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Scalar TE- and vector TM-types of waveguide localized electromagnetic-field distributions in a nonlinear medium are investi
gated for the case of cylindrical geometry. It is shown that, in contrast to the case of plane geometry, for both the TE- and 
TM-types of self-trapped cylindrical waveguides, there is a complete set of various modes (fundamental and higher). Besides 
a qualitative phase analysis of cylindrical waveguide distributions, numerical calculations are carried out that yield the proper 
values of the parameters of the TE- and TM-waveguides. 

STUDIES of the equations of nonlinear electrodynamics 
u-3l have shown that in the case of a plane geometry, in 
addition to the well known [4•5l scalar localized TE-wave
guide distributions of the field in a nonlinear medium, 
vector localized TM-distributions of the field of the plane 
waveguide type are possible. From the point of view of 
the real experimental study of self-focused waveguide 
distributions, there is interest in the study of the con
sequences of the equations of nonlinear electrodynamics 
in the case of cylindrical geometry. In the present paper, 
the results are given of a similar study that applies both 
to TE- and TM-waveguide distributions of the electro
magnetic field in a nonlinear medium. In contrast with 
the problem of plane geometry, where most of there
sults can be represented in analytical form, the theory 
of cylindrical self-focused waveguides is primarily 
based on the qualitative analysis of phase trajectories 
corresponding to solutions of nonlinear electrodynamics. 
Such an analysis is supported by the results of numerical 
calculations, which also permit us to determine the val
ues of the proper parameters of the lower TE- and TM
field distributions in nonlinear waveguides. It is shown 
that for TE field distributions in a nonlinear medium, 
along with the fundamental localized waveguide mode 
previously known, there also exist higher localized 
waveguide modes, which possess nodes at finite dis
tances from the axis of the waveguide. For the lowest 
nonaxial TE-mode, a distribution of the azimuthal elec
tric field in the self-focused waveguide is obtained as 
the result of numerical integration. It is shown that 
field distributions exist in a transparent nonlinear me
dium of the type of localized TM-modes (fundamental 
and higher), corresponding to focused waveguide fila
ments, in which both radial and longitudinal electric 
field is excited. 

1. For the electric field 

E(r, t) =E+(l·)cosrot+E-(r)sinrot (1.1) 

the investigated equations of nonlinear electrodynamics 
have the form 

(1.2) 

Here 

k' = (ro /c)', 

and E is a real nonlinear dielectric constant of the me-
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dium. In the case of a plane geometry, (1.2) has solu
tions of the form 

j = x, y, z (1.3) 

and leads to the following set of equations: 

-f!J," + k,f!J.' = k'e(Ul, f!J.' + f!J.' + f!J,')f!J., 
k,'f!J.- k,f!J,' = k'e(ro, f!J.' + f!J.' + f!J,')f!J., (1.4) 
-f!J.'' + k.'f!J, = k'e(ro, f!J.' + f!J.' + f!J,')f!J,. 

In the derivation of (1.4), we have assumed k = 0, Oz 
- ox = rr/2 for an arbitrary phase oy and real functions 
fSj, which corresponds to the absence of energy flux 
along the x axis. Among the solutions of the set (1.4), 
we can isolate two types of exact solutions, similar to 
the TE- and TM-field distributions in the linear case. 
For the TE-distribution, (1.4) is degenerate in the 
equation 

/C.''+ [k'e(ro, elf,') - k,']IC, = 0, (1.5) 

which leads, in particular, to a localized plane TE
layer. [3' 5 l For the TM distribution, (1.4) degenerates 
into the system 

-8," + k,elf.' = k'e(ro, f!J.' +IC,')8., 

-k,elf,' = [k'e(ro, elf.'+ elf,') - k,']elf., (1.6) 

the study of which, carried out in ll-Sl, indicates the ex
istence of a localized plane waveguide TM-layer. 

