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A phenomenological calculation of the static and dynamic properties of orthorhombic antiferromagnets, with 
effective fields that satisfy the relations HA, H0 -(2HE, is carried out by taking into account two "bilinear" 
and three "biquadratic" anisotropy constants. A satisfactory agreement is obtained between the 
experimentally determined and the calculated orientational dependence of the antiferromagnetic resonance 
(AFMR) fields in YFe03 at T=300'K and v= 128 GHz. Consideration is given to a critical point of phase 
transitions of the second kind, at which the phase transition with respect to the field is characterized by an 
infinite discontinuity of the differential susceptibility while the magnetic moment changes continuously (a 
phase transition of the "one-and-one-halfth kind"). An experimental investigation of the dependence of the 
differential susceptibility on field and temperature justifies the supposition that such a transition exists in 
SmFe03• 

1. INTRODUCTION 

THE dependence of antiferromagnetic resonance 
(AFMR) frequencies on the value of the magnetic field 
and on its orientation, in orthoferrites and in compounds 
of the orthorhombic syngony related to them, has been 
investigated in recent years in a whole series of lab
oratories[ i-s]; and this work has led to an understanding 
of the basic characteristics of the effect of various in
teractions on the magnetostatics and the linear magneto
dynamics of these systems. Thus observation of AFMR 
in TmFeOJ near the temperature of reorientation of the 
AF- vecto:rl: 1J and interpretation of these resultsC2'3J 
have revealed the important role of the "second" 
anisotropy constants (which, by analogy with "biquad
ratic" exchangeC6 J, we shall call the "biquadratic" 
anisotropy constants). The effect of biquadratic aniso
tropy on the statics of orthoferrites in small fields, 
near the reorientation region, has been investigated in 
considerable detail[?-lo]. Recent precision measure
ments of the static magnetic properties of YFeOJ in 
strong fields and related calculations made by Jacobs, 
Burne, and Levinson[uJ , as well as available quantita
tive static characteristics of rare-earth orthoferrites 
(for example, SmFeOP2'13J), show that allowance for 
biquadratic anisotropy is necessary for consistent des
cription of the experimental data even far from the re
orientation temperatures (or in the absence of any, as 
in YFeOJ). For the purpose of explaining the effect of 
biquadratic anisotropy on the magnetostatics and dynam
ics of orthoferrites over a range of temperatures not 
necessarily close to the reorientation region, we have 
investigated AFMR in YFeOJ and SmFe03 and the tem
perature dependence of the value of the phase-transition 
field in SmFeOJ. In our phenomenological calculation of 
the static and dynamic properties of orthoferrites, for 
a broad range of values of the external field H « 2HE 
and for arbitrary orientation of it in the (ac) plane of 
the crystal, biquadratic anisotropy has been taken into 
account in a form corresponding to symmetry require
ments (as was done also by Belov and othersCsJ in their 
analysis of the phenomenon of reorientation in SmFeOJ). 

2. BASIC EQUATIONS 

We use the two- sublattice model of an antiferromag
netic orthoferrite belonging to space group D~h- We 
write the magnetic energy of the system at temperature 
T (sufficiently low in comparison with TN), and for ar
bitrary orientation of the external field H in the (ac) 
plane (the most interesting case), in the form 

/S == 2M,dt$, (1a) 
dt$ = 'hEm'- D(m,l,- m,l,) - mH + 1/2a,l/ + 'f,c,l! 

+ •j,a,lx' + 'j,c,l,' + 1/,fl,'l! .• (1b) 
Here m = (M1 + ~)/2MT and l = (M1- ~)/2MT are the 
ferro- and antiferromagnetic vectors, respectively; 
M1 and M2 are the magnetic moments of the sublattices; 
MT is their value at the given temperature T, such that 
M0 - M:r « Mo; the x, y, z axes are directed along the 
axes [aj, [b), and [c) of the crystal (a< b <c); 
H = (H cos e, 0, H sin 8)- see Fig. 1a. We neglect 
anisotropy of the g-factor. The Dzyaloshinskil interac
tion energy should, in accordance with symmetry re
quirements, be written in the form 

