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We consider the spectral singularities in the absorption (gain) of a weak wave in the presence of a strong 
wave with the same transition and in the presence of collisions that alter the velocity of the atom and the 
magnetic quantum number. We show that the weak-field absorption line shape depends strongly on the type 
of transition, on the polarization ratio of the strong and weak waves, and also on the structure of the 
collision integral. A simple interpretation of the noted effects is presented. The model of strong collisions is 
used. 

1. INTRODUCTION 

NONLINEAR interference effects (NIE) constitute an 
important branch of nonlinear spectroscopy, and are 
the subject of many papersP- 121. Most of them consider 
simple schemes without allowance for level degeneracy. 
Variation of the field polarizations and the level de
generacy can lead, however, to significant changes in 
the results. This phenomenon was predicted theoret
ically by Dienesf 6l for the spontaneous approximation. 
Its experimental observation was reported in[ 11l. 

Interesting phenomena occur also in the presence of 
collisions that alter the state of the atom. Some as
pects of these phenomena were noted by Alekseevr 101 
for the particular case of the J = 1 - J = 0 transition, 
linear polarizations of the strong and weak fields, and 
collisions with change of the magnetic quantum number 
M. Collision effects without allowance for degeneracy 
are investigated in detail in (12 1. The purpose of the 
present paper is to analyze the case of arbitrary polar
izations of strong and weak fields with allowance taken 
of the Zeeman structure of the levels. We consider a 
model of strong collisions that cause both mixing over 
the Zeeman sublevels and diffusion in velocity space. 

2. BASIC EQUATIONS 

Let the atom be located in an external electromag
netic field 8 represented by a strong and a weak 
traveling wave that are resonant to the same transition 
mJm- nJn: 

8 = 'h{Eexp[-i(oot-k•ll +E.exp[-i(w.t-k,.r]} +c.c. (2.1) 

The subscript 11. labels the weak field, which does not 
perturb the levels; w = kc and wll = kllc are the fre
quencies of the corresponding waves. In the resonant 
approximation, the system of equations for the density 
matrix elements is 

(a ;at +vV + rSr,. = i(Vp+ -i>V+) + qm + sm, 
(a I at+ vV + rnlrn = i(V+(>- .i)+v) + ;;. + sn, 

(o I fJt + vV + r) p = i(Vpn- Pm V), 
V(mM, nM') = 8d(mM, nM') exp (iwmnt) I li. 

(2.2) 

Here V is the matrix of the interaction between the 
atom and the field; wmn is the transition frequency; 
p consists of those total-density matrix elements which 

are not diagonal with respect to the levels and take the 
form p(mM, nM'); pj(j = m, n) consists of the matrix 
elements p( jM, nM') which are diagonal with respect 
to the levels; rj are the natural widths of the levels 
j = m, n; r is the collision-broadened natural line 
w_idth; ~ characterizes the excitation rate of the states 
{J, M, v~: 

Q;W(v)E exp{- v'lv'} (2.3) 
q; = 21; + f ' W(v) = n.''•v' ' 

where E is a unit matrix. We choose the collision inte
grals Sm and Sn in the form (the strong-collision 
model) 

S -- ' +- 'W( ) ' _" E , 
1 - V;p; V; v (p;). + vi --. SpM p; 

21;+ 1 

+ -"'w() is . , 
V; v 21; + 1 SpM(p;)., 

where ( ... >v den~tes averaging over the velocities. 
The first term in Sj describes the usual relaxation due 
to the departure from the state {j, M, v }; Vj is the 
frequency of collisions with quenching and with change 
of the velocity and of the magnetic quantum number M. 
The remaining terms describe the arrival at the state 
{j, M, v} for three types of collision, each of which is 
characterized by its own frequency. The second term 
in (2.4) describes strong collisions with change of 
velocity, but without change of the internal state of the 
atom (we choose equal arrival frequencies for the 
diagonal and off-diagonal elements p(jM, jM) and 
p(jM, jM')); the third term describes strong collisions 
with reorientation of the atom, but without a change of 
velocity. Finally, the fourth term describes the last 
type of collision, with simultaneous change of both the 
velocity and the magnetic quantum number, and with 
establishment of an equilibrium distribution with re
spect to v and M. In the last two types of collision it 
is assumed that the phase relations are fully violated 
for the elements of the type p (jM, jM') when Mit! M', 
a fact ensured by the unit matrices E. 

