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It is shown that under sound-instability conditions, i.e., when phonon generation is produced by an external electric field such 
that the drift velocity of the carriers exceeds the phase velocity of the sound wave, the scattering of x-rays, y-rays and slow 
neutrons is sharply altered: the amplitude of coherent scattering in this case falls sharply, while the incoherent (i.e., diffuse) 
peak increases sharply. An explicit expression is obtained for the Debye-Waller factor in a crystal under the conditions of sound 
instability and it is shown that due to the production of phonons it becomes sharply anisotropic. Attention is drawn to the 
possibility of modulating the intensity of the scattered x- and y-radiation with the aid of a time dependent process for phonon 
production in an external electric field. 

J T is well known that the thermal motion of atoms in 
crystals leads to the fact that the intensity of the diffrac
tion maxima is decreased by the Debye-Waller factor 
and that, moreover, diffuse scattering occurs the maxi
ma of which, generally speaking, do not coincide with the 
maxima of structural scattering. t 1l On the other hand, 
in semiconductors and semimetals when the drift veloc
ity of the carriers exceeds the phase velocity of the 
sound wave spontaneous generation of thermal phonons 
occurs, rzJ and therefore, naturally, the picture of the 
diffraction of x-rays in this case will be sharply altered. 
From physical considerations it is immediately clear 
that the intensity of the diffraction maxima for the co
herent scattering in this case can only be diminished, 
while the intensity of diffuse scattering will be relatively 
increased. 

Experiment shows that the intensity of production of 
phonons in semiconductors can exceed the thermal back
ground by four-five orders of magnitude, and therefore 
one should expect that the changes in the picture of scat
tering will be quite considerable. The characteristic 
time for the establishment of the local value of the pho
non density or, in other words, the characteristic time 
for the growth of the phonon flux is of the order of mag
nitude of the transit time for a phonon across the sample 
and for a crystal of dimensions of 10-1 em will amount 
to 10-6-10_., sec. The latter statement means that with 
such a frequency one can produce a modulation in the 
intensity of the x- and y-radiation. Moreover, by con
trolling the characteristic frequency of phonon genera
tion (for example, by means of a change in the concen
tration of the carriers in a zone), as will be shown be
low, one can achieve a deflection of the x- and y-rays 
by a certain angle which can attain a value of several 
minutes. Here we have in mind the spatial deflection 
of the diffuse scattering peak, the intensity of which 
under thermodynamically equilibrium conditions is 
usually very small. But, in the nonequilibrium case, 
when the number of phonons grows sharply the diffuse 
scattering is increased and, in principle, can turn out 
to be of the sam·e order of magnitude as the structural 
scattering in an equilibrium crystal. Moreover, due to 
the spatial dependence of the number of phonons in a 
crystal the intensity of scattering at the maximum of 

the diffuse peak will be proportional no longer to the 
first power of the scattering volume, as in the equilib
rium case, but to a higher power of this volume. This 
means that the relative halfwidth of the diffuse peak is 
diminished in the nonequilibrium case. Experimental 
observation of the scattering anomalies indicated above 
can yield very valuable information concerning a num
ber of nonequilibrium characteristics of semiconductors 
under the conditions of phonon generation, and in par
ticular to determine the spatial, angular and spectral 
distributions of the phonons being produced. At the same 
time, in contrast to the optical methods based on the 
scattering of light from a laser, r3J the x-ray methods 
have a greater resolving power and are also applicable 
to optically nontransparent crystals. 

From the preceding it follows that an investigation 
of the problem of the scattering of x- and y-radiation in 
a nonequilibrium crystal, when acoustical (or optical) 
lattice oscillations are excited by means of some mech
anism, is of definite interest. 

1. STRUCTURAL SCATTERING. THE DEBYE-WALLER 
FACTOR UNDER CONDITIONS OF SOUND INSTA
BILITY 

The intensity of the diffraction maxima in the scatter
ing of the types of radiation indicated above diminishes 
with increasing temperature, and this is described by 
the Debye-Waller factor e-zw, where w a: u2 which is the 
mean squared displacement of the atom of the lattice in 
a direction perpendicular to the mirror plane. We now 
obtain the explicit form of the Debye-Waller factor in a 
crystal under conditions of sound instability. We shall 
carry out our discussion on the example of the scattering 
of x-rays, but the same results are also obtained for the 
scattering of y-rays and of slow neutrons. 

