
S O V I E T  P H Y S I C S  J E T P  V O L U M E  3 6 ,  N U M B E R  2 F E B R U A R Y ,  1 9 7 3  

ROLE OF NONLINEAR EFFECTS IN THE PROBLEM OF THE ANOMALOUS RESISTANCE 

OF PLASMA 

A. S. KINGSEP 

I. V. Kurchatov Institute of Atomic Energy, Moscow 

Submitted January 14, 1972 

Zh. Eksp. Teor. Fiz. 63, 498-501 (August, 1972) 

Nonlinear effects in the problem of anomalous plasma resistance is investigated under asymptotic con- 
ditions. It i s  shown that the self-similar solution obtained in the quasilinear approximation formally 
leads to an explosive instability with characteristic time constants which a re  significantly smaller 
than the fundamental time scale in the self-similar problem. Allowance for the nonlinear effects 
leads to a definition of rigid l imits of applicability for the quasilinear approximation. 

VEKSHTETN e t  ail.["'] have investigated the anomal- and the spectral noise density 
ous resistance and turbulent heating of plasma by a E mu,' 
current under asymptotic conditions, i.e., when the W ( k , ,  t ) = - - w ( q )  8 n b  

thermal energy density in the plasma is substantially 
greater than the initial density, s o  that the particle dis- the authors ofC1] show that 

tribution function and the noise spectrum do not depend g e - 2 p ' h ~ + ( 1 - 2 p ' h ) 6 ( ~ - 1 ) ,  - 
on the initial plasma parameters. These workers con- u + p Z  

sider the three-dimensional (for H = 0) and one-dimen- g , = 2 p ' 1 ~ - + ( 1 - 4 p ' 1 ~ l n p - ' ) 6 ( u ) ,  I - u 
sional (for w ~ i  >> wpi) problems. The solution of the u + p 2  

lat ter leads to the following physical results: 1) prac- w ( q )  = ~ - 2 ( Q / q ) f ( 1 - Q / q ) 1 Q / q - d Q l d ~ I ,  
tically all the ions and electrons a re  freely accelerated p  = m l M .  
by the electric field under the asymptotic conditions; 
2) in contrast to the initial stage of the heating proc- The dispersion relation for the potential oscillations, 

~ s s , ' ~ ~ ~ '  when only the ion-acoustic noise is developed taking the distribution functions given by Eqs. (3) and 

in plasma, the Langmuir oscillations in the asymptotic (4) into account, assumes the following form: 

state have a much higher energy density than theion- e m ,  4 )  = i - q - = ~  (up) = 0; 
acoustic oscillations. 

The above results were obtained in the quasilinear 1  - 2p'" 
G (u,) = ------ + 0 2,. ++, u p = - .  

approximation and nonlinear effects were assumed to be ( u p - -  11% u p ( u p -  1)  U P  4  
(5) 

unimportant. We note, however, that this assumption i s  To within small corrections of the order of p1'2 the ex- 
valid only when the characteristic time for the nonlinear pressions given by Eq. (5) can be used to obtain explicit 
interaction between the waves is much greater than the expressions for D = Dn(q): 
characteristic time scale in the linear theory (recipro- 
cal of the growth rate): Q I = ~ " Y f l / q + l ) ,  

When this condition is not satisfied the nonlinear effects 
will substantially contribute to the heating of particles 
and the evolution of the wave spectrum. It will be shown 
below that the inequality (1) leads to very rigid condi- 
tions for the validity of the self-similar  solution^^^-^^ 
and these can hardly be satisfied experimentally. 

Let us consider a s  an example the one-dimensional 
problem of the instability of a current in plasma, which 
was solved rigorously in the quasilinear approxima- 
tion,L1-33 and consider the contribution of nonlinear 
effects to the evolution of the noise spectrum. Using 
the self- similar variables 

0 
Q ; = ,  u = %  , q = - ,  k , u ~  u T = -  eEt 

o p e  U T  U P =  m 
(2) 

for the particle distribution function 

Q s = q + 1 - p % / ( q + 1 ) ,  
QI = I/z[q-  1 -  ( ( q -  1 ) 1 + 4 ~ p ~ ) ~ 1 .  (6) 

It i s  readily shown from Eqs. (5) and (6) that the deriva- 
tives a r e  given by 

