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The effect of Coulomb interaction between electrons in a gapless semiconductor is estimated. The 
case of a strongly anisotropic semiconductor is considered. The dispersion law is given by expres
sion (A). It is demonstrated that in contrast to the familiar case of an isotropic dispersion law, the 
logarithmic approximation remains valid for renormalizations of all quantities, and only the inter
action along the z-axis changes significantly. 

1. INTRODUCTION 

As shown by Abrikosov and Beneslavskil [11, crystal 
symmetry admits of the possibility of contact between 
the valence band and the conduction band. Indications 
of the possible existence of substances with such prop
erties appeared recently in the literature (grey tin [2] 

and mercury telluride [3]). Obviously, at sufficiently 
low temperatures the main type of interaction will be 
the Coulomb interaction between the electrons. Abriko
sov and Beneslavskil (l] took into account the inter
electron interaction for two types of spectra in the 
vicinity of the point of contact between the bands: 
linear-isotropic and quadratic-isotropic. It was shown 
that the role of the Coulomb interaction in these two 
cases is entirely different. It was therefore of interest 
to investigate the intermediate case when an uniso
tropic disperSion law. 

We consider here a model with a linear dependence 
of the energy on the quasimomentum along the crystal 
axis and a quadratic dependence in the basal plane. 
Thus, in the absence of interaction, the energy spec
trum is determined as follows (l]: 

E1,2 =akJ.' + yk,' ± (fl'k,' + s'kJ.')'b, 

where O!, {3, y, and ~ are constants and ki = k~ + kY. 
A spectrum of this type is possessed by crystals wIth 
a symmetry corresponding to the point groups D3 and 
Ds. It can be shown that examination of a more general 
case with a dispersion law corresponding to any group 
Dn does not lead to any qualitatively new results. 

Since the most interesting region is the vicinity of 
the point of contact between the bands, i.e., the region 
of small momenta on the equal-energy surface where 
the relation 

( s ' yk,'-y -;-kJ.') ~akJ.' 

is satisfied, the energy spectrum becomes simpler: 

(A) 

We assume, for simplicity, that the spin-orbit interac
tion is small and can be neglected. 

It must be emphasized that the energy spectrum of 
real crystal (HgTe and O!-Sn) is more complicated 
than that considered by us. Nonetheless, such a prob
lem is not only of methodological interest, since a 
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spectrum of type (A) can be realized, for example, in 
alloys or under pressure. 

2. FIRST PERTURBATION-THEORY CORRECTIONS 

The Green's function for non-interacting electrons 
can be written in the form[4] 

(;0-' = 00 - ak,c' - Q + iii sign 00, 
(1) 

We introduce the Coulomb interaction between the elec
trons and examine how the screening takes place. The 
screened interaction is of the form 

where n (q, w) is the sum of all possible electron 
loops. In the first approximation 

. f A A dw.d'k II(q, (0)= -, Sp Go(w,; k)Go(w + ("'; k + q) __ . 
(2rt) , 

(2) 

(3 ) 

Integrating in (3) with respect to the internal frequen
cies and taking the trace, we obtain 

II (00, q) =II+(,w, q) +II_(w, q), II+(w, q) =II_(-w, q), (4) 

where 
II ( ) \' Q, Q, - I Q1 II 0.1 1 dSk 

+ W, q =.J 41 Q111 Q21 (i) + a Ik~P' - k1)'] + I Q11 + I Q21 . (2rt)3; 

Q,=Q(k), Q,=Q(k+q); k~')=k, k~')=k +q (5) 
...I-'..J... .L .1' 

Expressions (4) and (5) contain corrections to t01 and 
tOz. It is therefore more convenient to break up IT into 
two parts: 

II = II.L + II, = q.L'6E.L + q!bE,. (6) 
We consider first the expression for /lE l' We put 

for simplicity qz = O. Since the largest contribution to 
the integral in (5) for DE 1 is made by the region of the 
internal variables, which are much larger than the 
external ones, i.e., q1 « ki ~ {3kz/~ ~ {3qz/~, we can 
expand with respect to q1 /k l' Accurate to third-order 
terms, we obtain 

IQ,IIQ,I-Q,Q, = '/2IQI-'{4s'[k.L'q.L'- (k.LqJ.)'k.L'] 

+ 4s'fl'k.L'k,'q.L'}. 

