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The propagation of radiation in optically thin anisotropic noncrystalline media ~u~h ~ inte~tell~r spac.e is considered .. Explicit 
formulas are obtained for the Stokes parameters of transmitted and scattered rad1at1on m media With vanous types ofamsotropy. 
It is shown that on passage of light through a medium consisting of anisotropic oriented molecules or. small particles t.he pl~ne 
of polarization may rotate and linear polarization may change into circular or vice versa. Astrophysical phenomena m which 
the effects considered may be important are discussed. 

1. FORMULATION OF PROBLEM 

IN many problems in physics, and especially astrophys
ics, one encounters anisotropic non-crystalline media, 
for example the interstellar medium. The radiation of 
the stars is polarized on its way to the earth and is 
scattered by dust-like matter. This indicates that the 
interstellar particles have an orientation, i.e., that the 
medium is anisotropic. Different aerosols, streams of 
colloidal solutions, etc. are also anisotropic non-crys
talline media. Although there have been many studies 
of the propagation of light in such media, [ll explicit for
mulas for the scattering intensity, and all the more for 
the polarization, were obtained only in a few particular 
cases. Yet one can obtain rather simple explicit formu
las which are convenient for comparison with experiment 
and encompass most cases of interest. 

In this paper we determine the explicit dependence of 
the Stokes parameters on such scattering-particle char
acteristics as the polarizability, the dielectric constant, 
and the magnetic permeability, and also on the moments 
of their distribution functions with respect to the orien
tation for non-resonant radiation passing through an op
tically thin anisotropic medium. We confine ourselves 
to Rayleigh scattering by atoms and dust particles (the 
small parameter is 21Ta/;\ or 21ra IK I/;\, where ;\ is the 
wavelength of the radiation in vacuum, K the refractive 
index of the dust material, and a the characteristic 
dimension of the scattering particle), and also consider 
Rayleigh-Jahns scattering by large dust particles (the 
small parameters are IK - 11, Il-L - 11, and 21raiK - 11/;\, 
where 1-1 is the magnetic permeability of the particle). 
The dielectric constant and the magnetic permeability 
can be in tensor form. The concentration of the scatter
ing particles N0 is assumed to be sufficiently small, 
No;\ s « 1. 

The amplitude of the wave E<S> scattered by the par
ticle in the direction n 1 is connected with the amplitude 
of the wave E co> incident in the direction n0 by the well 
known relation 

(0) k'( (I) (I)) ( ) (1) E,(S)=R-'t,.(n,n,)E. ' t,.(n,n,)= 6;m-11J nm a ... n,n,. 

Here R is the distance to the point of observation. For 
the case of Rayleigh scattering O!mk(n1n0 ) = O!mk denotes 
the tensor of the polarizability of the molecule or the 
dust particle as a whole. In the case of Rayleigh-Jeans 
scattering O!mk(n1n0 ) denotes the following integral over 
the volume of the particle:[2l 
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Repeated indices mean summation throughout; k = ~1r/;\ 
= w/c; empk is an antisymmetrical unit tensor; fl'Zs(r) 
are the components of the inverse of the magnehc per
meability tensor ~(r); €(r) is the complex dielectric 
tensor. 

It is convenient to describe the wave E<S> in a coordi
nate system with the z axis along n11 and the wave E co> 
in a system with the z axis along no. Using the cyclic 
components E0 = Ez and E± 1 =±(Ex ± iEy)!ft, and 
specifying the transformation of the vectors by coor
dinate rotation with the aid of the Wigner matrix 
D£ln(O), we can write 

(B) Ill+ . b Dill (n )E{Ol ( ) Em (n,) = R-'Dm, (O,)t,.( ) ·~ "' ~ n, . 

