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The correction to the wave function in the problem of perturbation of bound states of a Dirac electron in a 
Coulomb field by an arbitrary central-symmetry potential is represented as an expansion in the complete set 
of eigenfunctions of a Sturm-Liouville operator which possesses only a discrete spectrum. This approach 
circumvents summation over continuous energy states with both negative or positive energies. Hence in a 
number of cases infinite sums of perturbation theory can be represented in a closed form. Finite expressions 
for first-order corrections to the electron Dirac wave function in the field of a screened Coulomb potential 
are obtained explicitly. The second and third order energies are expressed in terms of one of the components 
of the first order wave function. 

1. Perturbation theory in the Rayleigh-Schrodinger 
formulation is finding ever increasing use in the calcu­
lation of atomic structures, since it makes it possible 
in principle to go outside the framework of the single­
electron approximationPl, Inasmuch as the wave equa­
tion can be solved exactly in the case of a Coulomb 
field, hydrogen-like functions are used most frequently 
as the single-electron basis functions for the zeroth 
approximation in such calculations. In the nonrelati v­
istic theory, corrections of any order to the wave func­
tions and energies of the states of the discrete spec­
trum can be determined on this basis in final form 
with the aid of a closed expression for the generalized 
Coulomb Green's function [21. With increasing nuclear 
charge, allowance for the relativistic effects become 
essential, but in view of the difficulty of the problem a 
sufficiently complete relativistic calculation can be 
carried through to conclusion only in the simplest 
casesPl. For systems with many electrons, even the 
nonrelati vis tic calculation entails considerable diffi­
culties, pointing to the need for developing approximate 
methods. 

Let us consider the motion of a Dirac particle in a 
centrally-symmetrical field of the atomic remainder. 
By separating in suitable fashion the Coulomb part of 
the effective potential, we regard the remaining part as 
a perturbation. Although the exact solution of the 
Dirac equation for the Coulomb field is well known[ 4 l, 
no closed expression in general form has been found 
as yet for the relativistic Coulomb Green's function; 
it is therefore customary to represent these functions 
by various infinite expansionsr 5l. We show in the pres­
ent paper that in the relativistic theory the sums over 
the intermediate states, can be reduced in the case of 
a Coulomb field to final expressions without using the 
Green's function formalism, by reducing the problem 
to the equivalent problem of the perturbation of a 
Sturm-Liouville type of operator having only a discrete 
spectrum of eigenvalues. Such an approach avoids 
summation over continuous-spectrum states with both 
positive and negative energy. A concrete analysis is 
carried out for the class of analytic potentials that are 
most frequently encountered in atomic theory. 

2. We seek the wave function (in the standard repre­
sentation) in the form 

(1) 

where l and j are the values of the orbital and total 
angular momenta, m is the projection of the total angu­
lar momentum, l' = 2j - l, iljlm is a spherical 
spinorr41, f1(r) = rf(r), f2(r) = -rg(r) are radial func­
tions multiplied by r and defined by the equations 

dj, X 1 
a;:+-;:-f, = Tc[-mc'-E + U(r)]j,, 

(2) 
df, Y. 1 ' ---f,=-[-mc +E-U(r)]f., 
dr r fzc 

where E is the total energy of the electron, U( r) is 
the potential-energy operator, and K = (l - j) ( 4j - 2l 
+1)+Y2· 

Let 

U(r)=-Ze'lr+V(r), E=Eo+E,+E•+···• (3) 

where V( r) is a perturbation, Eo is the energy of the 
electron in the Coulomb field, and Er, E2, ... , are the 
corrections to the energy. We assume further, follow­
ing FockrsJ, Eo = mc 2 cos E: and introduce as a new in­
dependent variable the quantity x = 2yr, where y 
= me sinE:/:Ii. We seek the functions f1 and f2 in the 
form 

F(x)- G(x) 

2 sin(e/2) ' 
f,(x) = F(x)+ G(x) 

2 cos(e/2) 

After simple transformations we obtain 

(4) 

---G= --:-+-ctge+wctge F--.- --+w G, 5a dF x ( 1 aZ ) 1 ( aZ ) ( ) 
dx X 2 X Sllle X 

ddG - _!:__ F = (~ - aZ ctg e - w ctg e) G + -.-1- ( aZ + w) F, 
X X 2 X SW e X (5b) 