2  q + l  = 2  
E l - (  (cur).--, 

~ P P  mpa 
-2 ( 1  - q)'lop*q: q  < 1  - 2pA 

(8:).  - { 
-2/o,a, q > 1 + 2 p " *  ' (7) 

Hence, i t  is clear that the branch D2(q) represents os- 
cillations with negative energy. Dikasov e t  al.C61 con- 
sider the nonlinear interaction of waves with positive 
and negative energies, including the explosive instability 
connected with the simultaneous generation of various 
types of wave. This instability can develop if 

f., i(u.) = U T - ' ~ ~ ,  {(u), (3) o - ( k )  = o + ( k f )  + o + ( k  - k') ,  
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where w- and w+ a r e  the frequencies of waves with nega- 
tive and positive energies, respectively. In our case, 
interaction is possible only when three waves belonging 
to different branches of the dispersion curve participate 
in the process. The wave with negative energy can then 
have an arbitrary wave number q > 2, whereas for the 
remaining waves the conservqtion laws yield 

The instability results in a growth of the wave with nega- 
tive energy in a broad spectral  range (1/2 < a/q < I) ,  
whereas waves belonging to branch 1 develop in a very 
narrow range (aq" << p l"). 

The kinetic equations for the waves, which describe 
the explosive instability, can be written in the form 

where % = Iwk/wkl and the kernel Vkk' can be evaluated 

by standard methods:C6973 

Let us  transform Eq. (9') to the variables given by 
Eq. (2), substitute Eq. (4) into it, and isolate the leading 
term which clearly corresponds to the electron contri- 
bution. This results in a considerable simplification of 
the above expression, namely: 

Let us  first  confine our attention to the spectral range 
2 < q < p-l'', in which Eq. (10) assumes a particularly 
simple form. Substituting Eq. (10) into Eq. (9), integrat- 
ing with respect to k' and bearing in  mind the fact that, 
according toC'], waves belonging to branch 3 do not grow 
in  the quasilinear approximation, we find that during the 
initial stage of the explosive instability, Eq. (9) assumes 
the form 

The set  of equations given by (11) can be used to 
estimate quite readily the characteristic time for the 
development of the explosive instability. Thus, the doub- 
ling time for the number of waves nl is given by 

whereas that for n2 is given by 

We shall take the initial noise density nl and n~ from 
Eq. (4) (the results of Vekshtein e t  al.c'l), taking the 
dispersion relations given by Eq. (6) into account. The 

final expressions a r e  

where T = m u T / e ~  is the fundamental time scale in the 
self-similar problem.C11 Thus, the noise density doubles 
during a time r2 << T in a broad spectral  range (q > 2). 
The narrow line in the wave spectrum Ql(q), which leads 
to a singularity in the quasilinear diffusion coefficient, 
grows even more rapidly ( T I  << 72). 

It follows from the foregoing that the solution of the 
anomalous resistance problem demands, in general, the 
inclusion of nonlinear effects. The formal presence of 
the explosive instability in the solution given by Eq. (4) 
does not mean that a highly turbulent state is established 
under asymptotic conditions. It is simply necessary 
to take into account the nonlinear t e rms  in the oscilla- 
tion growth rate: 

Y , + Y , ' ~ ,  (13) 

where yl and yn  a r e  the characteristic linear and non- 
linear growth rates,  respectively. The question then is 
whether the corresponding asymptotic solution will, in 
some way, approach the solution given by Eq. (4). 

Let us consider the ion-acoustic noise [the branch 
S2,(q)]. If the true solution is not very different from 
Eq. (4), y n  - rcl and y l  << wpi. Substituting for 71 

f rom Eq. (12), we can readily show that Eq. (13) can be 
satisfied if 

E / (hnrnuTZ) 'b 4n (rn I M )  a, (14) 

and since the theory reported inc1-31 is constructed for 
nonrelativistic current velocities, we have from Eq. 
(14) 

E= (4n) 'nrnc2 (rn / M) '. (15) 

This inequality is practically never satisfied in plasma 
heating experiments and, therefore, the solution given 
by Eq. (4) i s  not valid under these conditions. 

I a m  indebted to L. I. Rudakov for formulating the 
problem and to D. D. Ryutov for valuable criticism. 
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