The symbols Ea(n ) etc. indicate that the corresponding 
components of the ~ectors or the tensors are taken in 
the coordinate system with the z axis along n,, etc. 
Greek indices take on only two values, a= ±1, since 
the field is transverse, while Latin indices take on 
three values: i = 0, ±1. The z axis of the system, 
which is rigidly bound to the medium, is directed along 
h, one of the physically singled-out directions in the 
medium. 0 1 denotes the aggregate of Euler angles cp" 
{3 1, and y1, which describe a rotation from a coordinate 
system with z axis along h to a system with z axis along 
n1• 0 0 has a similar meaning. The quantity 

(3) 

has the meaning of a scattering matrix. 
In a homogeneous anisotropic medium, plane waves 

of two types can propagate, corresponding to two eigen
values of the matrix (3) for forward scattering, 

(t.~(nnh))U~1 (nh) = tC'>(nh)Ua,(nh). (4) 

The elements of the matrix Uai(nh) are the cyclic com
ponents fCl> of the unit polarization vectors of these two 
waves (i ~ 1, 2). We note that f~i> and f~~> are connected 
by the simple relation 

j, 1~=/~~ [t<'>(nh)-(L,_,(nnh))]/(Lu(nnh))=/~ re", 

where r and E determine the parameters of the polari
zation ellipse: 

a=(r+1)/[2(r' + 1) ]V•, b = ir -11/[2(r' + 1)] "'• a= '/,(6 ± :rt). (5) 
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Here a and b are the major and minor semi-axes of 
the ellipse, and a is the angle between a and the x axis 
of the right-hand system. The rotation of the electric 
vector is clockwise when viewed from the end of the 
wave vector k, if r > 1, and counterclockwise if r < 1. 
The case r = 1 corresponds to linear polarization. The 
angle brackets denote averaging over the initial and 
summation over the final states of the scattering par
ticle, including also averaging over its possible orien
tations. 

The eigenvalues t<i>(nh} are simply connected with 
the refractive index of the medium for the correspond
ing waves: 

x,(nh) = 1 + 2nN,t('l(nh)k-•, (6} 

where N0 is the concentration of the particles. 
The field of the scattered radiation will be charac

terized by a density matrix 

PmJ(n,r) = (<:/Sn)Em(n,r)E,• (n,r), 

which is connected with the Stokes parameters In by the 
relations 

Pm.m = '/z(/o- al,), Pm. -m = -'/,(/, + ial,), a= ±1. (7) 

Here 10 is the total radiation intensity, and 12 is the in
tensity of the right-hand (Ia > 0} or left-hand (Ia < 0} 
circular polarization. The degree of linear polariza
tion is equal to (I~ + 1~)112/I0, and It/Is = tan 2x, where 
x is the angle between the plane of the oscillations of 
the electric vector and the x axis. 

An integral equation was previously obtainedrs•41 for 
Paf3(n1r). Its solution in the first iteration approxima
tion, which is convenient for the description of scatter
ing in an optically thin medium, is 

(8} 
' 

+ f dlM.,.,(n,rr'h) [B,.(n,r') + q,.(n1r') ]. .. 
To obtain this solution, we have first changed over to a 
coordinate system whose axes are the eigenvectors of 
the polarization f<ll and f<2>, solved the equation in this 
system, and then returned to the initial cyclic coordi
nates. Therefore the propagation function 

G.m (n,rr'h) = exp [ -N,g<•m>(n,h) Jr- r'J] (9} 

turned out to be summed with the direct and inverse 
matrices Uaz(n1h): 
Mm,,,(n,rr'h) = u.,(n,h)U,, -• (n,h) G,.(n,rr'h) [U+(n,h) ] •• -•u,,+(n,h). 

(10} 
Here r, r', and r 0 are points lying on the line of sight 
directed along n1• The integration is carried out along 
the line of sight from a certain initial point r 0, where 
a value 4"J(n1r 0 ) is specified, tor. The function (9) de
scribes the attenuation of the radiation as a result of 
scattering and true absorption, and the interference of 
the waves as a result of the difference between their 
phase velocities 

v,(n,h) = 2dx, (n,h) + x,• (n,h)] -•. 

