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The light-electric field created by electromagnetic wave pressure on the conduction electrons of a medium is 
investigated for the case when the plasma frequency w0 exceeds the collision frequency. It is found that if the 
wave frequency w is such that w < 2112w0, the light-electric field is much stronger than at higher frequencies. 
In this case it increases with decreasing frequency until the latter becomes lower than the plasma frequency; 
the field becomes independent of the frequency at lower frequencies. 

KHAIKIN and Yakubovskil fll have measured the poten
tial difference produced in a bismuth crystal irradiated 
by a monochromatic wave of frequency w = 27T x 21.5 
GHz"" 1.35 x 10 11 sec-1 • They have observed that the 
potential difference exceeds by several orders the 
value predicted inf2l for the case of the high frequency 
"light-electric" effect, as this phenomenon was named. 
A comparison of the experiment with the theoretical 
prediction, however, is not valid in this case, since the 
experimental conditions differ greatly from those under 
which the theory is valid. First, the theory of the high
frequency light-electric effect, when wr > 1 ( r is the 
relaxation time) is valid only when w :::?> w0 ( wo 
= ( 47Te 2N/ m )1/ 2 is the plasma-oscillation frequency and 
N is the free-carrier density); second, the theoryf2l 
deals with the case of normal skin effect, when the 
wave damping depth exceeds the carrier mean free 
path l and their mean free path l = v/ w per period of 
the wave (v is the average carrier velocity), whereas 
under the experimental condition the wave damping 
depth greatly exceeds the mean free path; third, 
finally, the theory did not deal with a quant~zing ex
ternal magnetic field, since a field of 1 kOe in bismuth 
is quantizing at helium temperature. Deferring the 
general question of the theory of the light-electric 
field in the presence of a strong magnetic field (and 
particularly a quantizing one) to a separate article, we 
shall show in the present paper that the first of the 
indicated circumstances enhances the light-electric 
field in comparison with the predictions off2•3 l by 
several orders of magnitude. We consider both the 
normal and the anomalous skin effect. For the latter 
we assume satisfaction of the condition 

V < <•)oV I C < Ol < Olo, (1) 

where v is the average carrier velocity and v = 1/r is 
the collision frequency. 

Electromagnetic waves propagating in a conducting 
medium transfer their momentum to free carriers and 
produce, when the circuit is open, a constant light
electric field. The case of waves of high frequency, 
w > 1/r, was investigated also inf3l, where it was 
shown that for waves propagating with a velocity on the 
order of c ( c is the speed of light), spatial dispersion 
produces an additional contribution to the light-electric 
field. This contribution differs from that obtained 
earlierf2l by a numerical factor on the order of unity. 
It turns out, however, that interesting features of the 
light-electric field arise when the plasma frequency 
wo also exceeds the collision frequency v = 1/ r. We 

shall show that in this case when 

,;-1 < w < <Oo (2 I e,) y, 

the light-electric field E increases when the frequency 
w decreases to wo!d12 , and at frequencies satisfying 
the inequality 

it ceases to depend on the frequency. In this latter 
range the field is much stronger than previously ob
tainedr2'3l (by an approximate factor w2r 2 :::?> 1). We 
confine ourselves to the case fiw «: ~. where F is the 
average energy of the free carriers, and for semicon
ductors also to the case fiw << ~ 0 , where ~ 0 is the 
width of the forbidden band. 

1. NORMAL SKIN EFFECT 

In a conducting medium, the magnetic field of a 
plane wave always lags in phase the electric field. We 
denote the electric and magnetic field of the wave by 
El and HI, El ~ eikr-iwt, Hl ~ eikr-iwt+icp' where <P 

is the phase difference between E1 and H1 • In the ap
proximation linear in these fields, the correction f 1 to 
the equilibrium carrier distribution function f0 satis
fies the equation 

af, [ iJf, ] e af, 
-- -. +vVf,=-·-E,-m m d m ~· 

the solution of which is (at kv < w) 

iJf, el { . ,;, } f•=-~--- 1-' (kv) E,v. 
{)~ 1- tw<r 1- iw,;, 

The relaxation times r(~) and rt(~) are connected 
with the "transport" cross section and with the 
"deviation" cross sectionf4 l by 

,;-• = Jw(p,p1) (1- cose)dQ, ,;,-• ='I, J W(p,p,)sin'8dQ; 