We consider the case of a monochromatic plane wave. 
Then the effective scattering cross section a, defined as 
the ratio of the intensity of radiation diffracted into the 
solid angle dn to the density of energy flux in the inci
dent unpolarized wave, will be equal, as is well known, 
tor1 l 

da 1 ( e' 2 • - '"1 1 
- =- --} (1 + cos'1't) I J dV n(r) e<!k-k,l• . 
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Here J- is the angle between the directions of incidence 
and scattering, i.e., between the propagation vectors k 
and k', n(r) is the microscopic value of the electron den
sity, V is the volume. The electron density, just as any 
other function in a crystal, can be represented in the 
form 

n(r) = ~ n.e''"', {2) 

where the summation is taken over all possible values 
of the inverse lattice vector b. The variation in the 
microscopic electron density at each point of the crys
tal can be regarded as the result of a simple shift of the 
lattice by an amount equal to the local value of the dis
placement vector u(r, t) which arises due to phonon gen
eration. Thus, in the presence of sound waves we have 

n(r) =n(r+u(r, t)). {3) 

The scattering cross section in the form (1) describes 
both the coherent diffraction scattering and the diffuse 
scattering. In order to separate from the beginning both 
these types of scattering we shall represent the integral 
over the volume appearing in {1) in the form 

l ==I,+ I,== (I)+ (I-(/)), {4) 

where the angular brackets ( ) denote averaging over an 
ensemble of systems. Now substituting {2) into {1), tak
ing {3) into account and averaging, we see that the term 
proportional to I1 = (I), will describe the coherent part 
of the scattering and the term proportional to I2 = I - (I) 
will describe the diffuse part of the scattering. 1> Fur
ther, it is not difficult to obtain expressions describing 
the effective cross sections for diffuse and coherent 
scattering: 

( da ) ( e' ) z 
-d" = 2n' .-,- (1 +cos' fr) ~ (be") ln•l'· 

" diff me ~ 
b,a 

·J dVIu"(q=k-k'+2nb,r)l', 

(:~th=+( ~:, r (1+cos'fr) Is dV~n·· 
b 

x exp {2nibr + ikr- ik'r- w(r)} I'; 
where 

w(r) = 2n' ~(be")'J d'qlu"(q,r) I' 

is the term describing the decrease in the scattering 
cross section due to the oscillations of the atoms; ea 
is the unit polarization vector for the sound waves, a 

{5) 

{6) 

(7) 

is the polarization index; uD'(q, r) is the Fourier ampli
tude for elastic displacement, and its dependence on the 
coordinate r emphasizes the fact that under conditions 
of sound instability the intensity of phonon generation 
increases along the direction of the supersonic electron 
flux. In the course of calculating the diffuse scattering 
cross section the integration over the volume has al
ready been carried out and this led to the appearance 
of the condition q = k - k' + 21Tb which determines the 
spatial direction of diffuse scattering. Under conditions 
of thermodynamic equilibrium, i.e., in the absence of 
electron drift, w does not depend on the coordinates and 
then e-2w {after averaging over the Planck distribution) 

1It is necessary to note that here in the course of averaging only pair 
correlations are taken into account, while correlators of the type < uuu > 
and of still higher order are neglected. 

reduces to the well known Debye-Waller factor. 
We first consider the change in the structure scatter

ing peak near some maximum when phonon generation 
occurs. Let the Laue condition be satisfied for the given 
inverse lattice vector b, i.e., 

k- k' - 2nb = 0. {8) 

Then the scattering cross section at the maximum will 
evidently be given by 

(.'!!!__) mwx = ~(__:;_)' (1 +cos'{)) In• I'{ J dV e-wld r. {9) 
dQ coh 2 me 

If w does not depend on r, then the scattering cross sec
tion at the maximum turns out to be proportional to V2• 