When the strong and weak fields act simultaneously 
on one transition, polarization is induced in the medium 
at the strong-field frequency w, the weak-field fre
quency wJ.l, and the combination frequency 2w - ww 
We confine ourselves henceforth to the first-order 
nonlinear corrections. The polarization at the com-
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bination frequency can then be neglected, and we can 
seek the solution of the system (2.2) in the following 
convenient form: 

f:.= ~,exp {-i(Qt-kr)} + y.exp {-i(Q.t-k.r)}, (2.5) 
p = po exp {-i(Qt- kr)} + p.exp {-i(Q.t- k.r) }, 

P; = p~' + [p,;"exp {-i(et- qr)} +C.c,], 
Q = (I) - Ct>mn, :Q .. = {iJ~- <Omn, e = {t)~- w, q = k"- k, 

where p0 , PJJ.' iJj, and ptl do not depend on the coordi
nates and the time. The Jmatrices p 0 and pj are due to 
the interaction with the strong wave only and satisfy the 
relations 

rmrm"= t (v.fi.+- i>.v.+) + llm + sm•, 
r nPn' = i(v.+f).- r~.+f,).+ lln + sn•. (2.6) 

(I'- iQ') Po= I (VoPn°- Pm 0Vo), Q' = Q- kv, 

while the equations for p J1. and iJ} take the form 

(fm- ie')p\';. = i(V~'p0+- fi)!o+) + SJ:;, 

(r n- te') P~ = t(v:ii~'- f>.v~'+) + sn~. 
(r- in/) fi~' = t(V~'r.•- il~v~')+ t(Voiln~'- r\:. V0); 

Q/ = Q"- k.v, e' = e- qv. 

(2.7) 

The collision integrals sj and sr are obtained from 

(2.4) by_making the substitutions Pj- pj and Pj - p f, 
respectively. 

We analyze the solution of Eqs. (2.6) and (2.7) in the 
weak-saturation approximation, using the usual condi
tion r « kv for gas lasers. In addition, we confine 
ourselves to waves that propagate either in parallel 
(kll tt k) orantiparallel (kll tl k) directions. 

3. OPERATION AT THE WEAK-FIELD FREQUENCY 

We consider first the solution of Eqs. (2.6) and (2.7) 
for waves traveling in the same direction. The matrix 
PJJ. is given by 

A -iNW(v){A 1 [AA A( "t1m ) 
P.= f-iQ/ V"-f+tQ' v.v,+V, ,;,.+1-ie,;,,. 

[ A A A ( "tzm' 1 ) xv.v,+v,-r,.'+ 1 . , 1 . 
- ~E'rm - lE't'tm 

--. __ \"1 -- v.spM v,+v, 1 [ ,;2/' (A A A 
r + tQ' ~ 21; + 1 

j 

1 1 A A A ) ] 2l'; { ( Q ) '} + . . V,SpM v,+v. --_-exp - -k_ 
1 - ie"t/' 1 - !B"tt; kv v 

\"1 1 [ A A A 1 ( "t·- "t,· 
X ~Z/ + 1 ,;,;'"V• SpM V, +v, + 1 . - 1-' -. '--i j - lETu - lE'ti 

,;,/ "t,r ) v s v +v ]} 
----, - II 0 PM 0 ).1 , 

1 - ie"t; 1 - ie"t; 
(3 .1) 

where 
N = ____,._Q..::._,. __ 

r .. + v,.- 'iim 
Q. '+ "+-Ill . . ---''------, 'ii; = 'ii; 'ii; v; , J = m, n, 

r.+v.-v. 

-r:;'- 1 "t/'= ,,<3.2) 
' - f 1+ v1 - v/ f 1+ v1 - v; 

1 
'tt;=---. 

f;+v; 

Terms that yield a contribution ~r/kv after averaging 
over the velocities are not taken into account in (3 .1 ). 
We begin the analysis of (3 .1) with an explanation of the 
physical meaning of the times (3.2). Each of them is 
connected with a definite state of the atom. The time 
T 1j is the average lifetime of the state {j, M, v}, i.e., 
the lifetime prior to collision of any type; Tj is the 
lifetime of the state {j, M} (arbitrary veloe1ty ); Tj is 

the lifetime of the state {j, v} (arbitrary orientation of 
the atom); Tj is the lifetime of the state {j} (both the 
velocity and the orientation are arbitrary); T~j is the 
lifetime of the state {j, M, vp}, i.e., a state in which j 
and M are fixed and the velocity v is represented with 
a Maxwellian weight; T~j is the lifetime of the state 
{j, Mp, v}, i.e., a state in which j and v are fixed, and 
all the values of Mare equally probable; T;~ is the 
lifetime of the state {j, Mp, vp}, in which tfie atom is 
at the level j and has an equilibrium distribution with 
respect to M and v. 