J't$n = -d,m,l, + d,m.[, == -D(m,l,- m.Z,)- A.,(m,l, + m,l,), 

but from experimental data on YFeOP1J and SmFeOJC 12J, 
in these materials (and in a whole series of other ortho
ferrites) Axz « D, and therefore we shall neglect the 
term containing Axz· Because the expression for the 
energy has been written in the normalized form (1a, b), 
the coefficients that appear in it are measured in oer
steds (gausses). Y2 E and D are the effective symmetric 
and antisymmetric exchange fields (E = 2HE; D = Hn; 
E > 0; D > 0); A = {a1, c1, a2, c2, f} are the effective 
bilinear (a1 and c1) and biquadratic (a2, c2, and f) aniso
tropy fields. Being interested only in the region of 
sufficiently low temperatures, we shall make use of the 
conditions 

m' +I'= 1, mi=O, (2) 

which follow from IM1I 2 = 1~1 2 = MT. 
For all orthoferrites, experiment show~14 J that the 

inequalities 
IAI~D~E, (3) 
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are satisfied; these significantly facilitate the calcula
tion for an arbitrary type of anisotropy, since because 
of them, by analogy to the situation in hematiteE 15J, the 
parameter m « l ~ 1 is small over the whole field 
range of practical interest, from zero to H ~ (AE) 112 or 
H ~ AE/D. This fact permits us, in writing the aniso
tropy energy, to restrict ourselves to terms containing 
only components of the AF-vector l. The specific re
sults obtained below are valid also under the more gen
eral condition 

/A/, D~E. (3a) 

We find the stationary state (m0 , lo) and the resonance 
frequencies for small oscillations of the quantities 
j.L = m - mo, A = l - lo from the equations of motion for 
m and l; these automatically take account of the condi
tions (2): 

y-•ffi = -[mHw]-[IHI], y-•i = -[mHI]-[IHm]; 
Hm == -a;J(J I am, H, == -a;J(J I at. 

3. THE STATIC CASE 

Taking account of conditions (3), we get for m0 and lo 
(see Fig. la) 

m, = ( m, cos <p, 0, m, sin <p), I, :::::: (sin cp, 0, -cos <p), 

where the functions cp(H, 8) and mo(H, 8) are given by 
the equations 

(5) 

[D + H cos(<p- 8) ]H sin (cp- B) = E (A. sin'<p t A. cos'<p)sin<p cos <p, 

(6a) 
m, = [D + H cos(<p- e) ]I E. (6b) 

Here and below we use the notation 

A,== c, +f-a,- a, == -A,, A,== a,+ a,, 
A. == c, + c,- a,- j, A,== c, + c,. (6c) 

We shall introduce at once the following quantities, 
which are convenient for what is to follow: 

H ..... 112[-D+(D'+4EA.)'i•], i.e. H.'+DH.==EA.; (7a) 

H, == 112[ -D + (D' + 4EA,)Y•], i.e. H/ + DH, == EA,; (7b) 

A,=:A.-•A,=a,+c,-2f. (7c) 
We shall consider below only systems with initial 

(at H "' 0) state 
100 :::::: (1, 0, 0), moo:::::: (0, 0, D /E), 

this is the case in YFe03 and in most orthoferrites at 

*[mHml =m X Hm. 

FIG. I. Analysis of the statics and dynamics of orthorhombic 
antiferromagnets with large Dzyaloshinskil interaction. a: Coordinate 
axes and basic variables of the problem. b: Static characteristics of the 
system when Aa > 0 ([a] is the easiest axis); calculation for the specific 
case of YFe03 at 4.2° K (see [ 11 ]). c: AFMR spectrum (g = 2). Curves I 
and 2: the functions w 1 (H) and w 2 (H) at IJ = 0, calculated for the spe
cific values E = 12 800 kOe, D = 140 kOe, A0 = 0.68 kOe, Aa = 1.2 
kOe that follow from paper [ 11 ] for YFe03 at 4.2°K. In the calculation 
of w 2 (H), the values Ax= Az = -7.5 kOe have been used in addition, 
for illustration. Curve 3: calculation of the function w 1 (H) for disori
entation angle IJ = IJ w = 0.85°, at which the curve w 1 (H) in field H = 
Hw"" 2Ha-H 1 has a minimum equal to operating frequency w = 8·10 11 

sec·1 . 