(2) 

these times coincide for scattering mechanisms in 
which the transition probability W( p, P1) does not de
pend on the angle between the quasimomenta p and P1 
of the free carriers before and after the scattering 
(this is precisely the case for scattering by acoustic 
and nonpolar optical phonons). In a conducting medium 
the vector k is in general complex. At wT > 1 and 
k' 11 k" we have 

k = k' + ik" = : [ (eo- : 0
2

2
) + i Olo'~~-')] 'h 

~ iJf ~ iJf 
(,;·'>= J r' a; ~ / J a; a, 

0 0 

where Eo is the dielectric constant at w >> wo) (we 
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are considering "generalized" plane waves). Separat
ing the real and imaginary parts, we have 

'·" _ w { 1 [ ( w,' ) { ( w,') ' ( w,'(,;- 1
)) 

2
} y,]} y, k --- ± Eo-- + Eo-- + --- . c 2 (02 (!)2 (1)3 

(3) 

The distribution-function increment that is quadratic 
in the wave fields and independent of the time, satisfies 
the equation 

- [!!.:._] + vV f, =-~E~- _!__ ~Re {(E,• + _!_[vH,•]) ~}, at .• m iJv 2 m c av 
(4)"' 

the solution of which (for a short-circuited sample) is 

j, =- __!_~[.~ iJf, ,;(1 + w,;tg<p) Re[E,H,']v 
2 m c f)@ 1 + w'T' 

_ !}.:_ ,;'tt[w (,; + ,;,) - tg <p(w'n,- 1)] (E,E,') (k'v) 
all (1 + W2T2 ) (1 + w2T,') 

_ m2:._!_{ iJj, n,[w(,; + ,;,) - tg<p (w2n,- 1)]} 
't iJ@ iJ@ ( 1 + w2't2 ) ( 1 + W 2't, 2 ) 

X { (E,v) (E,'v) + 't~ v2 (E,E,')} (kv)], 

where the relaxation times T2 and T3 

_,;2- 1 = Jw(p,p,) (1 +'l,cosG-'I,cos'G)dQ, 

,;,-• = '12 J W(p, p,)cos e sin' 8 dQ, 

are given in the Appendix for several scattering 
mechanisms. The asterisk denotes the complex conju
gate, and tan rp == k" /k'. The current density of the 
constant light-electric field is therefore j ==xi, where 

w ,;2 iJf, { 2 W't1 
x.=-AJ----- (1+w,;tg<p)+ 51 + 2 2 

0 1+w2't2 iJ@ W't, 

X B(0)[w(,;+,;,)+(1-w2n,)tgcp] }0''•d0, (5) 

B(ll)=•: [ ~ ( 1 +5 't~ )( 1 + ~ iJln['t,~11::TITa)]) -1] 

(at T2 == T and T3 1 == 0, B == a ln T/a ln 0), E is the 
carrier energy, 

8·2Y•e' 
A= 3nfl'm'l•c2 , I= I(O)exp(-2k"z), 

I is the energy flux density in the medium and depends 
on the coordinate z in the direction of wave propaga
tion, and I( 0) is the same quantity for z - + 0. In the 
case of an open circuit, there is no current and a con
stant light-electric field is produced 

E = vi = -x.I I cr, 

where a is the static conductivity. The wave reflected 
from the real surface of the crystal can be disregarded 
if the crystal thickness exceeds the damping length of 
the wave. 

At wT » 1, the coefficient x is equal to 

x.=- A' j iJf, {1+w,;tg<p+2_B($) ['t+'t'-w,;tg<p]}@'hd@, 
(J) 0 f)$ 0 5 't, (6) 

where tan rp is given by (3). The phase shift depends 
on the ratio w0 / w in the high-frequency case. 

We consider a number of limiting cases: 
1. w » wo( 2/ Eo) 112 • Then tan rp « ( T- 1 )/ w and we 

can neglect the corresponding terms in (6). This case 

*[11Hf) = 11 X Hf. 

was in fact considered in[3 l, in which case X is equal 
to 

A Jw af, [ 2 ,; + ,;, ] , 1 x.(0=--- 1+---B($) 0"d0~-, 
w' , iJ@ 5 't, w' 

and the condition for the normal skin effect 

-% Wo Wo (,;-I) z~ -Y, V ("'') 2 1 8o ~----.-- ,...._.,Eo ~ r-- < 
c "' (J) c "' 

(7) 

(8) 

