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A macroscopic theory of fast linear processes in general Boltzmam systems is discussed. The effect 
of external forces having a large constant component i s  taken into account. The basic closing relation 
defining the nonlocal relationship between the fluxes and the forces is obtained by means of the projec- 
tion technique. Fourier- Laplace transforms of the kinetic kernels- the nonequilibrium kinetic coeffi- 
cients-are studied. The connection between the latter and the correlation functions i s  established. A 
perturbation theory including both slow and superfast regimes is presented. The general theory i s  ap- 
plied to a relaxing impurity, a simple gas, a charged impurity, and radiation. Macroscopic equations 
for them a re  presented which a re  valid at high gradients. The case of diffusion and the hydrodynamics 
of fast processes a r e  studied in greater detail. The propagation constant for hypersound in a gas  i s  
calculated by means of it. The effects of space-time dispersion of the coefficients for the systems 
under consideration a re  discussed. 

1. INTRODUCTION 

1 N connection with the improved experimental possi- 
bilities for investigating processes occurring with high 
gradients and in strong fields the development becomes 
quite timely of a theory of processes the scale of which 
is comparable to the characteristics of the motion of 
the particles. In this connection a method appears prom- 
ising which is based on equations for the determining 
macroscopic quantities (DMQ). However a t  high grad- 
ients such an approach encounters serious difficulties 
(the choice of the system of DMQ, the possibility of a 
closed formulation, i t s  effectiveness, etc.). 

In this article we discuss a macroscopic theory of 
fast processes in systems described by a general linear 
translation- invariant Boltzmann equation. The analysis 
includes the effect of external forces with a large con- 
stant component; in the course of this discussion devia- 
tions of quantities from their values in a constant field 
a re  considered. The proposed theory is based on clos- 
ing the equations for the DMQ by means of operator re- 
lations (of the type of a convolution) between fluxes and 
forces. In contrast to the approximate method utilized 
in a previous articleC'] these relations a r e  obtained in 
an exact manner by means of the projection tech- 
niqueC2931. The physical content and the derivation of 
these relations have similarities with the Leontovich- 
Mandel'shtam theoryC4'. The space-time nonlocality of 
the basic relations i s  due to the relaxation of the 
"internal parameters" and i s  the determining consid- 
eration for fast regimes. We note systems (with "van- 
ishing collision frequency") for which the nonlocality 
is essential a t  low gradients and velocities. Expres- 
sions a re  given for kinetic kernels (convolutions) in 
terms of correlation functions; for one type of force 
they coincide with formulas from[']. 

In the case of conserved D M '  and small forces the 
equations of section 2 agree with the results of the gen- 
e ra l  theory of irreversible processes ( ~ o r i ' ~ ' ,  
~ i c h a r d s o n ~ ~ ~ )  applied to the systems being studied. 
We note that a consideration of only the conserved DMQ 

excludes from the analysis systems "without conserva- 
tion" (neutrons in an absorbing medium, radiation), and 
also very fast regimes. In the study of specific prob- 
lems transport relations were given previously which 
take into account the space-time dispersion ( ~ f . , ' ~ , ' ~ ~ ]  ). 
The theory of Sec. 2 includes similar results,  makes 
them more precise and enables u s  to extend them to 
large gradients. 

The evaluation of kinetic kernels i s  difficult and is 
simplified by using the perturbation theory contained in 
Sec. 3 for slow and superfast regimes. General expres- 
sions a r e  given for the kernels in these cases. They 
show, in particular, that a t  high gradients the k-com- 
ponents of the kernels fall off a s  l/k. These expressions 
a r e  useful for a semiphenomenological utilization of the 
theory. The analysis of Sec. 3 includes the l inear var- 
iant of the Chapman-Enskog method. 

The general theory is applied in section 4 to certain 
systems. For  them the form of the transport relations 
is made more precise and equations a r e  given for fast  
processes using the traditional choice of DMQ. The 
case of diffusion is studied in the greatest detail; for i t  
we give a simple expression for the diffusion kernel 
which i s  applicable to very high gradients. The hydro- 
dynamics of fast processes in a simple gas is discussed; 
in this case the results ofC1] a r e  corrected. It is applied 
to the study of hypersound and leads to a value in agree- 
ment with experiment. 