temperatures below the reorientation range. To facili
tate the obtaining of numerical values of A0 and Aa from 
static measurements, we note that in using the results 
of Jacobs and others[u] it is necessary to set Ao "' Hka 
- 2Hk4' Aa"' Hk2" 

From (6a, b) follow the well-known results shown in 
Fig. lb. Here 

2MT IE= Xm. D = O'o I Xm, EA, = ao' I X1Xm, (8) 

where Xm and Xz are the initial susceptibilities along 
the original directions of the ferro- and antiferromag
netic vectors (that is, in the case of YFe03 , along the 
axes [c] and [a] respectively). 

4. DYNAMICS 

Equations (4) are the starting point for a standard 
calculation of the resonance frequencies of the systems 
under consideration, for arbitrary value of the field H 
and for arbitrary orientation 8 of the field in the (ac) 
plane. The result can be expressed in a form quite 
convenient for analysis or for calculation. The two 
AFMR frequencies w1,2(H, 8) are determined by the 
equation 

({J)/y)'- (U + V) (w/y)' +(UV- W)= 0; (9a) 

where 
U""' HEm, -E(Ao sin''JJ +A. cos' cp)cos 2<p + 2EA,sin'<p cos'<p, 

(9b) 
V == DEm,- E (A. sin".q> + A, cos' <p) + EA, sin' <p cos' <p + H' sin' (<p 

(9c) 
W == 2H' sin(cp- 8) {EA, sine cos' <p + EA, cos 8 sin'qJ + 

+ [DEm,- E (A, sin'qJ +A, cos' <p) + 4EA, sin' <p cos' <p ]sin (<p - 8)}. 
(9d) 

The values of cp and mo as functions of H and 8 are given 
by equations (6a, 6b). It follows from the expressions 
(6) and (9) that for complete description of the static 
behavior of the system, two combinations (A0 and Aa) of 
the five anisotropy constants involved are sufficient, 
whereas the dynamics requires four: Ao, Aa, Ax, and 
Az. This shows up even in the easily calculated special 
cases: for e "' 7T/2 and H « E, 

'Jl=rr/2, (w,/y)'=H'+DH+EA,, 
(w, /y)' = D' + DH- EAx; 

for 8 "' 0 and Ha ~ H « E, 

(lOa) 
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q> = 0; - (,ro, I"')' = H' + DH- EA, 
(ro,ly)'=D'+DH-EA,. (lOb) 

For quantitative determination of Ax and Az, it is 
necessary to measure w20 and w 2a (see Fig. lc); in 
actual materials, these as a rule lie in the hard- to
reach submillimeter range. In general, the values of 
Ax and Az affect also the values of Wt for 0 < H < Ha; 
but as is shown by a numerical calculation that we have 
made by means of (9), this effect, which reaches a maxi
mum at cp ~ 45°, is very small. For example, for ma
terials of the type of YFe03, the difference in w1 at 
H ~ 50 kOe, for Ax:::::: Az equal to -7.5 kOe and to 
-15 kOe, does not exceed 1%. 

5. ANALYSIS OF SPECIAL CASES 

In strong fields (H ~ Ha) parallel to the initial (at 
H = 0) direction of the AF-vector, it follows from (6a) 
that a phase transition occurs from the '' xz- phase'' 
(in which, for H '¢ 0, both the x- and the z- components 
of the AF-vector are nonzero) to the "z-phase", in 
which the AF-vector is directed strictly. along the z 
axis, while mx0 = (D +H)/E. This transition, depending 
on the relation between the magnitudes of the different 
interactions, may be a transition of the second or of the 
first kind (with respect to the field). To find this rela
tion, we set e = 0 in (6a), denote cos cp by ?; , and obtain 
for H 

H = {-D + [D' + 4E(A, + A,~')~'l'''} I 2~. (11) 

It is easy to show (by analyzing, by means of (6a), the 
behavior of the differential susceptibility Xx = dmx/dH 
at e = 0) that the nature of the transition is determined 
by the sign of the derivative dH/d?; at the point (H = Ha, 
?; = 1), through which the curve H( ?;) necessarily passes 
by virtue of the definition (7a) of the quantity Ha. In 
calculating this derivative, we shall introduce the quan
tity A a (in general temperature-dependent), whose sign 
coincides with the sign of the derivative under consid
eration: 

