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Attention is called to the fact that the solution of the problem of turbulent plasma heating requires that 
account be taken of the evolution of the particle distribution function in the matrix element of the nonlinear 
wave interaction. It is shown that with increasing temperature there is established an ion distribution that 
decreases in power-law fashion with increasing velocity v. It is found that stochastic ion heating cannot be 
described by a self-similar solution. 

THE purpose of the present study was to investigate a 
number of effects connected with the scattering of waves 
by plasma particles and leading to heating of the parti
cles. The results of the theory of weakly- turbulent 
plasma have already been used many times to estimate 
the influence of nonlinear effects on two- stream insta
bilityC1J and on the current instability in the plasma[z,aJ, 
to calculate the stationary spectra of the plasma turbu
lence[4J, etc. In these cases, however, allowance for the 
nonlinear effects reduces as a rule to the introduction of 
corresponding corrections to the oscillation increment. 
Yet the heating of the plasma particles by the nonlinear 
processes changes the increment itself, and this can 
play an important role in such problems as the calcula
tion of the stationary turbulence spectra or in the theory 
of turbulent plasma heating by a current. 

To describe the stochastic heating of the particles in 
many problems of practical interest, it suffices to cal
culate the moments (~)(t) and ((v2 - (v2 )) 2)(t) (see, 
e.g., [ s]), but in some cases a kinetic analysis is essen
tial. The point is that the time dependence of the mean
squared velocity gives a correct idea of the heating only 
in the case of Maxwellian (or near- Maxwellian) particle 
distribution functions, but entirely different solutions 
are also possible, as will be shown below. Plasma heat
ing may be accompanied by a significant change in the 
matrix elements of the nonlinear interaction, and this 
change cannot always be taken into account by means of 
the time dependence of the average plasma parameters. 

By way of an example, we consider the heating of 
ions when they scatter long-wave ion-acoustic noise 
(w = kcs)· As is well known, stochastic heating of parti
cles by nonlinear damping of oscillations is described 
by the equations 

a= i,e. (1) 

The diffusion coefficient Dij in velocity space can be 
calculated by perturbation theoryC 5 ' 6J. If the waves are 
potential, it is given by 

•- J , W 0W., ( ')-'( , ')-' m,.,' 
D;;-4n dkdk (m.n)' me. me •• k'k'' 

x j kk' + _ s:. j' k" k"ll(m") 
row' i(k",{l)") I j • 

where Wk is the spectral energy density of the noise, 
E(k, w) is the dielectric constant, 

k"=k-k', w"=w-w', W=ro-kv, ffi'=-oo'-k'v, 

(2) 

In our case of scattering os sound by ions, expression 
(2) can be transformed into 

w w ll (k - k') "" , 
v.<o= nfdkdk' • •· cos'kk' k"k" I (~-1} 

'' (Mn)' c, ' ' ww' 

1-coskl;-' -• J k"iJf/iJv(mw' } -• ,, + Q••· - dv --- 1 Q .. , 
c/• w" ww' ' 

k" iJffiJv (2') 
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We turn first to the model problem. We assume that 
the distributions of the particles and of the noise are 
isotropic. In this case Eq. (1) with diffusion coefficient 
(2') yields at 1 a at 

-=--D(v)v'-ot v' i)v iJv .• 
(3) 

D(v) = :rt' Jak k'c, ( w. )'{ lJV', v » (v')/c. 
nT, ~ (v')'/c.'; v « (v')/c.' 

1J,t~1. 
For arbitrary values of v, it is convenient to investi

gate the following approximate equation: 

!_!_ = d(t) !_(v' + v02 ) v' !..!_ 
i)t v' iJv av ' 

d(t) ~ (t)(W I nT,)', v,'- (v')' I c.'<5i;, (v'). 
(3') 

Equation (3) admits of a self- similar separation of the 
variables. In the asymptotic regime, only a power-law 
increase of the ion temperature is possible, from which 
it follows that d(t) = o/t. We note that under conditions 
that are typical for the turbulent plasma heating prob
lem we havep,sJ 

W fnT,- t-'h, (t) :::::: const, d(t) - t-• 

We seek the distribution function f(v) in the form 

f(v) = v,-'F(u), u =vI v •. 