2. EQUATIONS OF THE MACROSCOPIC THEORY 

The dynamics of the systems under discussion is 
described (in the Fourier representation) by the equa- 
tion 

where cp i s  the deviation of the distribution function 

from the stationary value fs(p, F) in a field of constant 
forces F. The evolving operator S(k, F) consists of a 
time reversible flux part  
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a a. a 
S.= - i k V ( k ) - F  2, -- (frl--f.) (3) mation to the known function q(p,  k, O), o r  can be re- 

a p  a p  a p  garded as the result  of the evolution of an arbitrary 
and the collision operator J(k, F) which includes a con- initial distribution after the initial stage. Substituting 
volution with respect to time1). The nonhomogeneous expression (7) under the condition (8) into (5) we arr ive  
term - ik .Vq contains a correction for i ts  nonideal na- a t  a system of equations closed with respect to the 
ture, and for charged particles i t  contains the contribu- selected D m :  9 
tion of the induced fields. The source term q(p, k, t) is [-& - ($a,&$.) n - (V.. 0- L, 
of a different nature in specific problems; in particular, 

I 
,-. 

i t  can take into account the nonstationary part  of the ex- 
ternal forces, q = ge(p)bFe(t). 

Basing ourselves on the content of the problem we 
choose a system of defining macroscopic quantities 
(DMQ). We consider their small dynamic perturbations 
c&(k, t), a = 1, ..., n (by a prime we denote the dimen- 
sional quantities) : 

The microscopic quantities +k(p, F) a r e  independent, 
and they can be treated as orthogonal. Further i t  i s  
convenient to deal with the normalized quantities 
q,, (rl, , +,,) = bW and with the quantities c, corre- 
sponding to them. 

In order to  obtain a macroscopic description it is 
convenient to utilize the projection scheme due to 
zwanzigL2]. With the aid of the projection operators 
P = #I,(+ , + , -)  onto the subspace of the quantities 
DMQ and $ = 1 - P onto the orthogonal complement we 
represent the dynamic par t  of the distribution in the 
form cp = P q  + Qq. Such a decomposition separates out 
the part  of interest to u s  and the "internal" par t  Qq;  
for the transition to the abbreviated description the 
latter must be expressed in t e rms  of P9.  Applying to 
(1) the projection operators P and Q in sequence we ob- 
tain the "vector" equation for the perturbations of DMQ: 

and the equation determining the component Qq: 

$ = QS is the "reduced" evolving operator, $ = &p. 
We obtain a closed macroscopic formulation by start-  

ing with the simplest dynamic problem with an initial 
condition2'. According to the formal solution of (6) 

the component 4 i s  completely determined by the right 
hand side of (6), is expressed in t e rms  of the D M '  and 
the known source term, if i t  is equal to zero a t  the 
initial instant, i.e., the initial condition has the form 

q t = o  = cu(k)%a. (8) 
An initial perturbation of this type can be realized by 
means of external forces which a re  switched off at the 
instant t = 03' and can either be an acceptable approxi- 

 he dependence of k and the presence of a convolution (non- 
locality and the duration of a collision) have the nature of small cor- 
rections for the systems under discussion. 

 he equations obtained by this method reflect the internal dy- 
namics of the system and will be useful for other problems. 

3 ) ~ s  an example we can taken the removal of a shell which guaran- 
tees the difference in the parameters of the subsystems (density, veloc- 
ity, etc.). 

On the right hand side of (9) we have separated out 
the ra te  of the irreversible variation in DMQ, the 
"derivation" of the value of c,. We express i t  in 
analogy with the basic relationship in the thermodynam- 
i cs  of irreversible processes in t e rms  of the "forces" 
ikc, , c, (internal) and 6 Fe (external) : 

here  

gv = (k) t)v, gv+ = Q V + V ,  & = S, = - F + J .  (1 1) 
a p  

In accordance with relations (10) the thermodynamic 
fluxes a r e  related to the forces in a manner nonlocal in 
space and in time by means of operators of a convolution 
type. The nonlocality which also occurs in the case of a 
local evolving operator is due to a transition to an ab- 
breviated description. It is essential in  the case of ap- 
preciable gradients and must be taken into account when 
the value of k v ~ ,  o r  a lnq/at  will be comparable with the 
inverse relaxation time of "internal parameters" 
(kinetic kernels) v1 = l/rI. We note that the last  term 
in (10) vanishes for homogeneous forces and is small 
in the general case. 

The Laplace transforms of the kinetic kernels 
(convolutions) in (10) 

can be naturally called the nonequilibrium kinetic co- 
efficients (NKC). One should distinguish between the 
NKC of the gradient type, Ki,, (i, j = 1, 2, 3), the re- 
laxation type, KDYP, the force type, (h,, Rte ) ,  and the 
mixed type. It is evident that in the case of strong in- 
homogeneity the principal ones a r e  the terms with the 
gradient type of NKC, and in the case of weak inhomo- 
geneity the principal t e rms  a r e  the relaxation and the 
force terms. The space-time dispersion of the coeffi- 
cients which is essential in the case of large gradients 
and velocities must be taken into account also in the 
case of small  k ,  p in those cases when the collision fre- 
quency of the particle becomes very small for certain 
values of the energy. (Of nonlocal nature must be the 
macroscopic theory of such processes a s  the "running 
away" of electrons, relaxation in case of a soft inter- 
actionC8''], diffusion of resonance radiation, the 
Ramsauer transport of electrons in a gas.) We note that 
the nonequilibrium kinetic tensors (NK tensors) (12) do 
not have a simple symmetry with respect to the indices, 
since the operator S(k, F) is not hermitean. If i t  is re- 
lated to S' in a parametric manner, there exists a gen- 
eralized symmetry (cf., below). 