A,(T} == 1I2DH, + EA, ""'H)+ 'j,DH,- EA,. (12) 

Then by use of the equation of state (6a) and the results 
of the calculation of the dynamics of the system, we 
arrive at the following conslusions. 

a) Aa > 0, 8 = 0. The transition xz- z is a transi
tion of the seco_?d kind and occurs at field 'Ht = Ha. As 
parameter of the transition we may take the angle cp 
(or lx0), which for 0 :o; H :o; Ha is determined by equation 
(11). Near the critical field, this parameter depends on 
the field in the typical fashion 

[ 2H,+D ]''' cp ;:::::; l,, ;:::::; ,i (H,- H) for H,-H« 2H,+D · (13) 

The dependence of the AF:MR frequencies on the value 
of the field, as follows from formulas (9a-d) fore = 0, 
differs slightly (at small H) from that obtained by 
CinaderC 16J; it is depicted in Fig. lc. We note again the 
characteristic points of this figure (see also (10)): 

( ro" I y)' = EA, •= a,' I XmX•· 

(ro,ly)' = D' -EAx, 

(ro,.ly)' = D(H,+D) -EA,. 

(14a) 

(14b) 
(14c) 

b) Aa > 0, e '¢ 0. As follows from (6a), the compon-

ent lxo does not vanish for any values of H. Conse
quently, in the (Hx, Hz) plane the point (Ha, 0) is an 
isolated phase- transition point of the second kind (with 
respect to the field). Near this point there occurs a 
characteristic relationship (see Fig. lc). Thus for 
small e « 1, on expanding the formal function 8(Ha, cp) 
in a series of powers of cp « 1 by means of (6a), we get 

t:r(H,, e);:::::; [H,(H. + D)e 1 A.l'"· (15) 
Similar cube-root dependences are encountered in the 
investigation of other isolated phase-transition points 
of the second kind (for example, in the (T, H) plane at 
T = Tc in ferromagnets, or at T = TN in antiferromag
nets with weak ferromagnetism, where l (TN, H ) 
~ Hl/3. see[l7]) yo x 

X' • 
The range of fields H and angles e near the point 

(Ha, 0) is of particular interest from the experimental 
point of view, since the AF:MR frequencies necessary for 
observation in this range are not too high. The field and 
orientation dependences of the lower AF:MR frequency 
near this point can be obtained by expanding the func
tions e and w~ as series in h = H - Ha « Ha and in 
cp « 1 by means of the general relations (6) and (9) (see 
Fig. lc): 

h, ==H,-H.=ro'ly'(2H.+D), (16a) 

h. ;:::::; h,/2, (16b) 

h,;:::::;-h,/2; (16c) 

e.;:::::; 2'''({i)ly)'/3H.(H,+D)(3A.)'1•. (16d) 

The last expression gives the limiting angle 8w of in
clination of the magnetic field to the direction of the 
easy axis of the crystal (in the (ac) plane), beyond which 
observation of AF:MR at a given frequency w becomes 
impossible (if the resonance line is infinitely sharp). 
In an actual case with allowance for finite complex sus
ceptibilities (see[taJ), "fade- out" of the absorption is 
delayed until slightly larger angles. 

c) Aa < 0. In this case, fore = 0, the transition 
xz- z occurs as a transition of the first kind at field 
Ht (see Fig. 2). The angle cp changes discontinuously at 
this field from 'Pt to zero. Other characteristics of the 
system also undergo discontinuous changes. It can be 
shown that, by analogy to the situation in hematiteCtsJ, 

lf{2> < l!, < IP", ( 17) 

where H< 2 J = Ha is the lower instability field. The upper 
field after instability, H< 1 J, is determined by the condi-

