate the charge-conservation law. 
In the stationary state,  with allowance for the smallness 
of the variation of the diffusion coefficients over the 
diffusion length, we have 

eq. Ni eq. 

a a fo  eEo 
=je{fj)  = - v = ( = + = f 0 ) .  (A.3) - - D- B (N. - N .  eq. --) N- =. . (A.IO) 

N- 

The terms sg{f0), ~ , a ~ ~ / a x ,  and ( e / m ) ~ ~ a r ~ / a v  can The large value of the coefficient p1 of recombination of 
be neglected because the electron mean f ree  pathxis positive and negative ions causes the negative ions 
small  compared with the diffusion length. In the ap- produced by trapping of electrons by neutral atoms to 
proximation of effective collision number, we get from recombine more rapidly than to diffuse, s o  that their 
(A.2) expression (2.2) for the conductivity of the gas. concentration is smaller than the electron concentra- 
Writing the emtic-collision integral in (A.3) in the tion. Neglecting the left-hand side of Eq. (A.10), we 
formCL2] aje{f1)/av = v(v)%, we obtain have 

Integrating (A.l) over the velocities, averaging over 
time intervals that a r e  long in comparison with the per- 
iod of the HF oscillations, and regarding a s  the process 
that does not conserve the number of electron only trap- 
ping of electrons by neutral atoms (and, of course, the 
inverse process), we have 

Here 
1 v.t 

De=~Jm fod3v 

' P l ( N - N t - N - e q . N i e q . )  = P ( N e - N e e q ,  N - / A I L e q . ) ,  (A.11) 

whence 

N - =  N-  eq: PN. + PA', eq. N-  eq. 
$Neeq. + PIN~N-eq. ' 

When the concentrations of the electrons and ions coin- 
cide with the corresponding equilibrium values (inside 
the plasma), the concentration of the negative ions like- 
wise does not differ from the equilibrium value. In the 
case of strong diffusion, the concentrations of the elec- 
trons and positive ions outside the discharge decrease 
much more slowly than the equilibrium concentrations, 
and we obtain from (A.12) for the concentration of the 
negative ions 

is the electron diffusion coefficient, p is the probability N- = P I  P I  (A.13) 

of electron trapping by neutral atoms, Neaeq and N-eq Under the considered conditions, expression (A.13) for 
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the negative- ion concentration yields the same order of 
magnitude a s  the equilibrium expression. Taking this 
circumstance into account and noting also that the use 
of the exact expression for N-/N- eq can influence only 
the pre-exponential factor in (3.23), we neglect the dif- 
ference between the concentration of the negative ions 
and the equilibrium concentration. 

Adding (A.8) and (A.9), neglecting the small  differ- 
ence between the electron and positive- ion concentra- 
tions, and taking (A.ll) into account, we obtain Eq. (2.6), 
in which D is the ambipolar-diffusion coefficient (5.2). 

Let us also calculate the electric field Eo produced 
when the charges a r e  separated in the diffusion process. 
Subtracting (A.9) from (A.8) and then eliminating 
Ne - Ne.eq with the aid of (2.6), we get 

Since the plasma in the HF discharge is far from any 
charged surface, the electric field varies appreciably 
over the same distances as the electron concentration. 
Ne - Ni is therefore of the same order as  N- or 
(rD/d)'~,, where r~ is the Debye radius. Neglecting in 
(A.14) the difference between Ne and Ni, we obtain the 
well-known relationC131 

kT' D,- Di d E ----- 
0 - In N.. (A. 15) e D,+ Di dx 

In particular, in the transition layer and in the region 
outside the plasma, in which the diffusion is ambipolar, 
the electric field in the case  of a large diffusion length 
is equal to 

kT D, -Di 
= - e r ~ r  ' 

It can be shown that the derived formulas retain their 

form also in the presence of a magnetic field parallel to 
the y axis, if De and Di a r e  taken to mean the corre- 
sponding transverse- diffucion coefficients. 
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