2. There is special interest in the investigation of 
localized field distributions for cylindrical geometry. 
Here, the Eqs. (1.2) have a solution of the type: 

clf;(r) --+f!J;(r)cxp{ik,z + imcp + i6;}, j =r, q;, z (2.1) 

and for Or - Oz = rr/2, Ocp = Oz, which corresponds to the 
absence of energy flux perpendicular to the axis of the 
cylindrical coordinate system, lead to the system 

- ~~ (r dJ!J,) + m' elf,- ~.!!_(riG,)- mk, 8 9 = k'efG,, 
r dr dr r r dr r 

, d [ 1 d ] mk, d (fG') , k,f!J0 -- --(rfG0 ) ---8,-m-- ~=kerG .. 
drrdr r drr 

(2.2) 

For azimuthal one-dimensional case m = 0 and among 
solutions to the set (2.2), we can find two types of dis-
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tributions. To be precise, for the TE distributions, (2.2} 
leads to the equation 

-E.''-+E.'+(k.'+ :,)E.=k'e(w,E.')E.. (2.3} 

For TM-distributions, (2.2} leads to the system 

-~..!!..(r d(G,)-~..!!..(rE,)=k'e(w,E.'+E.')E,, (2.4} 
r dr dr r dr 

k, dE, = [k'e(w, E.':+ E.')- k.']E,. 
dr 

3. The system (2.4} for the dielectric permittivity 

e=e,(w)+~(w)h, h==E.'+ft.' (3.1} 

at E0 (w) > 0 and .6.(w) > 0, which corresponds to a trans
parent medium, can be written in the form 

i!, + + e, + l'a e, + ~a e· + (1 +e.'+ e.') e, = 0, 

Vae, = (1 +e.'+ e.')e,- ae,. 

Here we have used the following notation: 

e;= V ~(w) ft;; 6 = )'k'eo(w)r, a= k.'/k'eo(w). 
eo(w} 

(3.2} 

As r ~ oo, (3.2) degenerates into a set of equations that 
have the first integral£31 

<1z'+W,.t 

ifC=(ftz')'-kz'ftr'+k' J dqe(w,q). (3.3) 
0 

For the dielectric permittivity (3 .1 ), the integral 
curves on the (ez, er) plane have the following repre
sentation: 

a(2~- 2s- s') e/' = --,-.,..,.-.:.._:_,_.,..,----'-:--
2(1+s)(1+s-2a) ' 

e/+e/·=s. (3.4} 

Here 
~ = ~(w).r€ / k'eo'(w). 

In the case of cylindrical geometry, the change in the 
quantity .re, which is conserved in the plane geometry, 
is determined by the relation 

d.re 2E.' 
-= ---k'e,(k'e-k.'). 
dr k,'r 

(3.5} 

Using (3.1}, we find that 

d~/ ds = -2e,'(1 + s) (1 +s-a) I a£. (3.6) 

The behavior of the integral curves (3.4} for a > 1, 
i.e., k~ > k2E0(w), is shown in Fig. 1. The system (3.2) 
for a > 1, which corresponds to transverse nontrans
parency in linear electrodynamics, possesses three 
equilibrium positions. These are the saddle point ez 
= er = 0 and the points of the type of the center, er 
= ±~, ez = 0. The integral curves with the pa
rameter {:3 = 0 corresponds to a localized plane TM
layer and intersects the er axis at the points 

e, =±is+, s+ = '/,a-1 + [('/,a-1}'+a-1]Y• > a-1. 

Figure 1 also shows a circle of radius ~. which 
separates in the (er, ez) plane the region e~ + e~ < a 
- 1 in which d{:3/d~ > 0, and the region ei + e~ >a - 1, 
in which d{:3/d~ < 0. In the first of these regions, the 
true integral curves, which correspond to cylindrical 

[.;;;q' «-tl 
' .;u v'U/ 
' \ 

\ 
I FIG. I. Phase trajectories for 

TM field distributions for Ki 
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geometry, intersect the integral curves of the plane 
problem, being directed toward an increase in the pa
rameter {:3, since the real integral curves in the second 
region of the phase plane are directed, with increasing 
~. toward smaller {:3. For localized distributions of the 
field, the boundary conditions take the form 

lime,= 0, lime,= e,(O}, lime,= lime,= 0. (3.7} 
~-+-0 t-+O ' t-+oo t-+oo 

Here ez(O} is the desired proper parameter. 
We now investigate the behavior of the integral 

curves near the special points of the type of the center 
(±~, 0}. Assuming . -

e, = ±Va--1 + e, e, = 0 +e., (3.8} 

and after linearization of the system (3.2}, we get the 
equation 

~ 1 ~ a (a - 1) - l' a( a - 1) •;, 
e,+~e,+3a/2-1 e,=+ (3a/2-1)s ' (3·9) 

the general solution of which has the form 

n ya-1 e,= c+J,(ks)+ c_N,(k£)+- --H,(kl;,). 
2 a 

(3 .1 0} 

Here k2 =a (a- 1)/(%a- 1), J 0 and N0 are the Bessel 
functions of zeroth order, H0 is the Struve function, l 7J 

c± are arbitrary constants, and the choice of the sign 
corresponds to choice of the sign in (3.8}. For we find 
that 