\ 
I 

L 11/Ha 
(/ 1----____.J, H.cl...Lt ~~~{f) ----'-"--

FIG. 2. Possible types of magnetization curve of the system near the 
phase-transition field Ht [a]. Curve I occurs when A a< 0 and character
izes a phase transition of the first kind (with resepct to the field). Curve 
2 occurs when Aa > 0: a phase transition of the second kind. Curve 
"1.5" occurs when Aa = 0: phase transition of the "one-and-one-halfth 
kind"; at the point H = Ha the function mx(H) has a singularity~ (Ha
H)Y2, the function Xx(H) a singularity (Ha-H)-Y2. 
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tion dH/dl; = 0 (see (11)), and the transition field Ht is 
determined from the condition that the difference of 
energies of the two phases shall vanish at the transition 
point: 

J'6"'- ;)'€, = 0. 

d) For answering the question of the kind of transi
tion, practical use of the parameter Aa described in the 
form (12) is not altogether convenient. Experimentally, 
it is easy to measure the values of ao, Xm' x , and the 
transition field Ht (which is not equal to Had Aa < 0). 
It therefore makes sense to introduce the quantity 

2 3 Oo o,' 
A,., .... H, +-2 -H,---, 

J(m )(t)(m 
(18) 

which in general is larger than or equal to the quantity 
Aa (see (12), (8), and (17)). Then Aexp > 0 will be the 
criterion for a transition of the second kind (in this case 
Ht = Ha and Aexp =A a), whereas Aexp < 0 will be the 
criterion for a transition of the first kind (since in this 
case A a< 0 because A a< Aexp) 1 J. 

The possibility is not excluded that there might be a 
crystal in which, at a certain temperature Tb, the 
parameter Aa(T) vanishes: Aa(Tb) = 0. This limiting 
case is curious, since for T = Tb the field-induced phase 
transition xz - z possesses properties in a certain 
sense intermediate between those of phase transitions 
of the second and of the first kind. In accordance with 
the definition introduced in the book of Landau and 
Lifshitz[19J, Tb is a critical point of phase transitions 
of the second kind. We shall consider this case in some
what greater detail. 

e) For small departures o~ the field direction from 
the axis [a] and of the field magnitude from the value 
Ha-more exactly, for those values of() << 1 and of 
h = H- Ha « Ha for which cp « 1-we can obtain from 
(6a) and (9a-d) 

H.(H.+D)6 :=::: [(2H.+D)h+A.~p' +Ap')IP, (19a) 

(w, I'!)':=::: (2H. + D)h + 3A,(Jl' + Q<p', 
P == 'f,DH.- A., Q =s f!T(T)A. + H.("f,D- '/,H.) (19b) 

(here f!T(T) is a definite function of the effective fields). 
Under conditions that permit neglect of the terms 

containing cp\ and for Aa > 0, it is easy to derive the 
relations (13), (15), and (16) given above. They describe 
an isolated point of phase transition of the second kind. 
The corresponding relations for A a = 0 have the form 

[ 8(2H. +D) ] ''• [ 8(H. +D) ] ''• 
q;(H.O):=::: 3DH. (H.-H), ~p(H.,6):=::: 3D 6, 

Thus at T = Tb, when A a = 0, the point (Ha, 0) in the 
(Hx, Hy) plane is, as before, an isolated point of phase 
transition, at which the transition parameter cp, with 
increase of field, tends continuously toward zero at the 
transition field Ht = Ha; but its approach to zero from 
the smaller-field side occurs not along a parabola, but 
along a curve (Ha- H) 114 • Therefore, although the mag
netic moment mx of the system (a quantity proportional 

0 In hematite (a-Fe203) at T <Tm, as follows from[1 51, an analogous 
experimental criterion for the kind of transition, in a field 
perpendicular to C3 (at fixed T), is the sign of the quantity 
A==:3(xf'F -xl"f)H1,-2o-6"F. 

to the first derivative of the thermodynamic potentials 
with respect to the field) also undergoes no discontinuity 
at H = Ha, the differential susceptibility dmx/dH be
comes infinite at this field (from the low- field side), 
whereas in an ordinary transition of the second kind it 
should experience only a finite jump. This intermediate 
situation characterizes a so- called critical point of 
phase transitions of the second kind (in our case, in the 
(H, T) plane; seeC19J). By analogy with[2oJ we may, for 
brevity, call this transition with respect to the field 
when A = 0 a phase transition of the "one-and-one
halfth kind" (see Fig. 2). By using the results of para
graphs b), c), and e) of this section, one can show that 
in accordance with the general theorf19J, the Ht(T) 
curve undergoes a discontinuity of the second derivative 
at the point T = Tb. 