We produce the expressions for the NKC in terms 
of the correlation functions (CF) (+, R(p, k)q). They 
can be obtained from (12) by using the relation 



fi = [I + RPS-']R. However, i t  is more convenient by i t  is simpler than the initial one and can serve a s  the 
starting with Eq. (6) to obtain a system for the quanti- basis for semiphenomenological theories of fas t  proces- 
ties (q,, @) which determines the fluxes; i t s  solution s e s  in systems under study. In the method of moments 
gives u s  the expressions for the NKC in t e rms  of the in the case of high gradients one must take into account 
correlation functions: many moments; Eqs. (9) enable one for arbitrary grad- 

A V= ients to utilize the minimal selection of DMQ. The 
&(P, ~ , F ) = - ( v ~ ' + , R T P ) ,  ~ v ' =  VNu,  SF^ (13) method of moments does not take the into 

D A 

where A = [ I (  ICY, R$6)11, A Y ~  is the algebraic comple- 
ment. Formulas (13) a r e  the general fluctuation-dissi- 
pation relations taking into account-the k, p-dispersion 
and a strong field in the case of the systems under 
study. In the case of a single scalar  DMQ (usually the 
density o r  the energy) the NKC in accordance with (13) 
a re  expressed in terms of the ratio of the corresponding 
CF; the form of the NKC in this case can be made to 
agree with formulas of a simple method (cf. ,''I). In the 
case of "conserved" DMQ, J++, = 0, for small grad- 
ients and fields the relations (13) coincide with the re- 
sults of the Green-Kubo- Mori theory; for example, for 
isotropic systems they will have the form K ~ d p ,  0, 0) 
= ( q k ,  R q ) .  In the case of a small number of forces 
formulas (13) can be utilized for an experimental deter- 
mination of the NKC from measurements of the spec- 
tral  functions (the Fourier-components of the CF). We 
note that the expressions for the hydrodynamic NK ten- 
s o r s  in accordance with (13) correct formulas (50) and 
(51) ofC1] and show that the neglect of the nondiagonal 
components is justified only for small k. 
Of interest is the appearance of the spectrum of the 

macroscopic theory (9). The spectrum is defined by the 
dispersion function D m ( p ,  k, F) which, i f  all the quan- 
tities (q,, 6) differ from zero, is equal to 

It is clear that the eigenvalues of (9)- the zeros  
DMT, p = p(k, F)-are the poles of the correlators 
(II, RqB). Thus, a s  is shown by the spectral decom- 

ff.' posltion of the CFC1] the discrete spectrum (9) forms a 
part  of the kinetic spectrum. The domain of nonanalytic- 
ity of function (14) defines the continuous spectrum of 
equations (9); a s  a rule i t  will coincide with the kinetic 
spectrum4 . The presence of a continuum in the macro- 
scopic theory is unusual and i s  due to the excitation of 
an infinite number of degrees of freedom of the med- 
ium. To i t  a re  related the anomalous values of the 
transport coefficients (the limits of the NKC for 
p,  k - 0) for systems with a "vanishing frequency" 
indicated earlierC10'13 ' I ,  and also the nonanalyticity of 
the dielectric permittivity of the Vlasov- Landau plasma. 
The continuum is essential for fast regimes, and the 
dependence of NKC on p and k for large values of the 
arguments will not be regular. 

The proposed formulation of (9) has obvious advan- 
tages in comparison with the initial one (1) and with the 
well-known methods (the moment method, the Chapman- 
Enskog method, etc.) Giving an abbreviated description 

4 ) ~ h e  appearance of the continuum of (1) for a number of systems 
is given in [ 9 , 8 , ' ] .  It is preserved when the induced and selfconsistent 
forces are taken into account and is obvious in the case of an Enskog 
gas. 

 he NKC for the relaxation ~ ( p )  ['I for asoft interaction is com- 
plex for small real p < 0. 

account6': i t s  dispersion function is regular. We note 
that i t  has only a small effect in a strong field, since 
the stationary distribution differs appreciably from the 
equilibrium one which is utilized in i t  a s  a weighting 
factor. Equations (9) a r e  free from these defects. 

In choosing the system of DMQ together with general 
considerations one can also utilize formulas (11). They 
show that if for $, one chooses the eigenfunctions of the 
operators SF, % (first of all, the "conservations," 
S$J?/ = 0), then h, = hh = 0 and all the NKC vanish with 
the exception of the gradient ones. Formulas (11) indi- 
cate the possibility of extending the system of DMQ by 
means of adding to the quantities I), the quantities g, 
and h,. It should be noted that the choice of DMQ de- 
fines in agreement with relation (10) the system of 
"thermodynamic" forces. 