655 

where a is the fine-structure constant and 

w(x)= E-E0 -V(x) 
2mc' sine 

(6) 

is a term connected with the presence of the perturba­
tion. Eliminating from (5) one of the functions, F or 
G, we arrive at second-order equations. Thus, for the 
function F we obtain 

d'F 1 ft- x'w' dF -+ dx' x ft +xw dx 
(7) 

1 ( aZ 1 ) ft - x'w' 
=- -ctge--+wctge F 

x x 2 ft +xw 
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k' aZ 1 aZ 2 

+ {-. --(x+ i)ctge+-+(w'- w)ctge- (-+ w}] F; 
x 2 x 2 4 x 

w' = dw I dx, f.t = aZ - x sin e, k = I x 1. 

A similar equation can be obtained for the function G. 
Equation (7} will henceforth be regarded as the starting 
point for the subsequent calculation by perturbation 
theory, and the terms containing the function w(x) will 
be regarded as small. The relativistic effects are no­
where regarded as smalL 

Expanding the denominators in (7) in powers of the 
correction term w up to the third term inclusive and 
grouping terms of like order, we arrive at the equation 

-~(x dF)+(_:_+k'-a'Z' -N)F 
dx dx 4 x 

=- _:_.!:_ [xw- - 1-(xw)' + ~(xw)'].!!.. 
~' dx 2J.t 3J.t' dx 

+{2aZw+xwctge+ 1f.t(xw)'(xcose- ~}]F 

+ [xw' -~ (~:cose _ _:_}~(xw)' '}F 
2f.t2 2 dx 

1 ( x } d(xw)' 
+ :Jf.t' x<:ose- 2 ~F, (8 ) 

where N = aZcote: + ~- The operator in the left-hand 
side of (8) 

d d s' x 
L = --x-+-+- s = 2(k'-(aZ)']'I, 

dx dx 4x 4 ' 

corresponds to the case of a pure Coulomb field 
with the charge of the nucleus Z. The system of 
eigenfunctions of such an operator is well knownf 6 l, It 
has only a discrete spectrum of non-negative and equi­
distant eigenvalues 

N = p + s/2 + '/,, (9) 

where p = 0, 1, 2, ... , or, in accordance with the defi­
nition of N 

aZctge=p+ [k'- (aZ)']V•. (10) 

The use of the operator L as the unperturbed operator 
makes it possible to avoid summation over the inter­
mediate states of the continuous spectrum and over the 
states with negative energy, for at Z < 137 there are 
no negative energy levels belonging to the discrete 
spectrum in the case of attraction. We thus arrive at 
a convenient formulation of our problem in the form of 
the problem of the perturbation of a Sturm-Liouville 
operator having only a discrete spectrum. A list of 
several pertinent perturbation-theory formulas is given 
inf 7l, where the similarity with the problem of pertur­
bation of the spectrum of a one-dimensional harmonic 
oscillator is noted. 

Starting from (8), we can determine the perturbation­
theory corrections up to third order inclusive. The 
direct use of this equation is, however, difficult because 
the operator in the right-hand side, which contains the 
derivative of the sought f1mction, is not Hermitian. We 
transform the sought function in such a way that the 
operator acting on it contains only Hermitian terms. 
To this end, we put 

F(x) =Z(x)y(x), 

{ 1 [ 1 1 .. . ]} Z(x)=Cexp - xw--(xw)'+-(xw)' . 
2J.t 2J.t 3J.t2 

Substituting (11) in (8) we obtain the equation 

(L- N)y = [2aZw + xw ctg e +....:_.(xw)" 
2J.t 

+ (xw)' (xcose+_!__.::_}] Y+{xw'-~[(xw)']' 
f.t 2 2 4J.t2 

+ [(xw)']' (_:_-xcose-~}-__:_(xw)(xw)"}y 
2~ 2 2 2~ 

+~{~ (xcose +~-..=.,} [(xw)']' 
f.t 3 3 2 2 

+ : x(xw) [(xw)']' + : (xw)'(xw)" }y. 
which does not include non-Hermitian operators. 

We seek the eigenfunction of (12) in the form 

y (x) = y<'' (x) + y<•> (x) + ... 