6. ANTIFERROMAGNETIC RESONANCE IN YFeOa AND 
SmFe03 

a) Apparatus. We have investigated the absorption 
of microwave radiation, of wavelengths .\ ~ 2, 4, 6, and 
8 mm, in monocrystals of YFe03 (TN= 644°K) and of 
SmFe03 (TN= 674°K), as a function of the value of the 
field and of its orientation with respect to the crystal
line axes, by means of a reflection radiospectrometer, 
with a pulsed magnetic field (Hmax = 300 kOe; duration 
of the field, from zero to zero, Too ~ 10 msec). The 
specimen being investigated was placed near the shorted 
end of a waveguide insert, on a circular table of diam
eter 2. 5 mm, whose surface formed part of the inner 
surface of the wide wall of a waveguide of 8- millimeter 
range. Rotation of the table about a horizontal axis was 
accomplished by means of a worm gear that insured an 
accuracy of setting of the angle of rotation no worse than 
20' of arc. The whole waveguide insert, of length about 
500 mm, was fastened on the Dewar cap, which could be 
moved along a cylindrical surface. The horizontal axis 
of this surface went through the center of the specimen 
and made a right angle with the axis of rotation of the 
table. The maximum possible angle of inclination of the 
waveguide insert to the vertical axis (which coincided 
with the axis of the pulsed solenoid) was 4 o; the accur
acy of setting of the angle was no worse than 10'. 

b) Specimens. A monocrystal of YFe03 was kindly 
provided to us by the Semiconductor Institute, Academy 
of Sciences, USSR (Leningrad); it belonged to the same 
group of specimens as those used by Yudin and others 
others[21 J. The monocrystal of samarium orthoferrite 
used for resonance measurements was grown by the 
method of crucibleless zone fusion with radiation heat
ingC22J. The content of iron of various valences was 
monitored according to the sharpness of the edge of the 
window of transparency in the infrared part of the spec
trum. Practially all the iron was in the trivalent state. 
The absorption coefficient (a) at wavelength 1.2 microns 
was 12 cm-1 • The SmFe03 monocrystal on which the 
measurements of differential susceptibility were made 
was grown from a solution (oxides of the rare earth in 
oxides of lead and boron) in the melt; it was kindly pro
vided to us by J. Marechal (France). All specimens had 
approximately the shape of a cube of edge about 3 mm. 
The critical fields of the SmFe03 specimens, measured 
dynamically (by AFMR) and quasistatically (by the dif-
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FIG. 3. Orientational dependence of the AFMR field at frequency 
v = 128 GHz in YFe03 at T = 300°K. The value of the field H was de
termined (with absolute error ±2.5 kOe) from the position of ~he unre
solved absorption maximum at frequency 37 GHz. The curve was drawn 
according to formulas (19a, b) with P = Q = 0, by use of static data of 
Yudin and others [ 23 ). On the dotted part of this curve the condition 
<P ~ I is poorly satisfied. 

ferential susceptibility), agreed within the limits of ab
solute error of the field measurements (± 5%). 

The fastening of the specimens to the table was per
for~ed in a constant magnetic field, in such a way that 
the1r spontaneous magnetic moment (and consequently 
the axis [c] for YFe03 and the axis [a] for SmFe03) was 
perpendicular to the surface of the table. The funda
mental measurements of the orientational dependence 
of the resonance fields were made by rotation of the 
waveguide insert without change of the position of the 
specimen with respect to the waveguide. 