1 A w,'(,;-') [ wo'] -• wJ aj, [ 2 ] .%( 2) = -·----- e,-- ,;- 1--B(E) E'"d0. 
2 W2 w' W2 a;s 5 

0 (9) 
The normal skin-effect condition 

1 (,;-') Wo' ( w,') -%_ 1 v w,' ( w,') -% 
---~-- Eo-- li:::i--- Eo-- <1 
2 c w' w' 2 c w' w' 

is also satisfied in this region. The coefficient x< 21 is 
of the order of wTl 1 ) so long as w satisfies (8 ), but 
is less than w 0( 2/ E0)112 ; when w"" w 0( 2/.: 0)112 is 
reached we get x12l "" x< 1), and in this case x == x< 1 ) 

+ ( 2) 

X3 · 2; 2 1 2( -1)/ 3 t 11 d . I Eo- Wo w < wo T w . Here an rp == 12 an 

x.P> = - . .::. J 't!l.!._[ 1- _:__B(ll)] E'" a. (10) 
"' 0 f)$ 5 

The skin effect is normal when 

1 w, ((,;-'))''• 
-- -- l<1. 
2 c (J) 

Comparison of (7), (9), and (10) shows that x< 31 in
creases in comparison with x< 1) by a factor wT >> 1 
and x12 l increases in the same ratio when w satisfies 
(8), While \ 2)- x< 1l when W"" Wo(2/Eo) 112 • 

4. w~/w -Eo>w~(T- 1 )/w3 • Wehave 

X(')= -2A (1- Eo~) - 1--J't iJj, [ 1-2_B($)]$'1•d0. (11} 
Wo 2 (,;-') 0 iJ$ 5 

In this region, the condition of normal skin effect is 

- -' -e, z,_. 1<1. (J) ( (J) 2 ) 'h (J) 

c (J)2. c 

This formula is valid in the entire "cutoff" region, and 
the coefficient x< 4) is w2T 2 » 1 times larger than x0 l 

when w < w0 / E ~12 , and does not depend on w. 
None of these formulas, however, yield the real 

value of the light-electric current (or of the field when 
the circuit is open) for a specified radiation flux Io 
incident on the crystal from the outside, since different 
fractions of this radiation penetrate inside the crystal 
in the four considered frequency regions. We are inter
ested in the ratio 

iII, = xl I Io = xQ = Xo, 

where 
Q = 1-~1- e'h I z 

1 +ell 

is the transmission coefficient, E == ( ck/ w )2 is the die
lectric constant (we are considering normal incidence 
of the wave on the crystal from vacuum). In the fre
quency region o, the transmission coefficient 
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Q = 4,;;~1 2j ( d/2 + 1)2 does not depend on the frequency 
and 

x;o = x'0 Q - w-'. 

In region 2, the quantity 
{) ~ 4(e,- Wo'/w') y, . 

[ (e,- w,'/w') 'b + 1]' 

changes when the frequency is increased from 
4((7 - 1)/w)1/2 to 4,;;~2/(,;;~ 2 + 1), and consequently the 
coefficient 

c•> A w,'(t-') (e,- wo'/w') y, 

)(o =- 2~ w' [(Eo- wo'/w') 'I• + 1]' 

-"'- of, [ 2 ] X~ T o8 1-5B((f;) (f;''•d(f; 

changes from 4x< 2l/(wr)112 ::::! xl/l(wT)112 to X~2 l::::! X~ll 
at w""' wo(2/co)112 . In region 3, when w::::! wo/~:.~ 2 , we 
have 

and xo is equal to 

X•''> = - 2l'Z~ ( (t~')) y, f t :; [ 1- ! B (8)] 8'1• d(fJ' ~ x: 0 (wt) 'h. 
0 

Finally, in the fourth region 

Q=2-' <-r'> -' -e, ""2---, w' [w' ]-''• (t-'> 
wa (l)z Wo 

and xo takes the form 

)(<<> =-4~ [~-Eo] 'k s• t~[ 1-2_B((f;) ](f;'1•d(f; 
• w w' • o8 5 

~ _ 4~ soot~[ 1- 2.B(8) 1 (f;'l·d(f;. 
Wo 0 o(f; 5 

Then X~ 4> ::::! xl/> w2 T/ w0 does not depend on the fre
quency. 