3. PERTURBATION THEORY 

The evaluation of NKC is associated with great diffi- 
culties, and of great importance is the analysis of dif- 
ferent limiting cases. Within the framework of the pro- 
posed formulation along with slow processes one can 
consider with the aid of perturbation theory also the 
opposite case of very high gradients, and also the limit 
of a strong field. One of the variants of the general per- 
turbation theory given below is the linear version of the 
well-known Chapman-Enskog (CE) method. 

Using perturbation theory we obtain approximate ex- 
pressions for the NKC for  different limiting cases. The 
starting point is the expansion of the operator R in the 
expression for $ in powers of small parameters. In 
order to shorten the calculations we consider the local 
evolution operator and omit the source term; additions 
required in the general case a r e  obvious. 

1. In the case of low gradients, k l l  << 1 (lI(F) = VITI, 
ki - 71) which includes processes fast with respect to 
time we shall have 

(ordered in powers of k). Here and below a period indi- 
cates contraction of tensors (its order is determined 
by the rank of the tensor and by the equation), the nota- 
tion as i s  utilized to indicate the tensor product of s 
vectors a. As a f i rs t  step in the determination of as"' i t  
is necessary to solve the equation 

Then, in f i rs t  order with respect to k i t  is necessary to 
solve the equation 

@1t is just because of this that with its aid one cannot obtain the 
Landau damping. 
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etc. In considering Eqs. (17) and those analogous to 
them, just a s  in the CE theory, i t  is necessary to dis- 
cuss the problem of whether they a r e  soluble''. Without 
discussing i t  in detail we point out that if p does not 
belong to the spectrum of-SF (the usual assumption in 
the first  stage of the Laplace method), then the condi- 
tions for i t  to be solubl; reduce to the initial require- 
ment ~3'") = 0. 

Solving equations (17), ., we obtain for the NKC' 
the expressions 

Thus, in the case under discussion we arr ive  a t  a se- 
quence of spatially local equations for the DMQ of 
increasing order with respect to the gradients with re- 
tardation. The latter can be neglected in the case of 
small values of the time t << T~ ( K d p )  - 0 a s  p + m) 
and for large values8' t >> TI. In the absence of grad- 
ients, k = 0,  we shall have a generalized relaxation 
theory in which in  accordance with (10) the relaxation 
NKC play a role as well as those associated with forces. 

For the study of inhomogeneous processes the theory 
of the second order in t e rms  of the gradients i s  the most 
convenient one. Being considerably simpler than the 
third order theory i t  includes the principal effects of 
inhomogeneity, and if a somewhat broader system of 
the DMQ is utilized compared to the minimal one i t  is 
useful a s  an interpolation device up to very high grad- 
ients. The principal second order t e rms  appearing in it 
have the form 

It contains t e rms  which take into account the spatial 
dispersion of the NKC associated with relaxation and 
with forces. The possibility of utilizing i t  a t  high grad- 
ients depends on the form of the terms (19), - ikcP as 
k - and by the consideration of the finite value of 
the velocity of short wave perturbationss'. For  a gas 
such a theory will be the thirteen-moment relaxation 
theory (cf., below). 

Perturbation theory and the expressions for the NKC 
a r e  considerably simplified if for the functiots one 
adopts the eigenfunctions of SF. In this case SF$, = 0, 
3'" = 0 and the ks-component of the quantity t, i s  ac- 
cording to (10) and (15) equal to 

In particular, if i t  turns out that SFgg = Aptgo, then 
(20)2 assumes the form 

Such expressions a r e  characteristic of the second order 
relaxation theory. The case of the "eigen" quantities 
for a Boltzmann gas  without forces was considered by 
~rad[" ' .  In this case, just a s  in the CE theory, i t  turns 

 he condition that the equation Ax = g should be soluble is the 
orthogonality of g to the solutions of the equation A'y = 0. 

 his can not be accomplished in the case of "vanishing frequency" 
when dispersion is essential for small values of p. 