(11) 

(12) 

(13) 

where y( 0 '(x) is the eigenfunction of the operator L. 
At a fixed s, the total orthonormal system of functions 
of this operator takes the form f6l 

[ pi ]'I• Y (x) = · x'1' e-"1' L • (x) 
p r(s+p+i) p • 

(14) 

where p = 0, 1, 2, ... , L~ ( x) are Laguerre polynomials. 
We have used here the definition customarily used in 
the mathematical literature for these polynomials [61. 
Confining ourselves to first-order terms in (12) and 
taking (6) into account, we obtain after multiplying by 
y( 0' and integrating with respect to x 

E, = aZ {2aZJ.tV•• + J.tCtge(xV).. (15) 
2J.t(P2 + k' + ps) 

+ ( x COS e + +) (xV) p/- ~[x(xV)'] pp + 4-[x(.xV)"] pp}, 

where 
~ 

w.,= J y.(x)W(x)y,(.x)d.x. 
0 

The exact expressions for the second- and third­
order corrections to the energy are given in the appen­
dix. To find them it is necessary to determine the 
first-order wave function. Putting 

(16) 
<1:/:1' 

and determining from (16) the explicit form of the co­
efficients Cq, we obtain 

y;!) (x)=..!.:...(J.tctge-~} {[p(p+s)]'l•y._,(x) 
Af.t 2 

- [(p + 1) (p + s + 1) ]'1• Y•+t(x)}- _;...._ ~ y,(x) · 
).f.t ~q-p 

q*p 

X {2aZJ.t V,. + f.t ctg e(xV),. + ('/, + x cos e)· 

X [ (xV)'],.- '/2 [x (xV)'],. + '/,[x(xV)"],.}. 
(1 7) 

where i\ = 2mc 2 sine:. Taking (11) into account, we ob­
tain directly 

F, (x) = Cy<'1 (x), 

F,(x) = Cx(E,- V)y 1' 1 (x) /2f.J.t + Cy<•> (x). (18) 

Further, knowing the function F, we can determine G 
with the aid of (5a). With first-order accuracy we have 
G0(x) = C(6 + K)Yp-l(x), (19) 

E,-V 1 [( s X'j, dF,] 
G,(x)= x----;:;-(F,cose-G,)+~ P +2-2r··-xa;-
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where 6 = [p(p + s) + K2]112. 
The same results are obtained by starting from the 

equation for the function G. We note, however, that in 
the practical calculations, in the case when K ( 0 
(K = -l - 1), it is more convenient to start from Eq. (7), 
as was done above. If K > 0 ( K = l), it is more conven­
ient to use the equation for G. In this case p = nr + 1 
( p = 1, 2, .. ; ) , where nr is the radial quantum number. 

We determine the constant C from the normaliza­
tion condition 

w 

J (/,' + f,')dr = 1. (20) 
0 

3. We shall show that the expansion (16) makes it 
possible to obtain finite expressions for the first-order 
wave function, and consequently, in accordance with) 
(A.1) and (A.3), also for the second- and third-order 
energies. We consider the class of analytically specified 
potentials in the form 

V(x) = Axm-te-'" (m = 0, 1. 2, ... ). (21) 

The non-Coulomb part of the effective potential of the 
closed electron shells, described by the screened hy­
drogen-like functions, is a linear combination of ex­
pressions of the type (21 )f7l. In order not to clutter up 
the calculation with technical details, let us consider 
an unperturbed state with radial quantum number 
nr = 0. There are two possibilities, K < 0, p = 0 (j = l 
+ Y2) and K > 0, p = 1 ( j = l - Y2). For the first-order 
energy we have: at j = l + Y2 

E =A f(s+m) 1 (22) 
1 f(s+1) (1+fJ)•+m' 

at j = l - Y2 
f(s + m) (a,pz +a,~+ a,) 

E =A----~~~~~~~~~~ 
1 r(s + 1) (s + k' + 1) (1 + fJ)Hm+z (23) 

a0 = (s+1)[x'-x/2(1l-x)], 

a,= m(1+~}(2x'--x-}-~(s+m) (aZ)', 
s ll-x s 

( x' 1} 2(aZ)' (24) 
a,=(s+m)(s+im+i) -;-- 2 --8-m(s+m) 

+m(m-1)(s+1)[x;- 2(1l~x)]' 
where 6 = (s + k2 + 1)112 . 

Formulas (22) and (23) admit of an analytic continu­
ation to the case of arbitrary Re m > - 1. In the de­
rivation of these formulas we took relation (10) into 
account. From now on we use atomic units. 