We now find the scattering cross section at the max
imum under conditions of phonon generation. For this 
it is necessary to calculate explicitly the average value 
of the square of the amplitude of elastic displacement. 
We shall consider the case of a piezosemiconducting 
crystal, where the interaction of electrons with phonons 
occurs through the piezoelectric field. (For crystals 
with a deformation interaction analogous phenomena 
are also possible. l 21 ) For the determination of 
(lua(q, r)l 2 ) one must consider the kinetic equation 
for phonons in a piezosemiconductor (cf., l 21 ): 

[ vg" :r +2y"(q) ]<lu"(q,r) I') 

2 1 (r f"(q) f.laq') =---- +Tt-.-
(2n)' pq'v.' '1-qv,/qv. 2p ' 

{10) 

where v~ is the vector for the group velocity of acoustic 
waves of polarization a, v a is the phase velocity (below 
we shall not take into account the difference between the 
phase and the group velocity of the waves), p is the crys
tal density, Te and Tz are respectively the temperatures 
of the electron gas and of the lattice, Vd is the electron 
drift velocity in an external electric field, vd = !LEd, 
where 11 is the electron mobility, Ed is the external elec
tric field, ya(q) is the increment in the generation of 
acoustic waves of polarization a, ra (q) is its electron 
part, lla is the viscosity responsible for the nonelec
tronic mechanism for the absorption of phonons in the 
crystal, where 

f.laq' 
y"(q) = 2p + f"(q), 

{11) 

r "( ) 2rt(~q,qpep") 2 I ( eo ) q =----q m --- . 
PVa2Eo ell( m, q) w=qva 

Here i3i kl is the tensor for the piezomoduli of the crys
tal "with respect to the deformation," E0 is the dielec
tric permittivity of the lattice, E11 (w, q) is the longitudi
nal permittivity of the medium: 

4na, ( qv, iq'f-IT,) -• 
e::(w,q)=eo+-.- 1--+--

tw w ew 
{12) 

where a0 = en 011 is the longitudinal d.c. conductivity of 
the crystal. From formula (12) it follows that in the 
case when the electron drift velocity is greater than the 
phase velocity of the sound waves, the imaginary part 
of the dielectric permittivity of the medium, i.e., the 
conductivity, becomes negative, and in the crystal gen
eration of sound occurs, instead of electronic absorption 
of sound if, of course, yD'(q) < 0. When ya(q) < 0, then, 
as follows immediately from the kinetic equation for the 
phonons {10), the average value of the square of the am-
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plitude for elastic displacement will grow in spece, so 
that the solution of equation (10) under zero boundary 
conditions has the form 

• ' - 1 [r r•(q) 
<lu (q, r) I)- (2n)'pv.'q' • 1- ~·(q) (13) 

+ r. Jl•q'] 1- exp[- Q•(q, e)x] ' 
2p y•(q) 

Q"(q, e)= 2y"(q)/v.cos e 

(J is the angle between the electric field vector Ed and 
the propagation vector q). 

In deriving (13) it was assumed that the electron 
drift occurs along the x direction; phonon generation 
also occurs in the same direction and (3ll(q) = qvd/qva. 2> 

H the electric field is absent, then from (13) follows the 
well-known classical value 

<lu"(q) I')= T I (2n)'pv.'q'. (14) 

H now one substitutes (14) into (7) then one obtains im
mediately the well-known expression for the Debye
Waller factor in which, however, integration over the 
modulus of the propagation vector q should be carried 
out from 0 to qmax, where qm~ (just as in the case of 
the Debye theory of specific heat) is determined from 
the condition of equality of the total number of oscilla
tions to the number of degrees of freedom in the crystal. 
Generation of acoustic phonons occurs only within the 
Cerenkov cone, and therefore integration over the angle 
9 (in spherical coordinates) in formula (7) can be con
veniently separated into two intervals: 0 :::s 9 :::s 9 0 and 
90 :S 9 :::s rr, where 90 is the angle for which yll(q) = 0. 
Then, it is evident, that in the angular interval 90 :::s 9 
:::s rr no phonon generation occurs, and if we do not take 
into account the insignificant change in the phonon dis
tribution factor due to the effect of the phonon drag by 
the subsonic electron flux (cf., [41 ), then we can assume 
that for these angles the Debye-Waller factor is deter
mined by the thermodynamic equilibrium value (14). 
Taking this circumstance into account formula (7) can 
be written in the form 