A 1 e, ~ -=-cos(k'i;, +<D)+-. 
l'ks s 

(3.11} 

where A and cJ> are arbitrary constants. It is obvious 
that such a behavior of the solutions corresponds to a 
winding of the integral curves about the position of 
equilibrium (±~, 0}. The results of numerical 
integration of the system (3.2} by a high-speed com
puter for a number of values of ez(O} and a value of the 
parameter a = 2 are shown in Figs. 2 and 3. For all 
values of ez(O} < 2, the integral curves wind about the 
equilibrium point ez = 0, er = - 1 as ~ ~ oo. However, 
even for ez(O) > 3, the integral curves go past the equi
librium position ez = 0, er = - 1 and wind about another 
equilibrium position ez = 0, er = + 1. With further in
crease in ez(O} from 3 to 4, and also from 4 to 5, an
other such shift occurs in the equilbrium position, about 
which the integral curves are wound (Fig. 3}. Such a be
havior of the integral curves indicates the existence of 
eigenvalues ez(O) which lead to a succession of local
ized TM modes (fundamental and higher). Detailed in-
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FIG. 2. Integral curves for TM field distributions for ez(O) ;;;. 2. The 
points ® denote intersections of the phase trajectories (J = 0 with the 
circle on which d(Jid~ = 0. 

vestigation permits us to establish the fact that the 
proper value ez(O)-the projection of the electric field 
on the axis of the cylindrical waveguide-for the funda
mental localized TM-mode is included within the limits 

2.61 < e,(O) < 2.62. 

The next localized TM-mode is characterized by the 
condition 

3.88 < e, (0) < 3.89. 

4. It has been shown previouslyl2' 3 l that, for a plane 
geometry and a medium that is nontransparent in a 
weak field, E0(w) < 0, the equations of nonlinear elec
trodynamics yield solutions of the type of a plane TM
waveguide layer. The set of equations (1.6), and also 
(2.4) as r - oo, have the following positions of equi
librium: 

e,=e,=O; e,=O, e,=±l'i+a; e,=O, e,=±1. (4.1) 

Here the values (±~, 0) correspond to points of 
nonlinear transverse transparency 

k'e(ro, {! .') = k.', {!, = 0, (4.2) 

while (0, ±1) are points of nonlinear longitudinal trans
parency 

e(ro, 8.') = 0, {!, = 0. (4.3) 

For a plane geometry, the phase trajectories are such 
that 

tz 

FIG. 3. Integral curves for the TM field distributions for ez(O) ;;;.3. 

c,. 

f1>0 p-0 

FIG. 4. Phase trajcetories for TM field distributions for e0 (w) < 0. 
The behavior of the trajectories for er < 0 is symmetric relative to the 
ez axis. 

• 
;,-k' J dqe(ro,q) 

0 

8.'=k.' . 8,'+8.'=h. (4 4) 
k'e(ro,h) [k'e(ro,h)-k,']' • 

For the case of the dielectric permittivity (3.1) and 
E0(w) < 0, the relations (4.4) lead to the equations 

1 2p +2s -s' 
er=a , e.'+e.'=s. (4.5) 

2(1-s)(1+2a-s) 

Here we have used the following notation 

8; = 1-e,(ro) I 1\({l))e;, 6 = Ji.-k'e,(ro)r, 

a= -k,' I k'eo(ro), P = A(ro)d'IG I k'e,Z(ro). (4.6) 