Substituting (7) in' (5), we obtain, with logarithmic 
accuracy, 

1 e' q 
IlE.L=-. --In-

3rt B L' 

(7) 

(8 ) 
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where q = max (qz, ~q~){3, w/(3), and L is the cutoff 
momentum. Consequently, along the xy plane the 
Coulomb interaction is practically not screened. 

We consider now the expression for OEz. We put for 
simplicity ql = O. No expansion is possible for OEz. 
Exact calculation of (5) yields 

II -- 1 1 Pq, (9) 
,-- 48n'T q, (I}'q,'-w')'" 

Substituting (8) and (9) in (2), we obtain 

D ( ) 4 ,[ ,(0) ( 1 1 e' q ) q,w = ne q.L B.L +---In-
3n B~)I} L (10) 

+B(O) ,+_1_~ Pq, ]-. 
,g, 12n 6 q, (P'q.' - w'),', . 

It is seen from (10) that the region of permissible 
values of qz can be naturally broken up into the follow
ing three subregions: 

I. Region of large momenta 

II. Region of small momenta 
e2 q e2 

-;;(2~ InL~ 1, q,~ B~O)£ . 

III. Region of ultras mall momenta 
e2 q e2 

--In-)d q ~ __ 
B'.;'IJ L ' , B;O);' 

In the region of large momenta, perturbation theory 
is valid and all the corrections are small. 

3. REGIONS OF SMALL AND ULTRASMALL MOMENTA 

We consider first the region II. We shall show that 
for this region it suffices to take into account in (2) 
only the simplest electron loop, and all the remaining 
terms yield small corrections. We consider to this end 
a vertex with one Coulomb line: 

.sr(w;k,q)= SC(w-w.; k-k(t)G(w-w.+wq;k-k(l)+q) 

d3k,t)dw 
XD(k"»---' . 

(2n)' 

(11) 

For simplicity we can consider only the scalar part of 
(11), i.e., an integral of the form 

d3k(') .sr - S Q.Q,-IQ.IIQ,I D(k(t) 

OH- 4IQ.JI«(,1 w+a(k~"-k~)'HIQ.J+IQ,1 (2n)3' 

It can be shown that the discarded terms are of the 
same order. 

We note that the main contribution in (12) after in
tegration with respect to kill is made by the region in 
which the internal variables are close to the external 
ones, i.e 0, the region of small k(1). In what follows, we 
shall need on several occasions 10 estimate integrals 
of the type 

I(k)= SF(k; k.L"k,')D(k.L',k,')d'k.L'dk,', (13) 

where F(k, kl' k:~) is a sufficiently smooth function of 
all the arguments. As will be shown below, in the 
principal region it can be assumed that F (k; kJ., k~) 
= F(k; 0, k~). Consequently, integration with respect 

to kl affects only the function D. With logarithmic 
accuracy, we obtain 

I(k) = S F(k; 0, k,')D(k.L', k,')d'k.L'dk,' 

(14a) 

4' k· 
= SF(k'O k')~In~dk'=SF(kO k')D(k')dk' 

, 'z CJ. Cle2k/ % , ,z z z , 

where 

(14b) 

and Cl = 1/121T~. The quantity D(kz ) characterizes the 
interaction forces along the axis. All the diagrams will 
contain integrals of the type (13), which can be reduced 
to expressions of the type (14). We now consider in 
greater detail the first correction (12) to the vertex 
part. 

Since kl = 0 in the region of interest to us, the 
integrand can be rewritten in the form 

I (I,IIQ.I-Q,Q2 = Ik,'llk,'-qzl-k,'(k.'-qz) = l' O<k'<-{
o k'>q 

21 Q,II Q21 21 k,' II kz' - gz I 0: k,' < 0 qz· 

(15 ) 
We have put for simpliCity kl = ql = 0, which does not 
change the order of magnitude, as can be readily veri
fied. Substituting (15) in (12), we obtain 

q 

, dk, 1 
6rsc ""S--D(k,) --D(q,)«1. 