In addition 

g<•'>(n,h) = il.. [If.'>' (n,h)- lf."l(n,h)] 

1 <•> <•> iw ( 1 1 } 
='2'[u, (n,h)+uo (n,h)J+"N,"" v,(n,h) - v.(n,h) ; 

(11) 

a~n> is the total cross section for the absorption of the 
wave corresponding to the n-th eigenvalue of (4), 
qyv(n1rh} is the density (erg/ems sec-sr) of the radi
ation produced by the sources in the medium at the 
point r, and Byv(n1rh) is the analogous quantity for the 
radiation incident on the point r from all the other 
points of the medium. 

If we are interested only in the attenuation of the 
primary beam incident along n1, then the integral term 
of (8} can be omitted. On the other hand, if one speci
fies not the incident beam but the radiation source in
side the medium, then it suffices to retain only the 
term with qyv(n1rh}. To determine the Stokes param
eters in either case, it suffices to calculate the function 
(10}. We note that these formulas describe the attenua
tion of the beam also in an optically thick medium. We 
have therefore not expanded the exponential in (9). On 
the other hand, if we are interested in the problem of 
scattering, in the direction of n1, of radiation initially 
incident along n0 and characterized by the matrix 
p~0J(n0r), then it is necessary to calculate also 

Bvv (n,rh) = N0 (t,m(n,n,h) p~~ (nor)t:. (n1n0h)) 

= N,k' (a.m(h) a,~(h)) p~:> (n0r)D,~>""(O,)D:~> (O,)D!~ (Oo)D~:,>+ (Oo) 
. (12} 

Both (10} and (12) are expressed in terms of differ
ent combinations of the tensors anm· Let us calculate 
these quantities for the cases of interest to us. The 
tensor anm(h} in a coordinate system (h) that is fixed 
relative to the medium is connected with its value 
anm(nc) in the coordinate system rigidly connected 
with the particle (the vector nc lies along its z axis) 
by the relation 

(13) 

Oc denotes the aggregate of the Euler angles CfJc, f3c, and 
'Yc, which determine the orientation of the particle rela
tive to the medium. Since different orientations are pos
sible, it is necessary to average all the combinations of 
aik over the orientations and take into account their dif
ferent probabilities. For example, 

2a 2a: n: 

(a,.(h))= f dy, f dcp, f d~, sin ~,W(O,)a,.(h), (14} 
0 ~ 0 

W(Oc} is the probability, normalized to unity, that the 
particle has an orientation given by the definite angles 
CfJc, f3c, and 'Yc· Quantities of the type ( akn(h) a:Oz(h)) 
are averaged in similar fashion. 

The solution (8} is the most general one. In the sec
tions that follow we shall present only concrete formulas 
suitable for comparison with experiment for the most 
widespread types of anisotropic media. 

2. PHOTON SCATTERING CROSS SECTIONS 

The total cross section a0 = as + CJa is the sum of 
the cross sections for elastic scattering as and true 
absorption aa. We denote by a~m>(ngh) the total cross 
section for the case when the initial wave propagated 
along n0 , and its polarization was described by a unit 
vector em, which generally speaking is complex: 
u~m> (n,h) = 4nk Im[Um-: (n,h)DS,'(o,)(a,.(h))D:,•>(O,) u,m(n,h) ). 