c) Results. Figure 3 shows the orientational (in the 
ac plane) dependence of the values of the magnetic field 
at which maxima of the absorption of microwave energy 
occur in YFe03, with frequency v = 128 GHz. At room 
temperature, the width 6H of each of the two resonance 
lines, when the field was oriented strictly along the axis 
[a], that is when 8 = oo (± 10'), was 1.5 ± 0.5 kOe. With 
inclination of the field to the axis [a] , the lines draw 
closer together, and at 8 ~xp = 1. 5o they are almost com
pletely fused. In the angle interval 1.5 to 2.5°, a single 
absorption maximum is observed; its intensity dimin
ishes with increase of 18 I and vanishes for 18 1 ~ 2,5°. 
At frequencies corresponding to wavelengths ~ 4 6 
and 8 mm, even at 8 = oo an unresolved absorpti~n ' 
maximum is observed; according to[la], it is a field
dependent absorption at the edge of the line belonging to 
the real branch w1(H) of the AFMR. This maximum at 
8 = 0 occurs at the phase-transition field Ht, the meas
ured value of which (with absolute error± 2.5 kOe), at 
300°K, is shown in Fig. 3. 

In SmFe03 at 300°K and 8 = 0, at frequency 129 GHz, 
two wide (6H ~ 6 kOe) lines are observed, at field 
values 46 and 60.5 kOe; with increase of the disorienta
tion angle 8, they begin to draw closer together, but 
more slowly than in YFe03. The resolution is main
tained up to 8 = 4o. 

d) Discussion. The phenomenological calculation 
made above enables us to describe the experimental re-

cgs emu/mole 

Crystal T. 'K 

Wxml Wx1 I cr, 

HI. .. 

suits quantitatively with sufficient accuracy (for YFe03, 
the better, the closer to oo K). By using the data on 
static measurements available in the literature [u,21 , 12 J 
our data for the transition fields, and the deductions of ' 
Section 5, we construct the following table: 
Use of the experimental data of Gorodetsky and othersC 9J 
for YFe03 gives the same values of 8 calc. 

There can be no doubt that in YFeiS3 at both tempera
tures, what occurs at field H = Ht is a phase transition 
of the second kind (at 8 = 0, of course). The availability 
of sufficiently accurate static data enables us not only 
to calculate the limiting angle 8w (by formula (16d)), but 
also to construct, for fixed operating frequency w, the 
whole curve of the orientational dependence 8(h) of the 
resonance fields; this is easily obtained by eliminating 
the variable cp from equations (19a, b) for P = Q = 0. 
This construction has been made in Fig. 3. The dotted 
part of the curves corresponds to values of cp for which 
the condition cp ~ 1 is poorly satisfied, and therefore 
neglect of the terms containing P and Q in (19a, b) is not 
legitimate. 

The failure to resolve the absorption line when .X ~ 4, 
6, and 8 mm in YFe03, even when the field was oriented 
along the axis [a] with the greatest accuracy possible 
in our apparatus (8 ~ 10'), is easily explained by the 
strong frequency dependence of the value of the splitting 
6h and of the limiting angle 8 (6h = h2 - h1 ~ w2 • 

3 w ' 
8w ~ w -see (16a, c, d)) and by the relatively low 
sharpness of the resonance lines of the specimens in
vestigated. For SmFe03, a quantitative interpretation of 
the orientation curve is very difficult. The absence of 
sufficiently accurate static data makes it impossible to 
estimate the basic parameter of the problem A ' exp' 
with reasonable accuracy. An attempt to calculate A exp 
(see Table) from the data of Belov and collabora-
t [12] 1 d . ors ea s to a relatively small value for it. Ex-
pression (16d)-in which, for application to the case of 
SmFe03 at T = 300°K, it is sufficient to replace Ha by 
He and A a by Ac-shows that the value of the limiting 
angle 8 w increases with decrease of A . Therefore the 
significantly different character of the corientation curve 
in SmFe03 as compared with YFe03 (see Table) agrees 
qualitatively with theory. 

7. PHASE TRANSITION WITH RESPECT TO FIELD 
IN SmFe03 

In samarium orthoferrite at H = 0 and at tempera
tures from OoK to the reorientation range (TR R< 480°K), 
the configuration 1 II (c], m 11 [a] exists. In a field 
H II (c] , there is completed at H = Ht a "quasiflop of 
the sublattices", that is a phase transition xz - x. The 
value of Ht, as follows from the experiments of Belov 
and collaborators[ 12J, in small static fields depends 
strongly on temperature. It seemed of interest to follow 
the dependence Ht(T) to lower temperatures. We did 

8watv= 

128 GHz 

Aexp• k0e 2 Kind of I 
transition Theor1 Ex pt. 