(15) 

where Wne(r) is the nonequilibrium increment due to 
phonon generation which has the form 

1 , qm~U: IK 8 0 

w,0 (r) = 2 L, (2nbe")' J dqf d<r J de sine (16) 
0 0 0 

x-1--1-{r. l'"(q) + 1• Jl•q'} 1-exp[-Q"(q,e)x] 
(2n)' pv.' 1- ~"(q) 2p y"(q) 

Under the conditions of generation it is possible that 
I Qll(q, 9)1 > 1 and then scattering by nonequilibrium 
phonons will be the decisive factor in the diminution 
of the intensity at the peak. 

We make an estimate of Wne(r). H we do not take into 
account the difference in the angular dependence for 
equilibrium and nonequilibrium phonons (it is evident 
that this difference cannot essentially alter the ratio of 
these quantities), then for purposes of making an esti-

2>Here zero-point oscillations are not taken into account, and it is 
assumed that the temperature of the electrons and of the lattice is not very 
low, so that llw < T, where w is the characteristic frequency of the gener
ated phonons. 

mate one can assume that 

Wne- wTexp {-Q•(q, O)x}, (17) 

where q is the characteristic propagation vector for the 
phonons being generated, while (j is a certain angle. In 
piezosemiconducting crystals of the type of CdS, CdSe 
and ZnO the spatial increments in the phonon generation 
can attain values of the order of 102 em-\ i.e., one can 
assume that by a suitable choice of the parameters for 
these crystals it is not difficult to obtain conditions 
under which Qll(q, 7i) ~ 102 cm-1 • (Such values have al
ready been repeatedly attained experimentally, cf. the 
review article[21 ). From here follows the estimate that 
Wne ~ WTe10ox, where x [em] is the path length traversed 
by a phonon in the crystal in the direction of the electric 
field. H the dimensions of the crystal are of the order of 
1 em, then it is clear that the intensity of the radiation 
scattered at the peak must practically completely disap
pear when phonon generation begins. 

We now estimate the characteristic time during which 
the nonequilibrium number of photons grows in a crystal 
of dimensions L. It can be shown (cf. the review article 
[21 ) that the phonon density at a given point x attains a 
stationary state during a time equal to x/va. Therefore, 
if we consider a sufficiently thin crystal, say, of dimen
sions L ~ 0.1 em, then this time will be 5 x 10-7 sec for 
transverse waves and 2 x 10-7 sec for longitudinal waves. 
(Here we have in mind a crystal of the type of CdS, for 
which v 11 = 4.8 x 105 em/sec, v 1 = 2 x 105 em/sec.) Thus, 
with the same characteristic times one can bring about 
modulation of the intensity of x- andy-radiation in an 
individual peak of structure scattering. The intensity 
of scattering of thermal neutrons also diminishes when 
lattice oscillations are present, and this decrease is 
also described by the Debye-Waller factor, where only 
in place of k and k' the neutron propagation vectors will 
occur. Therefore, as in the case of x-ray radiation, 
modulation of the intensity of scattered slow neutrons 
is possible. 

2. DIFFUSE SCATTERING 

We now consider the behavior of the diffuse peak in 
the scattering under conditions of phonon generation. 
Substituting into formula (5) the value of (lull(q, r)l 2 ) 

from (13) and, just as above, considering some one fixed 
value of the inverse lattice vector, we obtain for the max-
imum 

(.!!:!,_) =_!_(-=:,)'(1+cos'~) L,ln•l'(be")' 
d~2 diff 4n me " 

1 [ r•(q) J.L"q'] x-- T, +T.--
pq'v.' 1- lj"(q) 2p 

(18) 

L. +[exp { -Q"(q, e)x} -1]/Q"(q, e) 
X y"(q) ' 

where S = J dy dz is the area, while Lx is the dimension 
of the sample in the direction of the x axis. In formula 
(18) the propagation vector q satisfies the condition 

q = k- k' + 2nb. (19) 

From expression (18) it can be seen that the intensity 
of the diffuse peak under conditions of phonon generation 
has increased by a factor of approximately I yll(q)l-1 

x exp {l2ya(q)ILx/va}, i.e., very considerably. The 
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spectrum of the generated acoustic phonons is quite 
narrow, therefore in addition to an increase in the am
plitude of the peak also a narrowing of the diffuse scat
tering line must take place due to the fact that phonon 
generation occurs only inside the Cerenkov cone. But 
the distribution of the intensity of phonon generation in
side the Cerenkov cone for a piezosemiconducting crys
tal is a very complicated function of the mutual orienta
tion of the crystallographic directions and the direction 
of the external electric field, and therefore the behavior 
of the halfwidth of the diffuse peak as a result of varia
tion of some parameters of the system which affect 
phonon generation can be very complicated. 