9 ) ~ h e  experimental basis for this is given by the study of hyper- 
sound in a gas ["]. 

out to be possible to exclude retardation'''. 
2. We consider a variant of perturbation theory 

analogous to the linear version of the CE method. We 
choose for the required functions the zeros  of the opera- 
tor SF, and for the small operator we take 
(at + ik . v)/SF1". The initial expansion in this case has 
the form a 

= E k t n )  (-, k,  F )  ik.g=c-, 
at 

a k(") =s.-' [(- + i k ? )  &-l] ". P2)  
at 

In virtue of Eqs. (9), the time derivatives of the DMQ 
can be expressed in the present case in terms of the 
spatial derivatives, and this enables us  to eliminate 
them from the expansion (22). The elimination of the 
derivatives with respect to t together with the simul- 
taneous ordering of the se r i es  (22) in powers of k is 
accomplished with the aid of equations of appropriate 
order : 

The functions 3'") corresponding to the order kn a r e  
determined by the equations 

Q'O' = 0, 

SF@(1' = &.gacl, S,,Q'~) = (%+ ik .? )  O"), . . . (24) 

For  a simple gas  without forces we arr ive  (by a 
simpler and more natural manner) a t  the linear CE 
theory. The NK tensors (of rank s)  in the case under 
discussion have the form of s e r i e s  in t e rms  of k: 

Such expansions enable us  to bring out the effects of 
dispersion; but they do not extend via the leading terms 
the range of gradients under investigation. We note that 
in the case of "vanishing frequency" for  energies for 
which SF - 0 the expansion (22) loses  i t s  meaning, and 
(25) does not hold (as,  for  example, for the diffusion 
coefficient for resonance radiation). 

If the constant external forces a re  small i t  i s  useful 
to utilize representations of quantities (and of operators) 
in powers of F. A stationary distribution will have the 
form 

Here the operators a r e  defined with the aid of the 
equilibrium distribution fo; the effect of the field on a 
collision is_ neglected. Obviously the functions $,, the 
resolvent R, and the NKC will be expressed a s  ser ies  
in powers of the parameter Fq/mvT. Such expressions 
for the NKC enable us  to elucidate the effect of the field 
on transport phenomena. 

Equations obtained with the aid of the perturbation 
theory considered above can be applied to the study of 
moderately fast and slow processes. The superfast and 
high gradient regimes correspond to the opposite case 
of perturbation theory. 

'O)~he method of Grad differs from the one used here in its starting 
point, but the final equations coincide. 

")1n the usual CE method the force F is regarded as small and for 
the appropriate functions one takes the zeros of the collision intsgral. 
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3. We consider the case of very large values of the 
parameters kl I  and prl. In this case for moderate for- 
ces we have 

In the case under discussion the interaction between 
particled is not very essential, and in f i rs t  order  one 
obtains universal results. Evaluating with the aid of (27) 
the NKC we have for k -- .o 

where kMN are  bounded functions. The vanishing of the 
NKC a s  the gradients increase qualitatively differen- 
tiate this case from the weakly inhomogeneous one. 
Equations (9) a s  k - .o in accordance with (29) turn out 
to be, in essence, of the first  order in the gradients 
and must give r i se  to a finite velocity of perturbations. 
The high frequency limit is utilized further for  the 
analysis of hypersound. We note that the fact that Eqs. 
(28) a re  soluble is established by means of linear 
algebra. 

The perturbation theory can be made more precise 
when specific systems a re  analyzed. Utilizing the form 
of the NKC for the opposite limiting cases one can ob- 
tain interpolation expressions useful over the whole 
range of gradients. The latter can serve a s  the basis 
of a semiphenomenological theory. 

4. INVESTIGATIObl OF SPECIFIC SYSTEMS 

We discuss certain systems by utilizing the general 
theory. 

1. We consider a relaxing impurity in an equilibrium 
medium; the particles of the impurity and of the med- 
ium have masses of the same order,  m/M - 1 (neutrons 
in a medium containing hydrogen, ions in a gas  of the 
same material). In accordance with the picture of the 
spectrum of the evolution operatorC1] the density mode 
has a much greater lifetime up to the values of 
kt  = kvT/vo w 1. In this case for the DMQ it  is suffi- 
cient to take the density n .r noel, = 1. The equation 
of continuity (5) subject to an appropriate boundary 
condition p t = 0  = cl(k) reduces to the equation of fast 
diffusion 

. z, k )  . ikn ( r )  dr. (30) 

9 The NK diffusion tensor according to (13) is equal to 
0 ( v ,  RV) d"' (p ,  k )  = - 

p(1 ,RI)  . (31) 

The spectrum of Eq. (30) i s  determined by the disper- 
sion function (1, R(p, k)l)-' (cf., the discussion of (14) 
andC1]). 

We exhibit the approximate expressions for the NKC 
for diffusion in different regimes. For small gradients 
we have the case of the CE perturbation theory, and d"' 
is represented by the se r i es  (25) in which a s  a result of 
the isotropic nature of J odd t e rms  a re  absent. 