(12) 

Thus, the light-electric coefficient x increases with 
decreasing frequency in the high-frequency region 
( wr > 1) when w < w0 ( 2/,;; o) 112, and reaches a maximum 
at 

at lower frequencies it remains constant in the entire 
region 

1/t < w < w,fe,"' 

if the conditions for the normal skin effect are satis
fied. 

2. ANOMALOUS SKIN EFFECT 

We assume that the electromagnetic flux I is 
directed along the z axis, and the electric and mag
netic fields E1(z) and H1(z) are parallel to x and y, 
respectively. Then the solution (2) for deviations, 
linear in the wave field, of the distribution function 
from the equilibrium function fi-> describing the car
riers moving towards the surface ( Vz < 0 ), or the 
function f\_+> describing carriers moving from the sur
face into the interior of the sample ( Vz > 0 ), as sum
ing P specularly and 1 - P diffusely reflected carriers 
from the surface, is given byr 5 • 6 l 

(-) ev. of, s· [ z- z' ] ' ' j, =-...-- exp ---(-iw+v)E,(z)dz, 
v, o(f;' v, 

(+) eiJ, 0/o { s' [ Z- Z1 
] I , f, =--- exp ---(-iw+v) E,(z)dz 

v, o8 " v, 

+Pjexp[- z:.z' (-iw+v)]E,(z')dz'}· 

Taking similar boundary conditions into account, we 
obtain for f~-> and f<2•> 

(13) 

aj • 1 1 e 
/ <->= e-'Jexp(-~v}E(z')dz' +-2 - · (14) 

z f)~ z Vz mv, 

• z- z' a,~-) v, ' a,:-) 
X~ exP( ----v-,-v) Re{E,'(z') av, -cH,'(z) av, 

V, at,(-)} 1 + -H1'(z1)-a- dz, 
c v, 

,~> aj, { ' ( z- Z 1 
) f, ·=-e-.- Jexp ---v E(z')dz 1 -

i)ifl " v, 

[ 
* I i)jl(+) Vz • I iJj/+) Va: " I 

X Re E, (z )----H, (z )--+-H, (z) 
av, c av, c 

at<+> oo z+z1 

X-' ]az1 +PJexp(---v)Re[E,'(z1)· 
iJVz 0 Vz 

(it is assumed here that the circuit is not closed in the 
z direction). 

Under the conditions (1 ), the electric field of the 
wave is given in first approximation by E1 
~ exp ( -woz/ c), so that (13) and (14) can be easily 
calculated: 

f,'->= e.!l!Joo exp (- z -z' v}E(z')dz1 +-2
1 ~E,(O)E,'(O) 

a(f;, v, mw 

a f ' z - Z1 oo ( z + z1 } 
f'+>= -e-0 

{ Jexp(---v}E(z1)dz1 -PJexp ----v 
z f)~ u Vz o Vz 

} 1 e' {[ aj, mv.' a'j,] 
XE(z')dz' +-z~E,(O)E,'(O) iJ(fJ' +-2- a(f;' 

( 
Wo } mv.' a'j, ( z } 

)(exp -2-;;--z +-2-a8 ,exp -v,v-

-cos {~z) exp [- ( Wo + ~} z]_!_[v.~] 
v, c v, au, a(f; 

2 Wo .:2. [ ( 1-~} .!.J3.. + mv.' a'fo ] sin (~ z} + w c 2v".' a(f; 2 a(f;' v, 

[ ( Wo V ) ] Wo v,' aj, ( W ) xexp - -+- z +--, z-cos -z 
c v, c v, a8 v, 

X exp [- ( :• + :. ) z]} ; 

these calculations yield the density of the constant 
light-electric current j = jJ + jE, where jr and jE are 
respectively the currents produced by the electromag
netic flux and by the light-electric field E: 
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e' m w of w 1 v z- z' ] 
iE =--;;-lid@ 0~ {S [ J exp (-;--a-)a da 

0 0 0 

X E(z')dz' + J Uexp (- : z ~ z' )u da ]E(z')dz' 

- P j U exp (- : z :z') ada] E(z')dz' }d@, 
0 0 

e' w of, • v 1 
h= --E,(O)E,"(O) { J@-J [2a+-z(-

2n'li'w' 0 {}@ " v 2 

DinT)] ( v z) +-- (1-a')exp --- dad@ 
iJ In@ v a 

(15) 

w of, • r ( w z ) 1 w z 2 +2J@-J (2a'-1)cos -- ----(1-a) 
iJ@ v a 2 v a 

0 0 

x sin ( : az ) ] a exp [- ( :• + ; ~) z] da d@ 

+ ulo 1 ( '2 )'" J~ "''' iif, s' [ . ( w z ) w z (1 + ') -- - 0 2- s1n -~ --- a 
w c m iJ@ v a v a 