Let us determine the corrections to the wave func­
tions for the case of a perturbed potential of the 
Yukawa type ( m = 0 ). The generalization to the case 
of arbitrary positive m is effected by m-fold differ­
entiation of the obtained expressions with respect to 
the parameter {3. At j = l + 2, we determine the wave 
function by putting p = 0 in (17) and using formula (14) 
for the function Yq(x). The infinite sums over the 
intermediate states, which enter in (17), can be repre­
sented in this case in close form with the aid of the 
generating function for Laguerre polymials( 8 l. In ac­
cordance with (18), we obtain ultimately 

F x - Ax F, (x) { s + 1 - x ~ 
I ( ) - 4Z2 ( 1 + ~). + 2 ( 1 + il) 

4k' ' dt 4(aZ)' --S £1-(1+tJ·e-'"l----
s 0 t s 

00 d 
X(1 + ~)' [f t( 1 ~ t)' + Ei(- ~x)]}, (25) 

where Ei( -{3x) is the integral exponential function and 

F,(x) = [f(s + 1)]-V•x'1'e-"''· 

The integral in the last term of (25) can be expressed 
in terms of the incomplete B function 

w dt 
S =(-1)'B_,"(s,1-s). 
' t(1+t)' 

The terms independent of x in the curly brackets of 
the right-hand side of (25) are chosen on the basis of 
the orthogonality conditions of the functions F0 (x) and 
F1(x). 

Knowing the function F 1(x), we determine J1(x) 
from formula (19) 

Ak' { e" 
G, (x) =- F,(x) 2sZ' e->x + x'(1 + ~)' 

x[f(s+ 1,x)- f(s+ 1, (1 + [l)x)] }, (26) 

where r(s + 1, x) is the incomplete Gamma function(BJ. 
At p = 0 we have K = -6 and, in accordance with (19), 
G0(x) = 0. Determining the normalization constant 
from the condition (20) with allowance for the relation 
(4), we obtain, accurate to first order in A 

. aZ [ Z ]'''{ f,'"(x)=- -- Ft(x}-Gt(x) 
k k- s/2 

AkF,(x) 1 1 } 
-4Z'(1+~)•+,[ +(s+ )~] 

<•> aZ [ Z ] '" { f, (x) =- -- Ft(x) + G, (x) 
k k + s/2 

AkF,(x) } 
-< 4Z'(HfJ)•+'(1+(s+1)~] . (27) 

Formulas (27} give both components of the radial wave 
function for the states 1s1;2, 2pa;2, 3ds;2, 4f7/2, etc. 

At K > 0 (j = l - Y2) it is more convenient to start 
from the equation for the function G. Going over, in 
analogy with formula (11 ), to the function y ( x), we 
have 

G,(x) = x(E,- V)G,(x) /2'/qt' + (ll + x)y<O(x); 

J.t'=aZ(i+x/ll), y<'>(x) =y._,(x). 

A formula analogous to (17) holds for the function 
y(l>(x). Further, assuming p = 1, we obtain il)_,this 
case, too, a finite expression for the function G1(x) 
which is orthogonal to the function g0 ( x) 

(28) 

where E 1 is determined by formula (23) at m = 0. 
From the well known function G(x) we determine the 
function F(x) with the aid of (5b): 
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F,(x) = !]1"' (.r) A:~{- E, (s + 2) [x'- 2x(s + 2) 
4.l2 

+(s + 1)'] + E,w[ (s + 1)'- (s + 3)x] + e-'' 

X [ 4 (aZ)' +-~(s + 1)w-(s + 2) .j1 

s l + ~ 
1- ~ 4(aZ)' 

+ w (1 + ~)>+' (s + 1-x)+--(s+ 1- x). 

w dt 2 [ 2k') x[J t( 1+t)' +Ei(-Bx)]+ (1+~)· (1+-s 
• 

-w~(B+s+2) ][_::_r(s+i x) 
(1 + ~)' x' , 

• ' dt ]l 
-:. r(s+1.(1+~)x)+(s+l-x) Jf1-(1+t)•e-'']-t- }·(30) 

0 

where w = 6/(6 + K). 
The functions G and F must be multiplied by a con­

stant D chosen to satisfy the normalization condition. 
Accurate to first order, we have D =Do+ AD 1 • In ac­
cord with formula (4) 

( ) [ 2 ( s ) ] ..• ,, - -f,' (x)= b o- 2 -1 [Do(F,-G,)+AD,(F0 -·Go)], 

f,'''(x)=[! (o+-T+1)] ··'lDo(F,+G,)+AD,(F\+Go)]. (31) 

Formulas (31) determine the correction to the wave 
function of the states 2p1;z, 3d3;2, 4fs;2, etc. Applying 
the operator ( -a/ il {3) m to the functions f~ 1>, we obtain 

1 
the corresponding functions for the potentials of type 
(21) at m > 0. There are grounds for assuming that 
the proposed method is effective also for a larger class 
of perturbing operators. Thus, the second-order cor­
rection to the energy of the exchange interaction can 
also be represented in closed form f9l. 