From the spectral decomposition of CF['] and (31) it 
is evident that the density branch of the evolution opera- 
tor and the NK diffusion tensor a r e  related by the equa- 
tion 

pi ( k )  = -k.d"' ( p i  ( k ) ,  k )  . k  (32) 

(the expansion d'2'(pl, k) is the one provided by the CE 
theory);, The quantity pl(k) is calculated more simply 
than d and, moreover, i t  is determined experimen- 
tally. It is convenient to utilize formula (32) to deter- 
mine the NKC of diffusion in a one-dimensional problem 
up to gradients k' x 1: 

d..(p, k )  x d ( k )  = - p , ( k )  / k' ( k  = k.) .  (33) 

According to the results of calculations of pl(k) for the 
self-diffusion of spheresC13 d(k) can be represented by 
means of an interpolation formula: 

do = 0.54v2 /vo, c = ~ . l v ~ / v ~  which is valid up to the 
limiting v z u e  kt 1.7. Starting from (34) we obtain the 
dispersion law for density waves of frequency w :  

i" " 
k ( w ) = [ - - 1  d, - ioc . 

Formulas of the form (34) can be utilized for construct- 
ing a semiphenomenological theory of fast  diffusionl2). 

In the case of superhigh gradients in accordance with 
the perturbation theory of (28) the NKC for diffusion is 
equal to 

In this limit the spectrum is concentrated on the imag- 
inary axis. We point out that the analysis of a shift flow 
of a simple gas with the velocity ux(z, t) is completely 
analogous to the preceding one. 

2. We consider a Boltzmann gas. For  i t  a s  a result 
of the equation S+(k) = S(-k) which also holds for the 
operator g(k) in the subspace Q, the NK tensors have the 
symmetry properties 

where E M  is the parity sign with respect to p of the 
function cpM(p). Formulas (37) a r e  generalized Onsager 
relations for the case under discussion. 

We discuss the hydrodynamics of fast processes 
(HFP). In this case co = n/no, ci = nui /vT,  c4 
= J ~ ~ Z ~ T / T ~  a r e  the relative perturbations of density, 
velocity and temperature. Equations (9) assume the 
form 

ac, 
I 

-+ i k .  ( $ , , v $ c ) c ~  = J dr ik  .<!g,, ~ ( t  -z,  k ) g p )  . ikcb(%). (38) 
d t  

Here V p o v T g i .  and ~ p o v ~ g 4 i  a r e  quantities char- 
acteristic of the {ensor of viscous s t resses  and of the 
heat flux. The forces a r e  the temperature gradient and 
the tensor of the velocities of deformation. The kinetic 
kernels in (38) correspond to the four NK tensors: 
p a i j ,  if jf(p,  k)-viscosity, 3 n ~ k g K , ~  /2-heat conduc- , J 
tivity, ( ~ P ~ V ~ / ~ ) K , ~ ,  the "viscous heat conductiv- 
ity" and (JZn&g/vT)~ij ,  4if-heat viscosity (the latter 

a re  related by formula-(37)). The c ross  t e rms  which 
a r e  absent in the usual hydrodynamics point out the re-  
lation between heat flux and the viscous s t resses .  The 

'')with their aid it turns out to be possible to describe a whole 
series of experiments on the diffusion of neutrons in small assemblies. 
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values of NKC for small k in the linear approximation 
(cf. (25)) play a role in Barnett's theory. 

We apply the HFP to an analysis of hypersound. This 
problem has been studied by different  method^^"^'^^^^, 
and different results have been obtained. A new approach 
is provided for us by the theory being developed and, in 
particular, by the HFP. We shall s tar t  with the disper- 
sion equation of the one-dimensional problem (38) : 

p = iw, k = k, + iki, which determines the constant for 
sound propagation k = k(w). For  wrO >> 1 we evaluate 
the NKC by means of perturbation theory utilizing (28) 
o r  the principal term of (13). The dispersion function 
for w -- has  the form 

where Aas is the principal term of the determinant of 
the system which determines the fluxes. We consider 
the analytic continuation of the function (40) into the 
lower half plane. Its f i rs t  zero (of the second factor) 
yields for the complex phase velocity the value V, 
= Vo/(0.53 + i0.22), Vo i s  the acoustic sound velocity. 
The latter coincides with the experimental result  ofC113. 
The use of the analytic continuation i s  associated with 
the absence of trajectories k(w) for w > wcont on the 
spectral sheetCe1. 

For the study of different problems i t  is convenient 
to take an extended system of DMQ and at the same time 
to utilize the simpler expressions for the NKC. Thus, 
including among the number of DMQ the heat flux and the 
'tensor of viscous s t resses ,  one can utilize relaxation 
formulas for the NKC (19) and (20)~. For  example, for 
Maxwellian molecules we have the case (21), and can 
utilize formulas 

where X M  a r e  the eigenfunctions of this model, with 
M' = 11; 02 and M = 12.20; 03 respectively for the heat 
flux and for the viscous s t resses .  Such a thirteen- 
moment relaxation theory holds up to quite high grad- 
ients, k' - 3; in the problem of sound i t  describes ex- 
periment well for frequencies w 5 Ihozl. We note that 
the relaxation approximation in the hydrodynamics of a 
simple gas  is not satisfactory (it does not include the 
Barnett effect; according to i t  V, = 1.4Vo). 