0 0 

Xcos(: :)]exp[-(:'+ >~)z]dad@}. (16) 

Assuming 

' 
U (z) = J E (z') dz', 

0 

where U ( z) is the potential difference between the 
point z and the surface of the crystal, we can express 
jE intermsof U(z): 

e' m w of, v { ~ [ ' ( v z- z' ) jE=---J-8- J J exp -- da] n' li' iJ@ v v a 
0 ' 0 

+ P j U exp (- : z :z') da] U(z')dz' }a@. (17) 
0 0 

When the circuit is open, the total current density is 
j = 0. Assuming for simplicity that the carriers are 
degenerate and taking the Laplace transforms of (15) 
and (17), we obtain for fully diffuse reflection of the 
carriers the Laplace transform of the function U( z): 

e s• { s' a' (1- a') da a [ 1 iJ In,] 
U(s)= --- +- -+--

2mw· a· " a --r sa ~ ~ dIn l; 

J
1 a2 (1- a')da s· [(s+ w,fc)a+a] (2a'-1)a'da 

X + ~~-~~-~~-~--
" (a+sa)' • [(s+w,fc)a+a]'+(wjv,)' 

( w )'J' [(s+w,fc)a+a](1-a')a'da 
+ -;, " {[(s+w,fc)a+a]'+(wfv,)'}' 

Wos
1 ada Wo ( W )' +- +-- . 

c , [(s+w,/c)a+al'+(wfv,)' c v, 

S• (1+a')ada }[1 a+s s]-' 
X ,{[(s"=t-w,fc)a+a]'+(wfv,)'}' 2 1na-s ---;; ' 

(0 <Res< a), where v0 and tare the Fermi velocity 
and energy, and a= vlv0 • When taking the inverse 
Laplace transform, account must be taken of the pres
ence of poles at s = 0, s i':;; -1, 2a, s = -wol c ± iwl Vo, 

and of branch points at s =±a, s =-wale± iwlvo. It 

can be shown that the contributions of all the poles, 
with the exception of s = 0, and of all the branch-cut 
integrals to U ( z) tend exponentially to zero as 
z - oo. Discarding them, we obtain the total potential 
difference U = U( z) as z - oo: 

16n e 1 [ 2 a In '1 U=------ 1+--- /(0). 
3 mw,' v, 5 a In~ 

(18) 

Let us compare this result with the result of the 
"cutoff" in the normal skin effect (case 4 of the first 
part), for which the potential difference can be easily 
calculated and differs from (18) by a factor 4vcl3woVo 
< 1 and in the sign of the second term. If we recog
nize that in the case of the anomalous skin effect (1) 
we have 

/(0) = QI,, Q = 3v, /4c, 

then we can obtain from (18) U as a function of the 
external flux 10 (it is assumed here, just as in the 
first part, that the flux is normally incident on the 
sample surface): 

e 1 [ 2 iJJnT] U=-4n--- 1+--- I,. 
mwo' c 5 iJ In~ 

(19) 

This result differs from the calculation of U in the 
case of "cutoff" in the normal skin effect and when the 
transmission coefficient (12) is taken into account, in 
that the sign of the second term of (19), which is 
smaller than unity, is reversed. 

APPENDIX 

We calculate 7 h 72, and 7s for several scattering 
mechanisms: 

1) For scattering by impurities producing a poten
tial V = V0 5(r) we have 

't't = 'f2 = T, 't's-t = 0; 

2) for scattering by charged centers (in the Born 
approximation) 

1 

where >. is the Coulomb logarithm; 
3) for (high-temperature) scattering by acoustic 

phonons 

4) for scattering by nonpolar optical phonons we get 

5) for scattering by polar optical phonons at nwz 
«T 

't1 = 2T / 3, 'tz = 61: / H, ..:, = 6,;, 

if nwz » T we have 

'tt = 101:/9, 'tz = 1/z't, 'ts = '/,..:; 

6) for piezoelectric (high-temperature) scattering 

'tt = 2T /3, 'tz = 6,; /11, 'ts = 6-r. 
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