(15) 
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The elements of the matrix Uam(nJt) = emeil- are cyclic 
components of the polarization unit vectors em. If 
ei • e 2 = 0, then u-1 = u• and only the anti- Hermitian 
part of the tensor (apq(h)) contributes to (15): 

iAp,(h)= '/,[(up,(h)>- (a,"(h))']. (16) 

The Hermitian tensor Apq(h) has nine independent real 
components. In terms of the cyclic coordinates (p, q 
= 0, ± 1) it is convenient to introduce the notation 

A,,,,""' Ap, A_11 ==A,+ iA.,. A_10 ==A,+ iA,, A,.== A,+ iA,. 
(17) 

The total cross section ari-' and ari•' for photons with 
right-hand and left-hand polarization, respectively, are 
obtained from (15) in the form 

cro{,t,, (noh)= 4:rtk {'/.(A,+ A_,) ( 1 +cos' ~o) +'/,sin' ~o [A, 
+A, cos 2cp,- A, sin 2cp0] + 2-'/, sin ~o cos~.[ (A,- A,)cos 'Po 

-(A,- A,) sin 'Po] =t= '/,(A_,- A,)cos [l, 
=t= 2-'/, sin ~o[ (A,+ A,)cos 'Po- (A,+ A,) sin 'Po]}, 

(18) 

where {3 0 and cp0 are the angles of the vector n 0 in the 
system with z axis parallel to h. Obviously, the total 
cross section for the unpolarized radiation is 

If the initial radiation was linearly polarized at an 
angle 90 to the x axis in the system where the z axis 

h 

!I 

lies along n0 (see the figure), then the total cross sec
tion is 

.0 ,(!) (n,h) = 4nk{'/, (A,+ A_,) ( 1 +cos' ~o) +if, sin' ~o [ (2Ao- A, (19) 
-A_,) cos 29 0 + 2Ao] +'/,(A, cos 2'Po- A, sin 2cpo) [sin'~. 

- ( 1 + cos'~.) cos 29,] + cos ~o sin 29, [A, sin 2cpo +A, cos 2cpo] 
+ 2-'1• sin~. cos~.( 1 +cos 2llo) [(A,- A,)cos cp0 - (A,- A,)sin<po] 

- 2-'/• sin~. sin 29o [(A,- A,)sin 'Po+ (A,- A,) cos <po]}. 

The elastic-scattering cross section of radiation 
propagating along D0 and described by the normalized 
density matrix p:;h is equal to 

cr, (noh) = '/, nk'T mn (no Jh)D~? (Oo) p!~) D~~+ (Oo), (20) 

where the Hermitian tensor Tmn(n0 1 h) has the following 
explicit form: 

T mn(n,lh) = 2_ J dn,D~:;"(O,)D:!'(Q,) (avn(n,n,lh)am,+ (n,n, I h)). 
Sn 

(21) 

By using the notation CYpn(n1n0 1 h) we have emphasized 
here the explicit dependence of the components of the 
tensor CYpn(h) on the directions n 1 and D0 • The tensor 

Tmn(n0 1 h) has nine independent components, which we 
shall designate in analogy with (17). The elastic-scat
tering cross sections of circularly or linearly polarized 
photons can be obtained from (18) and (19) by replacing 
there 41TkAmn(h) by %1Tk2Tmn(D0 Ih). We shall hence
forth present explicit expressions for the tensor Tmn 
only in the case of Rayleigh scattering, when Tmn(n0 1 h) 
= Tmn(h). 

3. AXIALLY SYMMETRICAL ORIENTATION OF THE 
MEDIUM 

Let us consider a medium with axial orientation of 
the scattering particles, when W(O) = (21Tr1 W({3; y). In 
this case ( CYnm (h)) = 6nm ( au(h)), and the polarization 
unit vectors of the ordinary and extraordinary waves 
(f<u and £12') will be orthogonal if the following condi
tion is satisfied: 

Im(a_,(h))'(a1 (h)) + (a,(h))(a,(h))'- (a_ 1 (h))')] = 0. 