3. We consider a relaxing admixture of charged par- 
ticles in an external electromagnetic field (ions, elec- 
tron gas). The unperturbed distribution is found from 
the equation) 

We regard the collision integral I(F) to be local and 
conserving the number of particles, i.e., J+1 = 0. The 
source term in Eq. (1) for the given case is determined 
by the nonstationary par t  of the external forces, 
q = -6 F - a lnfs/ap. The induced forces 6 a r e  ob- 
tained with the aid of the Maxwell equations. 

In the case of a strong field the solution of Eq. (42) 
presents considerable difficulties and is possible only 

*[p, HI ~p X H. 

under a number of simplifying assumptions (the case of 
~ a v ~ d o v ~ " ~ ,  the T-approximation). In the presence of 
only an electric field the form of fs for the N-term 
U-model of the collision operator i s  obtained from the 
formulas ofC1]. Thus, in the case of constant frequency 
we have 

1 u - v  
i. = fo(uL) j du i0(u)exp{+] -- 

the f i rs t  eigenvalues h M a r e  given inCl5]. In accordance 
with (43) we have 

such expressions a r e  utilized for the construction of the 
system {#,}. Under the action of only a magnetic field 
which does not affect the collisions, the solution of (42) 
is the equilibrium distribution, and the analysis is sim- 
plified. In particular, as a result of detailed balance, 
the NKC have the symmetry 

In the case when the masses of the particles of the 
impurity and of the medium a r e  of the same order i t  i s  
sufficient for inhomogeneous problems to choose density 
a s  the DMQ. Here the relations (10) reduce to an ex- 
pression for the deviation of the flux of the particles 
from the stationary value js = no(v): 

6j ( p ,  k )  = - d(" . i k n  + n,pf '  . 6 E  - n+lf' .6H,  (46) 
d(') = (v, ~ j > ,  pi2)= -e ( v, R- -a?),  

(47) 

Here, along with d"' the NK tensors of the mobility 
@,$) and @;) play a role. In the limit F -- 0 (in the ab- 
sence of degeneracy) the generalized Einstein relation 
holds 

kaTo (2) 
d"'(p, k ,  0) = - PE (p ,  k ,O)  (48) 

(already in the next order  with respect to the field i t  i s  
not satisfied). In the presence of only a magnetic field 
which does not affect the collisions the last  term in (46) 
vanishes. In the case under discussion, just a s  in the 
case without a field, the single- mode approximation to 
NKC is a convenient one which is valid up to klO(F) = 1. 

In the case of c a r r i e r s  of low mass in view of the 
slow exchange of energy with the medium i t  i s  neces- 
sa ry  to include among the D M '  the internal energy per 
particle: 

ZE=6.+66, 6ZE=((p-(p'))'/2m-6.,cp)=($1', cp). 

The basic relations reduce to expressions for the per- 
turbation of the flux of particles and for the rate of 
dissipation of energy: 

6j (p ,  k) = 6j' - K,:'. i k66  + K,, . dt?, (49) 

t>& = i k .8W 4 ( 1 2 2  4- Kz,) 86 + K2,.SE, 
where 

(50) 

8 W  = -K:~~' . ik6.t). - K:f' i k n  - K,!' . 6E + K,,n + Kz366 (51) 
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is the perturbation of the energy flux. Here i t  was as- 
sumed that 6H = 0; 6 j* has the form (46)13', 6E includes 
the induced field. In expressions (49)- (51), along with 
the nonequilibrium generalizations of known terms,  new 
terms occur which were not considered previously: the 
ultimate and the penultimate in (50). They should be 
taken into account in the case of strong fields and in the 
case of "vanishing" frequency. The use of relations 
(49)-(51) enables us to study various high-gradient 
electronic processes taking into account heating in a 
strong field. 

We consider the case when there is no stationary 
state in a field of force. In so  doing we can consider the 
period from the instant of switching on the forces a s  
long a s  the conditions of linearity a r e  satisfied; the 
equilibrium distribution should be taken a s  the unper- 
turbed one. For  example, we consider the problem of a 
current in a homogeneous system under the action of 
constant electric and magnetic fields. Linearity is guar- 
anteed here for 4 1  t. The system (5), (6) reduces in this 
case to the equation 

The tensor of nonequilibrium conductivity is equal to 

This expression also follows from the analysis ofC1]. 
4. The theory developed here enables u s  to study the 

transport of radiation in an equilibrium medium. The 
deviation of the distribution of photons f(q, k, t), Iql 
= hv/c, where v i s  the frequency, from the equilibrium 
value i s  determined from Eq. (1) with the evolution 
operator 

where oa i s  the absorption coefficient. The scattering 
operator Jc conserves the number of particles and in 
the absence of retardation can be symmetrized a s  a re- 
sult of the existence of detailed balance. 