° w-I}g, P 
(16 ) 

Obviously, the higher-order corrections will contain 
(D/ f3)n « 1. Consequently, the corrections to the 
vertex can be neglected. 

We now consider the energy-spectrum renormaliza
tion connected with allowance for the Coulomb interac
tion. We estimate the first term in the expression for 
the self-energy part 

~ S ~ d3kdw' 
Il~(w;q)=i G(w';k)D(w-w';q-k)---. 

(2n)' 

Integrating in (17) with respect to the frequency, we 
obtain 

:~ S IQI'+6 d'k ~= D -k--{; 21QI (q ) (2n)3 . 

(17) 

(18 ) 

We consider first the influence of the Coulomb interac
tion on the renormalization of (3 and ~. In (18), this 
corresponds to a term of the type 

~ S Q d3k 
6~= --D -k--2:QI (q ) (2,-,)' . 

(18a) 

To obtain the correct estimate, it is sufficient to con
sider anyone of the components of o~, for example 
o:0x : 

1i~,=S 6(k/-k:) D _ d3k (19) 
Wk.'+ 'S'k.L')'b (q ]<) (2n)" 

We calculate the integral by the same method as used 
for the integral in (14). We obtain 

(20) 
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The main contribution to the integral in (20) is made by 
the region 

We obtain ultimately 

,,, _ (' ') q.' - qu' £0 f dk, U""'. - qx - qy L1s = -----. -D(q - k ) 
(2:n:) , Il k, ' , 

(21 ) 

Consequently, the correction to l; is equal to 

1 t e' , e~O) ~ 
L1s=-"o--ln --<to. 4.rt 2 BE~) e2 s 

(22) 

Obviously, a similar cAorrection arises for the re
maining components of 15~. Thus, we have with logar
ithmic accuracy in the region of small momenta 

(0) ( 1 e' q ) 
e.l. = C.l. 1+--",-ln-L . 

. 3:n: e.l. ~ 

We now find the corrections to 0' to allow for the 
Coulomb interaction. It is sufficient to confine our
selves in (18) to the expression 

L = f D(q - k)d'k. (18b) 

The integral in (18b) diverges formally. To eliminate 
the divergence we can, as is well known, calculate in 
place of ~(w, q) the difference L(w, q) - L(O, 0). 
This yields, in order of magnitude, 

a = ao[1 + ef(q, / q.l.)], 

where f( qz / ql) is a function of the order of unity. 
We consider now the region of ultrasmall momenta. 

We shall show first that here, as in the preceding case, 
it suffices to take into account only the simplest loop. 
To prove this, we consider the first-order corrections 
to the vertex. Transforming the general expression (12) 
into (14) and taking (15) into account, we obtain 

(23) 

This result, of course, is to be expected, for when qz 
decreases we come closer and closer to the "Fermi 
point," Le., to the point of contact between the valence 

and the conduction bands. Therefore the dielectric con
stant can increase in comparison with the value for the 
region where the bands are far from each other. This 
is precisely reflected in (14b) and in the estimate (23). 

We consider now the renormalization of the energy 
spectra. Just as in the region of small momenta, it is 
sufficient to estimate only anyone component of 15~, 

say 15Lx. The expression (20) remains valid: 

Obviously, a similar estimate is valid for D.{3. Thus, 
in all three regions, owing to the smallness of the ef
fective interaction, the renormalization of the spectrum 
is small. The Coulomb potential is practically un
screened in the xy plane. Along the z axis, the inter
action changes significantly. 

In conclusion we wish to call attention to the depend
ence of the dielectric constant on the momentum 
(formulas (8) and (9)). We see that El varies little, 
whereas EZ - 00 as q - O. Such a situation is abso
lutely untypical for the previously known substances 
and can become manifest only in strongly unisotropic 
crystals with zero forbidden band. 

In conclusion, I am grateful to S. D. Beneslavskii 
and A. A. Migdal for numerous and valuable discus
sions. 
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