The spectrum of the generated acoustic phonons and, 
in particular, their propagation vector, depend on a 
number of electronic characteristics of the crystal: the 
density of the carriers, the electric field, the tempera
ture etc. (cf., [21 ). Varying in the course of an experi
ment any one of these parameters one can realize a 
spatial displacement of the diffuse scattering peak. The 
maximum "angle of refraction" that can be obtained in 
the case of scattering by acoustic phonons will evidently 
be given by 

(20) 

If the frequency of generation of acoustic phonons is 
w R< 1011 sec-1 (which can be quite readily obtained in 
crystals of the type of CdS), then for an x-ray quantum 
of energy E R< 14 keV (k R< 7.4 x 10 8 cm-1) this angle can 
attain a value of 2' -3'. Thus, by changing the spectrum 
of the generated acoustic oscillations, one can, in prin
ciple, realize refraction of x-rays. 

We note that here we have restricted ourselves to an 
investigation of the picture of scattering due to the gen
eration of acoustic phonons. On the other hand at the 
present time a number of mechanisms is known with the 
aid of which one can realize a sufficiently strong gener
ation of optical phonons. If generation of optical phonons 
is achieved with the aid of an electron beam, then the 
necessary conditions for the generation is ve > w0 /q, 
where ve is the velocity of the electrons in the beam. 
Since for optical phonons the frequency w0 is practically 
constant, then by changing the velocity v e one can achieve 
generation of optical phonons with different propagation 
vectors q ~ w0 fve. The latter condition means that the 
angle of deflection of the diffuse peak will vary as a func
tion of ve. The propagation vector for an optical phonon 
is q R< 108 em-\ and as can be seen· from (20), the "angle 
of refraction" for diffuse scattering by optical phonons 

can attain a value of several degrees. This problem shall 
be discussed separately. 

In a crystal of limited size phonon generation occurs 
over a discrete set of frequencies corresponding to the 
eigenoscillations of an acoustic resonator. Therefore in 
the inelastic scattering of radiation a series of new lines 
-satellites will appear which correspond to processes 
of absorption and emission of phonons. 

The changes in the picture of scattering of x-rays in 
piezosemiconducting crystals indicated above under the 
conditions of sound instability have been observed ex
perimentally by Lemke, Muller and Schnurer. [sJ The ex
periment was carried out using a film of cadmium sul
phide. In the absence of phonon generation a narrow line 
of coherent scattering was observed at the Bragg angle, 
but under the conditions of phonon generations the inten
sity of coherent scattering sharply decreased and two 
diffuse peaks appeared at the sides of this line. The an
gular scatter between the coherent line and the diffuse 
peak experimentally amounted to approximately 20', 
which for a crystal of the CdS type corresponds to gen
eration of acoustic phonons at a frequency of ~ 500 MHz. 3> 

In conclusion I express my sincere gratitude to V. L. 
Ginzburg and L. V. Keldysh for discussion and for valu
able remarks. 

3>We note that the theoretical discussion of the problem of the scatter
ing of x-rays in a crystal under conditions of sound instability undertaken 
in connection with this experiment in [SJ does not take into account the 
change in the diffraction picture as a result of phonon generation, assum
ing at the same time that the interaction between an x-quantum and a 
phonon occurs in the same manner as the interaction between a light 
photon and a phonon in a continuous medium. Such lack of taking into 
account the diffraction properties of the medium leads to the fact that in 
the theory the Debye-Waller factor does not arise in general, while the 
shape of the line of the scattered radiation turns out to be quite sensitive 
to the spectral composition of the emitted phonons. 
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