The expression for PJ.L contains, as usual, a linear 
term and an increment due to the presence of the 
strong field. This increment breaks up into several 
terms that differ in their nature, and its structure re
flects fully the specific features of the collision inte
gral. In accordance with our model it is convenient to 
speak of four channels of interaction between the atom 
and the field (the terms of (3.1) corresponding to indi
vidual channels are grouped in square brackets). The 
interaction takes place in the state {j, M, v} in the 
first channel, in the state {j, M, vp} in the second, 
{j, Mp, v} in the third and {j, Mp, vp} in the fourth. It 
is quite natural that the terms representing each of the 
channels are proportional to the lifetimes in the states 
corresponding to these channels (in the last channel 
this holds true when ~ = 0). The total lifetime Tj of 
the atom at the level j breaks up effectively into four 
non-overlapping intervals, in each of which the inter
action with the field is via one of the four channels. 

We note also the following detail. An increase of the 
frequencies vj' or 'vr leads to a decrease of the time 

T~j, and an increase Of vj Or v"' leads to a decrease of 
T ;j. To the contrary, an increase of vj or 1/j' leads to 
an increase of the time T. This is natural, since colli
sions in which M is changed quench the state 
{j, M, vp}, and collisions with change of v quench the 
state { j, Mp, v}. On the other hand, there is no elastic 
collision capable of taking the atom out of the state 
{j, Mp, vp}, i.e., the time alotted to the fourth channel 
can perhaps only increase with increasing frequency of 
such collisions, because two successive collisions (one 
with a change of M only, and the other with a change of 
v only) also lead to the state {j, Mp, vp}. 

We consider now the absorption of a weak field. We 
direct the quantization axis along the strong-field wave 
vector, and resolve the electric vectors of the fields 
into circular components: 
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The interaction matrix elements are then given by 

V'(mM, nM') = - 1- '\"1 E.d"(mM.nM'), 
2/l .i...J 

a=±t 

V"(mM,nM')=-1- '\"1 E.•d"(mM,nM'), 
2/l .i...J 

a=±t 

(3 .4) 

where d 0 (mM, nM') are the circular components of 
the dipole momentr 13 l, We write out the expression for 
the work of the weak field: 

Q 2 { 

9'.roexp [- ( k;) ] Re L I G." I'-. 
1 [ ( 't"1m ) ( 't"in ) ] ---- Cm 't1n+ +Cn 't"1m+ , 

2f- ie 1- ie't",m 1- IE't"in 

l'n [ ( Q ) '] [ ( , -r,m' 1 ) ·--exp - - C ,;, +--,---='-----,-----
kV kV m n 1- ie'tm 1 1- iE'ttm 

( -r,n' 1 ) ] +C. 't"2m' + 1 , r 1 , -
- l-B'tn - l-E'ttn 

-~'\"1___!_d:__[c,+~C, 1 1 ]-(35) 
2f- ie .i...J 2/; + 1 1 - ie-r/' 1 - ie-r,, • 

j 

2 l'n [ ( Q )'] I: 1 [ ,, ---exp - - -- C,-r2i + 
3 kv kv 21,+ 1 

j 

' c ( 'tj-'tt.f 't2j + 2 • - • ' 1 - IE't"; 1 - 18'1"; 

,;,{' ) 1 1} 
1 - ie-r/' 1 - ie'ttJ ' 

Crn =A, I: (I G.G."I' + A,j G.G-."1 2 + A,G.G_• 'G_.•G."'), . 

action, the widths of the narrowest "dips" are deter
mined by the lifetimes of the states { j, M}, { j, v}, and 
{ j}, respectively, whereas the amplitudes of these 
"dips" are proportional to the shorter times T ;j, T ~j, 
and T 111

• Only in the first channel does a single time 
T 1j characterize both the amplitude and the width of 
the "dip"; consequently, each relaxation process gives 
a spectral structure with a width determined by the 
characteristic time for the given process. The "dip" 
produced in the fourth channel may turn out to be much 
narrower than the others, since its width includes only 
the natural level width and the frequency of the quench
ing collisions, which is usually much lower than the 
frequency of the elastic collisions. 