The topology of the integral curves (4.5) for the val
ues of the parameter a < 1 is shown in Fig. 4. The 
phase trajectories with {3 = 0 correspond to the local
ized and periodic TM field distributions studied previ
ously. l2 ' 3 l Closed trajectories with {3 * 0 correspond 
to periodic TM field distributions of a different nature 
in the nonlinear medium with E0(w) < 0. The points of 
the phase plane ez = 0, er = ±1/v'3 are singular points 
in correspondence with the topologies of the phase tra
jectories (Fig. 5). It is important that the given points 
correspond to the maximum value of the parameter 

p = 4l27a + 116. (4. 7) 

in the region of the phase plane e~ + e~ < 1. 
For a cylindrical geometry, the quantity ;,, which 

is conserved in the case of a plane geometry, changes 

FIG. 5. Distributions of the azimuthal field in the TE waveguide: 
a-fundamental mode, b-Iowest nonfundamental mode. The dashed 
curves b1 and b2 correspond to field distributions for values of the para
meter c that are smaller and larger, respectively, than the proper value. 
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according to the law (3.5). In the case under study, 
(3.5) takes the form 

d~ Ids= -2e!(1- s) (1 +a-s) I as. (4.8) 

Consequently, the derivative df3/d~ < 0 on the entire 
phase plane with the exception of the annular region 

1 < e,Z + e,.• < 1 +a, (4.9) 

while in the ring (4.9) we have df3/d~ > 0. 
We shall show that for cylindrical geometry and E0(w) 

< 0, the equations of nonlinear electrodynamics do not 
yield solutions of the type of a localized TM waveguide. 
Actually, let us consider the integral curve which starts 
out from the point ez = er = 0 for ~ = oo, corresponding 
to the vanishing of the field at infinity. Upon decrease 
in ~. the point emerges from the saddle point ez = er 
= 0 along one of the separatrices and moves inside the 
region of the phase plane bounded by the trajectories 
with {3 = 0, intersecting the trajectory with {3 > 0. The 
motion of the representative point, upon decrease in 
the spatial variable, is accompanied by an increase in 
the value of {3. In order that the axis of the cylindrical 
set of coordinates be reached in the motion, it is neces
sary that {3 - + oo • However, in the region of the phase 
plane e~ + e~ < 1, the largest value of the parameter {3 
is bounded and is given by the expression (4. 7). Conse
quently, the motion associated with the integral curve, 
which starts out from the saddle point at ~ = oo , cannot 
be continued to the axis of the cylindrical system. It is 
evident that this statement is connected with the fact 
that the trajectory of the plane problem with {3 = 0, which 
corresponds to a localized TM distribution, cannot have 
intersections with the curves df3/d~ = 0 which separate 
the phase plane into regions in which the sign of the 
derivative df3/d~ is the same. A similar situation is 
preserved also in the case cr > 1. We recall that in the 
case of a transparent medium investigated above, there 
was an intersection of the curves {3 = 0 and df3/d~ = 0. 

This, for E0(w) < 0, there are localized TM field dis
tributions with cylindrical geometries, satisfying the 
equations (2.4). 

5. We now consider the problem of localized TE 
field distributions in the nonlinear medium. Equation 
(2.3) for the dielectric permittivity (3.1) and E0(w) < 0 
or k~ > k2E 0(w) > 0 takes the form 

.. 1 . 1 3 e.+-Te.- 6, e.- e.+ e. = o. (5.1) 

Here we have used the notation 

e.-- k)'t.(ro) "'•• ,1----"' 6 = ,k,'- k'e,(ro) r. 
)'k,'- k'e,(w) 

The problem of localized TE distributions of the azi
muthal field corresponds to the boundary conditions 

lime.= 0, lime.= 0. (5.2) 

By investigating the behavior of solutions on the axis, 
we find that ecp ~ c~ as ~- 0. In the numerical inte
gration of Eq. (5.1), the value c = decp/d~l ~=o was taken 
for the desired proper parameter of the problem. Cal
culations showed that for the fundamental localized TE 
mode, the characteristic parameter c 0 ~ 1.252. We note 
that the distribution of the azimuthal field over the ra
dius for the fundamental mode is identical with the dis
tribution found previously. eel Computer calculations 
have shown that, together with the fundamental mode, 
there also exist higher localized TE modes. For ex
ample, the first mode shown in Fig. 5 is characterized 
by the value of the parameter c 1 R: 2.415 and by the 
node at ~ R: 2. 7. 

Thus, in contrast with the results of c5• 81, we have 
shown here that the equations of nonlinear electrody
namics achieve exact solutions of the form of self
trapped cylindrical waveguides for both the TE typec61 

and the TM type. In both cases here there is a whole 
set of different modes, which differ qualitatively from 
the solutions of plane waveguides considered earlier. 
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