This condition is satisfied, for example, when the ten
sor CYik(Dc) is diagonal in a Cartesian coordinate sys
tem connected with the particle (i, k = x, y, z). Then, 
:according to (14) 

(a_,(h)) = (a,(h)) = '/,(1 + Rc)a,(n,)+ '/,(1- R2)a,(n,) + '/,S,a,(n,), 
(a,(h)) = (1- R,)u,(n,)+ R,a,(n,)- S,a,(n,), 

a,=a,., a,='/,(axx+auu), a,='f,(a.,-axx), (22) 

R. = J dQW(Q)cos" ~. S, = J dQW(Q)sin' ~cos 2y. 

Here Apq = lipqAp, Ap = Im (ap(h)), and Tpq(h) = lipqTp, 
where 

T, =(1- R,) (I a, I' -t- I a, I')+ R, l·a, I'- S,(a,a,• +a, a,"), 

r, = T -· = '/,(1 + R,) (lad'+ Ia., I')+ '/,(1- R,) I a, I' (23) 
+ 'f,S,(a,a,• + a,a2). 

The matrix Uai> made up of the components fg> that 
can be chosen in this case along e13 and e cp (see the fig
ure), is equal to Ua 1 = -iaUa2 = a/2 112, where a= ±1. 
Therefore, taking (4) into account, we obtain 

t 10 (n,h) = k'[(a,(h))cos'~, + (a,(h))sin' ~,], t<'>(n,h) =k'(a,(h)). 
(24) 

Substituting then (24) in (11), we obtain explicit expres
sions for glik>(Doh). 

The elastic-scattering cross sections a~m> of waves 
with proper polarizations e13 and e cp are respectively 
given by 

cr!'' (n,h) = '/. nk' [T, (h) cos' Bo + T,(h)sin' Bo]. cr!'' (n,h) = 'f,nk'T, (h). 

(25) 

The expressions for a~m> differ in that 'Y3 1Tk4Tm is re
placed by 41TkAm. 

If W(/3; y) depends only on {3 and is an even function 
of {3, then the condition (a_1(h)) = (a 1(h)) is satisfied 
also for a non-diagonal !ensor CYik(nc) in the proper sys
tem. The eigenvalues t<ll and the scattering cross sec
tions coincide with (24) and (25), but now 

T, = '/,(1- R,) (L, + £_,) + R,L,, 

T, = 7'_, = '/,(1 + R,) (L, + L,)+ '/,(1- R,)L,, 

L, = 1: la.,(n,) I', 
• 

(a,(h)) = (a_,(h)) = '/,(1 +R,)[a11 (n,) +a_,_,(n,)] 
+ '/,(1- R2)a00 (n,), 

(26) 



PROPAGATION OF RADIATION IN OPTICALLY THIN ANISOTROPIC MEDIA 57 

4. MEDIUM THAT IS NOT AXIALLY SYMMETRICAL 

We consider a case when the orientation of the par
ticles depends both on {3 and on qJ, but the Fourier ex
pansion of the distribution function W( cp; {3) in cos nqJ 
and sin nqJ does not contain terms with cos qJ and 
sin cp. Then, when (14) is averaged, all the terms con
taining the non-diagonal elements of the polarizability 
tensor Cl'ik(nc) drop out in the system that is rigidly 
bound to the particle: 

(a10 (h)) = (a_10 (h)) = (aot(h)) = (.a,_,(h)) =0, 
(a_,_,(h)) = 1/ 2 (1 + R,)a1 + '/,(1- R,)a, + R,a_, 

= (au(h)) + 2R,a_,, 
(a00 (h)) = (1- R,)a, + R,a,, (27) 

(a-u(h)) ='/,(a,-- a,) (N,- iM,), 
(a,_,(h)) = 'f,(a,- a,) (N, + iM,); 

a±1 = '/,[au(n,) ±a-1-l(n,)], a,=aoo(n,); (28) 

N,= JdUW(U)sin'pcos2<p, M,= J dUW(U)sin'Psin2qJ. (29) 

Substituting then (1) in (3) and averaging, we obtain 

(t •• (nnh)) = k'(Q, + Q,), (t._,(nnh)) = '/,k'(a,- a,) (K- iaL), 

Q1 = '1.(1 + R,)a1 + '1,(1- R,)a, +'/,sin' Pl'/,(3R,- 1) (a,- a.) 
+ 1/,(a,- a,) (N,cos2<p+M,sin2<p)], (30) 