YFeO { 1300 123,21 341232,70±2.51 8600(± 10%) I 3 4.2 21.8 49 305 72.5±1 11800(±10%) 

SmFeO, 300 21.1 25 262 50±2 '0±800 
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FIG. 4 FIG. 5 

FIG. 4. The results of induction measurements of the field and 
temperature dependence of the differential susceptibility of SmFe03 

point to a change of character of the phase transition with lowering of 
the temperature. 

FIG. 5. Temperature dependence of the value Ht[cl of the xz ~ x 
phase-transition field in SmFe03 , according to measurements of the 
differential susceptibility. There is a similar temperature variation of 
the value of the AFMR field for v = 37 GHz and H II [c]. 

this on the monocrystalline specimen of SmFe03 des
cribed above: at various temperatures from 1. 7 to 
300°K, we measured by the induction method the depen
dence of the differential susceptibility along the axis 
[c] on the value of the pulsed field. 

The results of analysis of the oscillograms are 
shown for several temperatures in Fig. 4. Besides the 
expected increase of Ht with lowering of temperature, 
one notices the abrupt change of character of the behav
ior of x[CJ (H) near Ht at the lowest temperatures. The 
increase in the height of the peak in x[c J and its abrupt 
contraction permit us to state that the phase transition 
xz - x at field Ht changes from continuous to discon
tinuous with respect to the magnetic moment. The fact 
that a similar transformation of the character of the 
transition occurs on approach to the "compensation 
point" of SmFe03 (see 23]; Tcomp ~ 4.2°K) is not sur-

prising. At the compensation point, the assumed ab
sence of a spontaneous magnetic moment makes the 
phase transition under discussion similar to the class
ical flop of sublattices in pure antiferromagnets, which 
is known to be a transition of the first kind. The transi
tion must remain discontinuous also in a certain inter
val above Tcomp• until at a certain T = Tb the jump in 
the magnetic moment at field Ht decreases to zero. 
Thus this temperature Tb separates the regions of 
phase transitions of the first and of the second kinds 
with respect to the field. Right at T = Tb, the transition 
with respect to the field may possess the features of 
the phase transition of the "one-and-one-halfth kind" 
discussed in Sec. 5. The form of the temperature de
pendence Ht(T) for SmFe03, shown in Fig. 5, is still 
another argument in favor of this deduction, since at 
some temperature near 4.2°K the value of d2Ht/dT2 , in 
accordance with the prediction of the theory, undergoes 
a discontinuity (or at least changes abruptly). For de
termination of the specific value of Tb and, in particu
lar, of its difference from Tcomp• and also for quantita
tive analysis of the phenomenon (calculation of A and of 
the jump in d2Ht/dT2 at T = Tb), we are undertaking to 
improve appreciably the accuracy of the measurements. 

8. CONCLUSIONS 

Phenomenological calculation of the statics and 
dynamics of orthorhombic antiferromagnets, with inter
actions subject to the conditions IAI, D « E, with allow
ance for bilinear and biquadratic anisotropy in a form 
corresponding to the requirements of the crystal sym
metry, enables us to obtain convenient expressions for 
qualitative and quantative analysis of the properties of 
antiferromagnets of this class. For a complete quanti
tative description of the statics of these materials, two 
combinations (Aa and Ac) of the five anisotropy con
stants involved are sufficient; but description of the 
linear dynamic properties requires introduction of two 
additional combinations (Ax and Az)- The kind of mag
netic phase transition (with respect to the field) that 
occurs at a certain value of the magnetic field, parallel 
to the axis that is easy for the AF-vector ([a] or [c] 
outside the reorientation region), is determined by the 
sign of the parameter Aexp• which is made up of experi
mentally measured magnetic characteristics of the 
crystal (see (18)): for Aexp > 0, the transition is of the 
second kind; for Aexp < 0, it is of the first kind. In the 

case A > 0, the orientational dependence of the reson
ance fields near the isolated point of phase transition of 
the second kind in the (Hx, Hz) plane can be described by 
relatively simple expressions, which are convenient for 
predicting the results of dynamic measurements for 
most orthoferrites. 
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