For  DMQ we take the density and the average internal 
energy per  photon 3, 63 = (hcq- 30, (p). Equations (10) 
in the case under discussion contain all their terms. 

The expressions for ri and 6 a r e  considerably simpli- 
fied in the case of frequently used approximations: 
negligibly small scattering, Jc = 0, pure scattering, 
scattering by lines. As a result of the fact that the aver- 
age number of photons in equilibrium is determined by 
the temperature usually only the average energy is con- 
sidered. In this case there a r e  two NKC- the "diffusion 
of radiation" and the relaxation ones. Explicit expres- 
sions which follow from the analysis of Van  ampe en^''^ 
of a simple model without scattering can serve a s  an 
example. In discussing the case of pure scattering i t  i s  
appropriate to The spectrum of relaxation 
times obtained in i t  determines the choice of DMQ. In 
the problem of the diffusion of radiation with line scat- 
tering the dispersion of NKC is essential even for small 
k and p a s  a result of the determining role of the large 
photon mean free paths. In accordance with the paper 
of ~ o l s t e i n ~ ' ~ ]  the NKC for the diffusion of radiation for 

1 3 ) ~ n  approximate expression for this part of the flux for small 
(finite) k for the Davydov case was obtained in ['I. 

k - 0 (and p = 0) increases as l /k ,  for the Doppler con- 
tour. The time dispersion of NKC should be taken into 
account in the case when the interval between the ab- 
sorption and the emission of a photon i s  comparable in 
magnitude with the time corresponding to a mean free 
path. The simplest model taking retardation into ac- 
count (cf. ,L1s3) leads to the following form for 8 :  

(Q, Rq) p + a ( l - h )  
6O=ik.-.iksv3-cu 6e. (55) 

P (q,Rq) p+a 

Here A is the probability of a photon surviving, CY is the 
inverse collision time. 

5. CONCLUSION 

1. In this paper we have obtained macroscopic equa- 
tions describing high-gradient processes in translation- 
invariant Boltzmann systems. The equations a re  non- 
local in space and in time, and this is due to a transition 
to an abbreviated description. The nonlocality o r  the 
r ,  t-dispersion of the transport coefficients is essential 
for large gradients and velocities, and also in the case 
of a "vanishing" collision frequency. The latter occurs 
for a number of systems (including a plasma and quasi- 
particles at low temperature), and the macroscopic 
description of processes in them must be nonlocal. 

2. The theory proposed here serves  as a suitable 
basis for a semiphenomenological analysis of fast  proc- 
esses  in translation-invariant systems. It indicates a 
system of forces and fluxes, the relationship between 
them (by means of convolutions), and also the general 
form of transport kernels. Suitable expressions for the 
kernels can be obtained by means of perturbation theory 
given in the paper. Experimental results can be taken 
into account in different ways, and, in  particular, one 
can utilize the expressions given here for the Fourier- 
components of the kernels in t e rms  of measured (for 
example, by means of light scattering) spectral correla- 
tion functions. 

3. In this article a r e  given macroscopic equations for 
fast processes for a number of systems. They a r e  valid 
for moderately high gradients and, a s  is shown by an 
investigation of hypersound, also give a satisfactory 
description for superfast regimes. For  the discussion 
of fast diffusion a simple equation is proposed nonlocal 
with respect to r which can be utilized in a semiphenom- 
enological manner. For a simple gas the hydrodynamics 
of fast processes i s  discussed, and with i t s  aid the dis- 
persion law for hypersound is evaluated. The application 
of the general theory to an electron gas gives a number 
of new terms in the fluxes of particles and of energy. 
One can, for example, apply the resultant equations to 
the problem of sound amplification by drift of carr iers .  
The transport of radiation is discussed; for a simple 
model an equation nonlocal with respect to r and t is 
given. For  the systems being considered the effects of 
r, t-dispersion a re  discussed. 

4. The macroscopic formulation of the paper can be 
regarded a s  a method of solving the (linear) Boltzmann 
equation in the case of large gradients. It includes well- 
known methods and possesses obvious advantages in 
comparison with them. It leads to a convenient pertur- 
bation theory which enables u s  to study opposite limiting 
cases. 
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For intermediate regimes in this case we can use 
interpolation expressions for transport kernels. The 
method being developed enables us to obtain such theor- 
ies  a s  the thirteen- moment relaxation theory indicated 
in the paper. It is only a little more complicated than 
the well-known theory due to Grad and in terms of time 
dispersion gives a good description of the experiment 
involving sound (in Grad's theory V, = 1.65Vo; taking 
dispersion into account the velocity of hypersound is 
equal to the observed one, 2Vo). 
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