Q, = -R,a_, cos p, L = (N, sin 2<p - M, cos 2<p) cos p, 

K = 1/ 2 (3R, -1) sin' p + '/,(1 +cos' p) (N,cos 2<p + M,sin 2<p). 
(31) 

Since in this case (f+) (f) * (f) (f+), the eigenvectors 
f 111 and f 121 are not orthogonal. They can be determined 
by using formulas (30) and (5). The eigenvalues of (4) 
are 

t<'·'>(nh) = k'{Q1 +'/,(a,- a,) [K' + L' + 4Q,'(a,- a,)-']"'}. (32) 

Substituting (32) in (11), we easily determine g<ikl (nh). 
We note that the inequality a 11(nc) * a_l-l(nc) leads to 
different scattering of photons with right- and left-hand 
circular polarization. 

If the distribution function W({3; qJ) depends on qJ in 
an arbitrary manner, but is an even function of {3, and 
the tensor Cl'ik(nc) is diagonal, then the expressions 
(27)-(32) remain valid, and in this case 

au(n,) = a_,_,(n,), Q, = 0, (t+)(t) = (t)(t+), 

while the vectors fCil are orthogonal: 

f<'> =cos ee~ +sin Be,, f<'> = -sin Be~+ cos Be., (33) 

where 9 is the angle that determines the direction of 
f<il in the (e(3ecp) plane, with tan 29 = L/K. The matrix 
Ual made up of the components (33), is unitary, U <11 

= -'tau <12 = 2-1/ 2 aeia9. 
In both cases under consideration, the matrix Tmn(h) 

can be obtained from the matrix (amn(h)) by replacing 
Cl'nn(nc) in it by :61 Cl'mn(nc)l 2• 

m 

5. DIRECTLY TRANSMITTED RADIATION 

After determining gCik>(nh) and obtaining from (9) 
the propagation functions Gtk, we need to find the value 
of (10) in order to calculate the density matrix (8) and 
the Stokes parameters (7). If the eigenvectors of the 
linear polarization can be chosen orthogonal, then using 

(10) and the explicit form of Uok, we obtain 

M.,,dnrr'h) = 1/.e-"<•-•H-•>[acrqpGu + aaG., + 'IJPG,,* + G,], (34) 

where the angle 9 is defined by (33). For an axially
symmetrical medium we can take 9 = 0. 

To describe the radiation passing directly in the for
ward direction it suffices to calculate the free term in 
(8). Taking (34) into account, we obtain the following ex
pressions for the Stokes parameters of radiation that 
has covered a distance l in the medium: 

I.= 'j,I,1' 1(e-'• + e-'•) + 1/,I~'\e-'•- e-'•). (35) 

If we interchange the Stokes parameters of the incident 
radiation in (35 ), replacing 1~01 by 1~01 and I~01 by ~01 , 
then we obtain an expression for I3 : 

[ (O) (O) , ( 't't + 't'2) I,= I, cos<I>+I, sm<l>]exp --2- . (36) 

(0) 1(0) d I(O) b We obtain I1 from (36) by replacing 12 by 1 an 1 Y 
- I~01 • Here Ti = N0la~l>(nh) is the optical v.ath of the 
wave characterized by the polarization fCll, and <P 
= 27Tl/X-1 [c/v2 - c/v 1 ] is the phase shift of the ordinary 
and extraordinary waves along the path l. The Stokes 
parameters in formulas (35) and (36) are measured in 
a coordinate system in which the x and y axes are di
rected along the vectors f u> and f 121 of the proper linear 
polarization. 

Expressions (35) and (36) remain in force also for 
an optically thick medium, if the incident radiation has 
one definite direction that coincides with the observation 
line (e.g., scattering of radiation from a remote source 
by a layer of matter), for in this case the probability of 
rescattering into a narrow forward angle is small. 