Thus, the presence of diffusion in velocity space 
and of collisions with change of M greatly enriches 
the spectral composition and leads to more compli
cated interference effects. The appearance of collision 
effects is connected with the ratio of the amplitudes of 
the corresponding terms. Thus, collisions in which 
only M changes (third channel) can manifest them
selves if 

Tz," I (21;+ 1) ~ 1 I (f;+ v;). (3.6) 

At not too large Jj this means that the frequency of 
such collisions should be of the order of the width of 
the level j. The second and fourth channels make a 
noticeable contribution under a stronger condition, 
namely if, respectively, 

T,{jkv ~ 1/f(f;+ V;), -r:;i /kv(2J;+ 1) ~ 1/f(f;+ V;). (3,7) 

Owing to the large Doppler width, the conditions (3.7) 
can be satisfied only when the collision frequencies 

c.• = E.•dm./2h; greatly exceed the level widths. In the case of dragging 
of the resonant radiation, such a situation is perfectly 

C,= I:<IG.G.•I'+IG-·I'IG.•I'), C,=I: (IG.G."I'+G.G_.•o_.•G.•• feasible (cf., e.g./ 141). As to elastic collisions, rela-
• tions (3. 7) are feasible under realistic constants 

Here dmn is the reduced matrix element of the dipole ( p ~ 1 Torr) either for metastable states of atoms or 
moment. The coefficients Ao, A1, and A2 depend on for molecular systems. 
the type of transition; their values are: 

1~1 1-1~1 1~J-I 

2 21'+21 +I 2 612 -1 2 61'-1 
Ao: 5 1(1+1)(21+1) 5 J(2J 1)(21+ I) 5 1(21 1)(21 +I) 

A,: 
(21- I) (21 + 3) (1- I) (21- 3) (1 +I) (21 +3) 
2 (21' + 21 +I) 2(612 -1) 2 (61' I) 

A,: 
(21-1)(21+3) (J + 1)(21 + 3) (1-1)(21-3) 
2(21'+21 +I) 2(612 -1) 2(61'-1) 

C 1 and C2 differ from Cm and Cn, obviously, because 
of the depolarizing collisions. 

We point out the general regularities characterizing 
all the channels of the interaction with the field. These 
include the presence of two different terms, a "popula
tion" term due to the change of the level populations 
under the influence of the strong field, and an inter
ference term due to the interference of the atomic 
states. The "population" term gives either a rela
tively broad contour of width 2r), or a Doppler contour 
resulting from homogeneous saturation. The interfer
ence terms take the form of narrower "dips" against 
the background of the Doppler contour. Each channel 
introduces its own interference "dip". It is typical 
that the widths of these "dips" do not depend on the 
times to which their amplitudes are proportional. Thus, 
for the second, third, and fourth channels of the inter-

4. MODEL OF THREE RELAXATION CONSTANTS 

This model presupposes the absence of diffusion in 
velocity state and mixing over the sublevels, and the 
role of the collisions reduces to quenching and to phase 
randomization. It is therefore necessary to neglect in 
the collision integral (2.4) the arrival over all the in
teraction channels. Then 

.9' { ( Q. )'}['\"1 IG I' Cm rm+ vm 
"<Z>exp - kv ~ •" - 2f-fm-Vm (fm+vm)'+e' 

c. r. + v. 2r 
2f- r.- v. (r. + v.)' + e' -(2r- I'm- '11m- r.- v.) (2r)' + e' 

. ( Cm + C. )] 
(f.+v.)(2f-I'm-vm) (fm+vm)(2r-r.-v.) · 

(4.1) 
We see from (4.1) that the weak-field absorption line 
contour contains, against the Doppler background, 
three "dips" with center at the frequency E = Op.- 0 
= 0 and with different widths ( 2r, rm + vm, rn + vn) 
and amplitudes. It is easily seen that upon satisfaction 
of the condition 

2f- r m- '11m - r n- 'lin= 0, (4.2) 
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which takes place, in particular, for spontaneous ap
proach ( 2r = rm + rn, lim =lin = 0), the "dip" with 
width 2r drops out. If the Weisskopf broadening mecha
nism becomes appreciable, then 2r > rm +lim+ rn 
+ vn, and the "dip" with width 2r being the broadest, 
can be separated against the background of the remain
ing "dips" rm + vm and rn + vn· This peculiarity is 
also characteristic of the simple two-level model 
(without allowance for degeneracy). 