The condition for the separation of the variables takes 
the form vUv~ = const, i.e., (v2 ) ~ c~; Ti ~ Te. We 
obtain the self- similar solution 

F = const I (u' + uo') '1', Uo = Vo/Vs, 

from which it foilows, however, that (v2 ) f'::' v~, which 
contradicts the condition v~ « (v2). Thus, the ion- heat
ing process must be non- self- similar. 

For v >> v0 , the solution (3') can be represented in 
the form 

(4) 

mo.'= 4nne«' I m., If we confine ourselves to solutions with a > 5 \the con-
s~=(!!.':__) ~ mo.'(_:_) J~(k~ k'i:l/ov -k'~ kiJ/ov) dition for the convergence of the integral jf(v)v dv), 

" e .• ~ k' m , w" i:lv w' av w f'. then we get from (3') 
IS=I,e 
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iJ(v'> I at ~ 10 d (t) <v'> 

and, for example at d(t) = 6/t, the solution takes the form 

f ( v) = const t'<'-';'"'-'!0>. 
vB-l/1'1 

(4') 

There exist, however, solutions with a~ 5, for which 
the quantity (v2 ) is determined by the upper limit of 
integration v ~ cs. Of course, both the nonlinear os
cillation increment and the expression for the nonlinear 
diffusion coefficient change in this case. The qualitative 
result, however, remains in force: the function f(v) de
creases with increasing v like a power function (in any 
case, slower than the exponential function), and the rms 
velocity can be determined by a small group of high
energy particles. In the opposite case, Eq. (3') would 
remain valid. 

We note that slowly-decreasing power-law solutions 
of the diffusion equation mean an appreciable flux of 
particles into the resonance region v > cs. This can 
cause the evolution of the wave spectrum in the asymp
totic regime to be determined in the self- consistent 
problem of stochastic heating only by the quasi-linear 
effects. 

Let us consider a problem closer to the real experi
mental conditions for turbulent plasma heating. Let the 
spectrum of the ion- acoustic wave be strongly aniso
tropic[ 7•3J. For simplicity we shall assume henceforth 
that the noise in k- space is distributed in a narrow cone 
with aperture angle "o (the symmetry axis is the direc
tion of the external electric field). We put 

W, = w,W(tl), f(v) = f~(v 11 )f,(v~'), v 11 !1E, v~_LE. (5) 

Since k' f':< kin the case of scattering (see (2)), i.e., 
k" 1 k, and the diffusion equation contains the quantities 
k"a/av, the scattering leads in first approximation in v/c 
only to an increase of the value of (v~). We retain in 
the matrix element (2') only the terms that are principal 
in some velocity interval: 

(~+ s; .• )~-1-[ (w+w')(k+k',v) 
ww' e (k",, w") 2c/!. {t)tl) 1 

_ 3 (k + k')' (v 11') -+- k'"/2 + 2k'rD,'k" ] (6) 
2 row' (ow'Qkk, ' 

where rDe is the Debye radius. The first term in the 
matrix element (6) is the principal one if any of the fol-

lowing three inequalities is satisfied: 

k" (v.L') 
v~>---

k C, ' 

k' (J) 

v.L > k,--, (v~'), 
Wpi 

> (vu') 
V11 --. (7) 

c. 

The velocity diffusion equation takes the following form 
in the first non-vanishing approximation in v/cs: 

iJf d(t) iJ 2 2 iJj 
-=----(v.L + Vo )v.L-, 
at v.L av~ {)v.L 

d(t)=n' J dk (~ )' k'c, [';,j'tr'W(tr)dtr j tr'W(tr')dtr' 
nTe o • o 

•• • - s tr'W ( & ) dtr s tr"W ( tr') dtr']. 
0 0 

(8) 

Solving (8), we arrive at the same results as were ob
tained earlier in the isotropic model. Namely, fz(v 1) is 
a power function as t - oo, which in turn can alter sig
nificantly the matrix element. The decrement of the 
nonlinear damping and the diffusion coefficient in veloc
ity space turn out to be larger than could be expected by 
starting from the generally employed expressions. 

In conclusion, the author thanks L. I. Rudakov for 
interest in the work and for valuable discussions. 
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