We note that the radiation acquires a circular polari
zation I2 * 0 even if it had no polarization at first, pro
vided 1~01 * 0, i.e., if the direction of the preferred os
cillations of the electric vector of the initial beam did 
not coincide with f u> or f <21 • The reason for this is the 
interference of waves propagating with different phase 
velocities. At I<o> = 0 there is no such interference, 
owing to the statistical independence of the beams po
larized along £111 and f< 21 • If the initial beam was polar
ized, then the beam becomes polarized, owing to the 
different absorption and scattering of waves with differ
ent polarizations. We note that the phase plates used in 
optics[51 are based on analogous effects. 

It is also interesting to note that when light propa
gates in an interstellar medium, and particularly when 
it passes through dust clouds, effects described by for
mulas (35) and (36) may be observed. Rotation of the 
plane of linear polarization of light traveling from stars 
is possible. Conversion of linear polarization into cir
cular or vice-versa is also possible. The observed com
plicated dependence of the circular and linear polariza
tions on the wavelength in white dwarfs[eJ may be due to 
scattering in an anisotropic medium surrounding these 
stars. These phenomena were considered in detail in [71 • 

6. STOKES PARAMETERS OF RADIATION SCATTERED 
IN AN AXIALLY -SYMMETRICAL MEDIUM 

To determine the Stokes parameters of the scattered 
radiation, it remains to find the quantity (12). We con
fine ourselves to its calculation in explicit form only 
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for isotropic media such that the polarizability tensor 
of the particles in their own Cartesian system is diago
nal, and the distribution function W(O) depends only on 
the angle {3. In this case 

(anm(h)a,.+(h)) = BnmO,.Hn, + 6n,6,mCnm, 

H" = H_,_, = H,_, = H_" == b,, Hoo == b,, Cnn = 0, 

H.,= H_., = H,,,• = H,_, == b, + ib,, C_" = C,_, == b,, 

c" = c, = c,_, = c_" == b,. 

The quantities bn are real and are given by 

b, = '!.(1 + 2R, +R,) lad'+ '/,(1- R,) (a,a,• + a:a,) 
+ '/,(1- 2R, + R,) (lazl' + 21 aol'), 

b, = '(,(R,- R,) Ia,- a, I'+ '/.(1- R,) lazl', 

(37) 

b, = '/,(1- 2R, + R,) Ia,- a, I'+ '/,(1 + 6R, + R,) I a, I', 

b, = '/,(1- R,) lad'+ 'J,(R, -R,) Ia,- aol' + '/,(1- 2R, + R,) I a., I' 
+ '!.(1 + R,) (a,a,• + aoa,), 

b,='/,(1-2R,+R,)(2Iad'+ lazl') +R.ja,l' 
+ (R,- R,) (a,a,• + a,a,*), 

b, = '/,i(1- 3R,) (a,uo'- a,a,'), a.== an(n,). 

Substituting then (37) in (12) we obtain after straight 
forward but quite prolonged calculations the value of 
Byv· To calculate the Stokes parameters it is more 
convenient to use not Byv itself, but the quantities Bn 
(n = 0, 1, 2, 3), which are connected with Byv by the re
lations (see (7)): 

B •• = '(,(B,- aB,), Ba-a= - 1/,(B, + iaB,). 