One of the results of the model of two nondegenerate 
states is the satisfaction of the condition Cm = Cn, 
which leads in practice to equality of the amplitudes of 
the "dips" rm +lim and rn +lin· When degeneracy 
is taken into account, the ratio Cm/Cn depends 
strongly on the state of the polarizations of the fields. 
If, for example, both fields are equally polarized, then 

Cm = Cn = Ao E [I G. I' +{A,+ A,) IG-ai']IG."I'. (4.3) 

To the contrary, the maximum difference between Cm 
and Cn occurs for orthogonal circular polarizations of 
the fields (see the table). The ratio Cm/Cn can differ 
greatly here from unity. This makes amplitude dis
crimination of the "dips" rm + vm and rn + vn pos
sible, a rather important fact from the experimental 
point of view. We note also that an increase of the 
total angular momentum J leads to equalization of 
Cm and Cn for all polarization states, so that in the 
limiting case J ~ 1 we obtain in this sense the equi va
lent of the problem of two nondegenerate states. We 
point out, however, that at J $ 10 (molecular systems) 
the ratio Cm/Cn is still noticeable. 

It is convenient to interpret the polarization effects 
from the point of view of the concept of the splitting of 
the energy levels by a strong field( 5l. We assume for 
concreteness that the waves have orthogonal circular 
polarizations and act on the transition m, Jm = 1 - n, 
Jn = 2. If the quantization axis is chosen to be parallel 
to the wave vectors, the transition scheme takes the 
form shown in Fig. 1a. The straight lines correspond 
to the strong field and the wavy lines to the weak one. 
The perturbing action of the strong field is manifest by 
splitting, in this case, of the Zeeman sublevels with 
formation of energy quasilevels (Fig. 1b)r5 J. These 
quasilevels correspond to the characteristic roots 

Utm = -y,.- i[Em I fz+ Q- kv), azm = -ym -iEm I fi, 
(4.4) 

a,,= -y.- iEnl li, a,.= -ym- i[E.I 1i- Q + kv]. 

in the approximation employed, one of the components 

~@, ::·~ \\. 
M=-t -! U ! t 

FIG. I. a) Scheme of transitions between the Zeeman sublevels m, 
1m= I and n, ln = 2. The strong and weak fields are waves with ortho
gonal circular polarizations. b) The same scheme when the field is re
placed by the result of its action-the splitting of the Zeeman sublevels. 
In both cases the quantization axis is directed along the strong-field 
wave vector. 

is assumed to be unshifted (its shift is less than hG in 
energy units). In terms of the density matrix, Ym 
= (rm + vm)/2 and Yn = (rn + vn)/2. The spectral 
characteristics of the absorption (emission) of the 
weak field are thus determined completely with the aid 
of the level- splitting scheme (Fig. 1b ). 

When the frequency of the weak field is scanned, the 
following situation arises. There are two resonances 
at the transitions M = 0 - 1 and 1 - 2: 

[ (Ym + y,.)' + (Q,.- k,.v)']-•, [ (2y.)' + (e- qv)']-•. (4.5) 

The first spectral line is inhomogeneously broadened 
by the Doppler effect and gives a Doppler contour. The 
second line, in the case of waves having the same 
direction ( q = 0 ), does not experience broadening upon 
averaging over the velocities, and enters the final re
sult in the form of an individual spectral structure of 
width equal to the level relaxation constant n. We see 
that these transitions do not give the "dip" rm + vm. 
On the other hand, for the transition M = -1 - 0, 
scanning of nJ.L yields, generally speaking, four reso
nances: 

[ {ym + Yn)' + (Q_')']-•, [ {2y,.)' + {e')']-•, [ {2ym) 2 + {e')']-•, 

[ (ym + Yn)' + (Q'- e')']-', Q' = 'Q- kv, (4.6) 
Q_' = ,Q.- k.v, e' = e- qv. 

From the definite symmetry of the scheme we can con
clude that the result for the transition between the 
given sublevels of the line with widths 2ym and 2yn 
will enter with equal weights. The last resonance oc
curs at the combination frequency ( 2n - nJ.L- 2k · v 
+ kJ.L · v = 0 ). This line drops out in the approximation 
under consideration. 