In the nonrelativistic limit (aZ - 0), the function 
Mx)- 0, and the functions fi 1>(x), given by formulas 
(27) and (31) go over into the corresponding nonrela­
tivistic functions obtained by Pavinskil and the 
authorr9J. 

In conclusion, the author is deeply grateful toP. P. 
Pavinskil for support and interest in the work. 

APPENDIX 

Substituting in (12) the expression (6) for w and 
separating the terms of second and third order with 
respect to the perturbation V, we obtain after integra­
tion the following express]tons for the energies E2 and 

E3: . 1 { ( 1) E,= 2o(o-x) E, f!Ctge- 2 ([(p+i)(s+p+i)J'f'C, 

+[p(s+p)]'!.CP_,)_E,' [3p'+3p(s+1) 
/.fl 

+ ~ (s+l)(s+2l+(;:p+s+1) (~t'-xcose- 4
5 )] 

+ _E, ( 2f!'XJ1- i "cos e + _!__- --=-) (x'V)' 
Af! I. 2 2 

3 ( V) , x' ( , ) 1 ( 1 -2x x -- .rV)' +- -(xcose 
2 oo XJ! 2 ++- ~) [(xV)']' +: [(xV)']'-xf!'V' 

+ x~ V(xV)") 
00
+( 2aZJ.!V + J.!CtgexV 

+(xcose+~---=--) (xV)'+~(xV)") }· 
2 2 2 ot 

(A.1) 

We have introduced here the notation (i, j = 0, 1): 

(f(x) ),; = J y 1" (x)f(x) y 1'' (x)dx, (A.2) 
0 

Cq are the expansion coefficients. 
Knowing the first-order wave function we can, as is 

well known, obtain also the third-order correction to 
the energy. In our case we have 

1 { E,E, [ ( s + 1 ) . E, = -.- p+-- (5+4xcose-4f!"} 
21l(o-x) AJ.l 2 

- 6p'- 6p(s + 1)-(s+ 1) (s+ 2)] 

E, < . ( 1 X ) ( 2 )' +- 2!!·xV- xcose+--- x V 
AJ.l 2 2 

3 ( V)' x' V)") 1 --x x --(x +-.-,-2 2 2 oo 2A f! 

X ( x'(E,- V)' [ (x- 2xcos e -1) (E,- (xV)') 

- 3(E,-(xV)')' +x(xV)"l) 
E,- V oo (A. 3) 

+-1-( x(E,- V) [-2JA'(E,- V)+(2xcos e + 1-x) 
).J.l 

X (E,-(xV)')+ 3 (E,-(xV)')' x(xV)"]) 
2 E,- V " 

-E, (f!ctg e -+) (x)u-Et ( 2aZJ! +%COS e +-}) (1)u 

+ (2aZJ!V+J.lctgexV+ (xcose+4-; )(xV)'- 2x (xV)")"} 

As seen from (A.1) and (A.3), to calculate the correc­
tions to the energy it suffices to know one of the com­
ponents of the radial wave function. Substituting here 
relations (25) or (29) for y1 1> ( x) we obtain for E2 and 
E3 finite expressions containing only elementary func­
tionsf9l. 

Using (15) and (A.1) we have calculated the correc­
tions E 1 and E2 to the energies of the 3d3/2 and 3ds/2 
states of the valence electron of the iso-electronic 
series of sodium-like ions. The calculation of the 
third-order correction is justified only when the ex­
change interaction is taken into account in second 
order. When Z is varied from 23 to 9 5, the relative 
correction E 1 changes from 1.88 to 0.7(f}O of the un­
perturbed energy. The correction E2 decreases from 
0.31 to 0.12%. The relative values of the corrections 
to the doublet splitting decrease from 35 and 4.2% at 
Z = 23 to 14 and 1.5% at Z = 95 in the first and second 
orders, respectively. 
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