We obtain for them 

If the incident radiation is not polarized, then all 1~> 
= 0 with the exception of Ii,0 >, and the expressions in (39) 
become much simpler. As a limiting case we can obtain 
from (38) the well known formulas for scattering in an 
isotropic medium. In this case W(n) = (87T 2r 1, R2 = Ys, 
and R4 = J's, with all bi = 0 with the exception of b 1 and 
b2• In addition, it is possible to choose the z axis along 
n0, to make {3 0 = qJ 0 = 0. The results make it possible to 
determine the Stokes parameters for different concrete 
cases. Let us consider by way of an example the scat
tering of an unpolarized plane wave by an axially-aniso
tropic plane layer of thickness L. Using (8), (34), and 
(38) we obtain for the radiation passing through the 
layer 

In=!~') Fnok'N,Lsec ~ •. (42) 

For the particular case when the radiation is incident 
on the layer in the direction h, i.e., {3 0 = 0, we obtain 

I,= '/, f.'l k'N,L sec B. (b, + b,) [2 + (y -1)sin' ~.], 

I,= '(,I:"'k'N,Lsec~,(b,+ b,) (y-1)sin'~,, I,=I,=O, (43) 

y = 2b,(b, + b,)-•. 

The case y = 0 corresponds to complete orientation 
of the particles along the direction of the incident radi
ation (R2 = R4 = 1 ), and also at Qlxx(nc) = Qlyy(nc ), to 
complete orientation in the perpendicular direction 
(R2 = R4 = 0). In this case the electric vector E 10> 1 h 
cannot induce a dipole moment along h, and no axial 
anisotropy of the particles comes into play. Therefore 
(43) at y = 0 coincides with the expression for Rayleigh 

(38) scattering. At y = 1, the scattered radiation is isotropic 
F" = 'j,b, sin 2~, sin~. sin(q>o- cp,)- 'j,b, sin'~. cos~. sin 2(QJo- <p,), and unpolarized, and at y > 1 polarization of opposite 

F.,= 'j,b, sin 2~, sin~. sin(cp,- cp,) + 'j,b, (1 +cos ·~,)cos~. sin 2(<p, - <p,), sign appears. By way of an example we indicate that 
F, = b, cos'~. sin'~._ •j,(b, + b,) (1 +cos' ~.)sin'~. ':hen lig.ht of Y = 5. x 10-~ em is s~attered ~y ~ust par-
+ 'j,b, sin'~. sin'~.+ 'j,b, sin 2~, sin 2~, cos(QJo _ <!'•) tlcles wtth 50% ortentatwn (R2 = /3, R4 = /5 ) m the form 

- 'j,b, sin'~.( 1 +cos'~.) cos 2 (<p,- q>,). (39) of ellipsoids of revolution and made of iron graphite, 
In d t bt i F F d F 't ffi t . t with an axis ratio 0.1, the parameters yare equal to or er o o a n o1o 31, an 03 1 su ces o m er- 0 15 d 0 26 t' 1 
h th l {3 - {3 d · th . an . , respec tve y. c ange e ang es, 0 - 1 an qJ0 ~ qJ1, m e expres-

sions for F 10, F 13, and F 30• Next, 

F, = F 03 = 'j,b, sin 2Bo sin B• sin(<po- <p,), (40) 

and F02 = F32 differs from F20 only in the interchange 
{3 0 ~ {3 1 • Finally, 

F,. = -F.,= b, sin ~.sin B• cos (<po - q>,), 

F" = b, sin ~o sin~~ cos(<po- <p,) + b, cos ~o cos~. cos 2(<po- <p,), 

F, = b, sin ~o sin B• cos (rp, - QJ•) + (b, - b,) cos ~.cos ~., 

Foo = '/,( b, + b,) (1 +cos' ~0 ) ( 1 + cos' ~·) + '(,b, sin'~. sin'~. 
+ b,( 1 - cos' ~"cos' B•) + 'j,b, sin'~. sin'~. cos 2 (QJo- q>,) (41) 

+ 'j,b, sin 2~, sin 2~ 1 cos(QJo- <p,), 

F, = 'j,(b, + c,- 4b,)sin' ~.sin' B, + 'j,b, sin' ~0 sin'~. 
+ 'j,b, ( 1 +cos'~.) ( 1 +cos' B,)cos 2 (<po- <p,) 

+ 'j,b, sin 2~, sin 2~1 cos(<po- <p,). 
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