Thus, in the transition M = -1 - 0, both "dips," 
rn + vn and rm + vm, appear in the weak-field absorp-

Values of Cm/Cn for particular cases of the polarization 
states of the strong and weak wave 

Pol~ri~ I 
zatton 

I I 

I+A• 
II I+Az 

I+A,-A, 
Ill I A,+Az 

IV 
A, 
A, 

I 

1412 -51 +I 
141'+51+1 

(I -1)(61 +I) 
(I+ 1)(61 I) 

(I- I) (2J- 3) 
(J+ 1)(21+3) 

, 0 t 
oo to 

1 .l1 

I I I 
I 5 47 

2 8 67 
I 13 

0 4 33 

0 0 
I 

2T 

,_ 00 

Ill lY 

I 

76 
101 

24 
49 
3 
28 

I I 

56 
7f 
19 
34 
I 

6 

1607 
1717 

115 
126 

19 
30 
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~ll!·~.lll~. 
11•-z -! II f Z M=·t -1 0 f Z 

FIG. 2. Scheme of transitions between the sublevels of the levels m, 
1m = I and n, 1n = 2 for waves with like polarizations: a) linear polari
zations (the quantization axis is along the electric vectors) b) circular 
polarization (the quantization axis is along the wave vectors). 

tion line, and their amplitudes are equal. Since each 
transition makes an additive contribution to the work 
of the weak field, it is seen in accordance with the 
foregoing that in the analyzed scheme the amplitude of 
the "dip" rn + vn should exceed that of rm + ~'m· 
The concrete amplitude ratio depends on the ratio of 
the oscillator strengths in the transitions between the 
Zeeman sublevels, i.e., on J, LI.J, M, and LI.M. In the 
scheme of Fig. 1 we have Cm/Cn = 1/21, i.e., the 
"dip" rn- vn prevails so much that the contribution 
of the "dip" rm + vm to the line contour can be 
neglected. 

In the general case of arbitrary total angular mo
menta J, in accordance with our interpretation, the 
prevailing amplitude is that of the "dip" having the 
width of the level whose J is larger. For transitions 
of the J - J type, consequently, we have Cm = Cn 
regardless of the field polarization. Another natural 
fact within the framework of the present analysis is 
that in the transitions J = 0 - J = 1 and J = Y2 - J 
=% there is in general no "dip" with the width of the 
level having J = 0 or Y2. Indeed, in such a situation, 
only one Zeeman level is perturbed in any one transi
tion on which the weak field acts. If the field polariza
tions are identical (say, the same circular polarization 
or polarization in one plane), then, as shown in Fig. 2, 
both fields act on the same transitions between the 
Zeeman sublevels. Reasoning as before, we arrive at 
the natural result that Cm = Cn. 

It is clear from the foregoing that there exists an 
analogy with the nondegenerate two-level and three
level systems. Although we are considering an essen
tially "many-level" system, it can be broken up into 
an aggregate of two- and three-level subsystems. We 
turn again to Fig. 1a. The subsystems connected with 
the Zeeman sublevels M = 0 and 1 of the level m have 
a clearly pronounced three-level character (the pres
ence of a weak field in the transition M = -1 - 0 is 
immaterial in this case, since it does not perturb the 
atomic states). To the contrary, the subsystem con
nected with the sublevel M = -1 of the level m, is in 
fact equivalent to a two-level system. Indeed, the strong 
field splits the lower Zeeman levels in the transitions 
M = -1 - -2 and 1 - 0 in the same fashion. The 
wavy arrow from the transition M = -1 - 0 can there
fore formally be transferred to the transition 
M = -2. As a result, the entire system breaks up into 
one two-level and two three-level sybsystems which 
are not connected with one another. 

We can see from (2.7) that when two fields act on 
one transition, the nonlinear interference effects re
duce to beats of the populations at the difference fre-

quency, as a result of which "dips" with widths equal 
to the level widths appear in the weak-field spectrum. 
On the other hand in three-level systems, the nonlinear 
interference effects are beats of the polarization in
duced in the forbidden transition, with frequency 
o - o equal to the difference between the deviations 
ffom the frequency of their transition for the weak and 
strong fields. The result is a single "dip" with the 
width of the forbidden-transition line (for waves having 
the same direction and for I kJ.L - k I < I k I). For our 
three-level subsystems we have OJ.L- 0 = ""'J.L- c.v = .,;, 
and the width of the forbidden transition is rn + vn. 
Thus the three-level subsystems give only the "dip" 
rn +'vn, while the two-level ones yield both "dips," 
and we arrive at the earlier conclusion. In the case of 
like polarizations we obtain only two-level subsystems, 
so that the result here is obvious. 

As is well known, nonlinear interference effects in 
opposing strong- and weak-field waves are suppressed 
by Doppler broadening. The work of the weak field, as 
a function of 0 J.L• has only one "dip" at the frequency 
oJ.L = -0, with a width 2r: 

Q '} 9'.~exp{-hf) [~IGe"l' 
e 

( Cm c. ) 2r ] 
- r.+7.+ rm+vm (2r)'+(Q.+Q)' . 

(4.7) 

It is most remarkable that the times 1/ ( rm + vm) and 
1/(rn + vn) combine in (4.7) with unequal weights, 
which vary with the field polarization. This can be used 
successfully to obtain information on the level relaxa
tion constants and on the character of their variation 
with pressure. Indeed, comparative experiments per
formed for identical and different (say, opposing circu
lar) field polarizations to determine the "dip" ampli
tude make it possible to determine the ratio ( rm 
+ vm)/ ( rn + vn). Previously employed procedures to 
determine the level widths reduced to investigations of 
the spectral line shapes. This always entails greater 
difficulties and larger errors than amplitude measure
ments. The observed fact therefore deserves close 
attention from the experimental point of view. 

5. POLARIZATION PHENOMENA AND COLLISIONS 

Let us examine the influence of a change in the 
polarization states of the strong and weak fields on the 
weak-field absorption line shape, including in our con
sideration collisions that change M and v. In the 
model of the nondegenerate states[ 12l the amplitudes of 
the "population" and interference terms are equal. In 
our case, as seen from (3.5), this equality does not 
hold in the general case ( C1 ;" C2, Cm ;" Cn). The 
amplitude ratio varies when the field polarizations are 
changed. It turns out that each channel (each collision 
model) reacts differently to the change of polarization. 
If both fields are equally polarized, then C1 = C2, Cm 
= Cn, and the amplitudes of the interference terms, 
just as in the model of nondegenerate states, are equal 
to the "population" amplitudes. In the case of opposing 
circular or perpendicular linear polarizations we have 

{ ( Q. ) '} { I G I' [ , ( + -r,m ) 9'.~exp - --:;- IG"I'Re 1--.--. Cm 'ttn 1 . 
kv 2f - 18 - 18'ttm 
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+Cn'('ttm+ 'ttn )]-IGI'}'~ exp{-( ~ )'} · 
1- IE'ttn kv kv 

[c '( '+ 'tzm' 1 )+C '( '+ ,;,.' 1 )] X m t'2n , 1 • n 't'2m . 1 • 

1 - IE'tm 1 - IEttm 1 - IE'tn 1 - IE'ttn 

where 

1) Cm' = A,(1 +A,-A,), C.' =A,(1-A, +A,); 
2) Cm' = A,A,, C.'= A,A,. 

The values 1) and 2) have been written out for linear
perpendicular and opposing-circular polarizations, re
spectively. Formula (5.1) describes the following in
teresting fact: the coefficient c2 turns out to equal 
zero, so that the interference terms drop out in the 
last two channels. The interference term remains in 
the second channel, as before. To interpret this effect, 
it is useful to write out the system {2.7) in expanded 
form. For concreteness, we take the case of linear 
perpendicular polarizations {the quantization axis is 
chosen along the strong-field electric vector, q = 0): 

(f m- ie) p"(mM, mM') = -i [r•(mM, nM')G'c'(M'M') 

- p'(mM', nM') 1: G.•c•(MM')] + S•(mM, mM'), 

(f.-ie)p"(nM,nM')= i[ p"(mM,nM')G'c'(MM) 

-p'(mM,nM) _EG."c"(MM') ]+S•(nM,nM'), (5.2) . 
(f- iQ.')p•(mM, nM') = iG[p•(nM, nM')c'(MM)-

- p•(mM, mM')c'(M'M') l+ tE G.•c•(MM') · 

X [p'(nM',nM')-p'(mM,mM')]; 

c"(MM') = d"(mM, nM') / d,,., a= -1, 0, 1; Go"= 0. 

The interference terms are obviously given by the first 
term of the last equation of (5.2). The elements 
p ll(jM, jM') are excited only when the elements 
p 0 ( jM, jM') are present. Since GJt = 0, only the ele
ments that are not diagonal in M, pJ.l.(jM, jM' ), are ex
cited, while the elements of the type pll(jM, jM) re
main equal to zero. The structure of the collision 
integral (2.4) is therefore of importance. Namely, the 
role of collisions with change of M reduces to an in
crease of the relaxation constant of the elements 
pll(jM, jM') by the frequency of these collisions, and 
there is no arrival term. The interference term there
fore contains no "dips" corresponding to the third and 
fourth channels. 

The result is the consequence of the collision model 
chosen by us, wherein the collisions with change of M 
lead to quenching of the density-matrix elements that 
are not diagonal in M. Unlike the diagonal part of the 
integral (2.4), collisions with change of velocity only 
conserve in our model the phase relations in the jM 
- jM' transition, and consequently the corresponding 
interference "dip" is retained. If we choose opposing 
circular polarizations, then we can likewise show that 
only the nondiagonal elements pJ.l.(jM, jM') are excited, 
and the conclusions remain the same. For fields with 
like polarization, it can be seen, with Fig. 2 as an ex
ample, that the problem breaks up effectively into an 

aggregate of two-level problems, i.e., the elements 
pJ.L(jM, jM') which are not diagonal in M are not ex
cited, and the collision integral (2.4) is fully effective. 

In addition to the discussed effects, variation of the 
field polarizations changes the amplitude of the total 
"dip" on the Doppler contour, which is proportional to 

Ill 

+ (C, + C,) 2~ ~ 1: 2;•: 1 + :; exp [- ( k~ ) '] ~ c. 1: 2/:~ 1 · 
j J j 

(5.3) 
It is easily noted that in the model of three relaxation 
constant the ratio of the "dip" amplitudes measured at 
different polarization states is a specified number that 
depends neither on the atomic constants rj and r nor 
on the pressure. Elastic collisions of any type {the 
concrete model obviously does not matter here) change 
this ratio, and from its deviation from the calculated 
model one can assess the validity of the model of three 
relaxation constants . 

No less important information can be extracted from 
measurements of the amplitude of the total nonlinear 
increment to (3.5), which is proportional to 

If there are no depolarizing collisions {i.e., collisions 
with change of M), then the amplitude of the nonlinear 
increment should vary in accordance with a strictly 
specified law with changing field polarization. Violation 
of this law should consequently be evidence of the pres
ence of depolarizing collisions. From this point of 
view, the model to which these collisions corresponds 
is of no importance whatever. 

When opposing waves are considered, we have the 
following expression for the work of the weak field: 

£P.~exp{- ( ~~ )'}[ 1: !G.• I' 

2r (c C 2 ~ tz/' C ) 
(2r)' + (Q. + Q)' m'ttn + n'ttn + g L., 21; + 1 I (5.5) 

J 

The interference terms drop out in all channels. The 
remaining "population" terms produce a "dip" of 
width 2r on the Doppler contour, and in the second and 
fourth channels there is only a broad Doppler "peda
stal." The depolarizing collisions without change of 
the velocity influence the "dip" amplitude and can 
therefore introduce a certain error when (rm 
+ vm)/(rn + vn) is determined by the method described 
above. 

6. CONCLUSION 

Let us summarize our results briefly. When the 
level degeneracy is taken into account, variation of the 
field polarizations results in an appreciable change in 
the weak-field absorption line shape. By using this 
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fact, we can obtain more accurate information on the 
atomic constants and on the character of the collisions. 
Besides the analysis of the line shape, information can 
be gained also from amplitude measurements, which 
can also offer a check on the validity of certain models. 
The fact that polarization effects are very sensitive to 
the structure of the collision integral makes it possible 
to determine experimentally the role of collisions that 
disturb the phase relations in the transitions jm 
- jM'. Finally, the proposed analysis indicates the 
applicability limits of models in which the degeneracy 
of the levels is not taken into account. The results ob
tained with such models are applicable to the following 
particular cases: for like field polarization: and in the 
model of three relaxation constants for the transitions 
J - J or for sufficiently large J (the polarizations can 
be arbitrary in both cases). In the study of elastic col
lisions, the polarization effects come into play regard
less of the type of transition and of the value of J, so 
that in this case it may be essential to take the level 
degeneracy into account. 
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