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It is shown that weakly damped surface waves should exist in a Fermi liquid in which the longitudinal and transverse zero-sound 
velocities are great. These waves would have a linear dispersion law and be similar to Rayleigh waves in solids. However, because 

of strong damping, such waves will not propagate in helium 3. 

THE character of surface wave propagation, as well as 
any other oscillations in a Fermi liquid, depends on the 
relation between the frequency of oscillation w and the 
characteristic time between the collisions of the quasi
particles, T. At low frequencies (wT << 1), the laws of 
ordinary hydrodynamics are applicable, from which fol
lows the existence of capillary-gravitational waves with 
the dispersion law w = crk3/p + gk, where k is the wave 
vector, cr the surface tension, p the liquid density, 
g the acceleration due to gravity. The specifics of a 
Fermi liquid appear in the high-frequency region (wT 
>> 1), when so-called "zero sounds" become possible 
types of oscillations in the bulk of the Fermi liquid. 0 J 

Here, transverse vibrations can also exist in principle 
along with longitudinal vibrations, transverse vibrations 
can also exist in principle along with longitudinal vibra
tions. In a solid, the presence of two types of vibrations 
leads to the possibility of propagation of surface waves 
with a linear dispersion law (Rayleigh waves[2 l). In this 
connection, it is interesting to consider the question of 
the possibility of propagation of high-frequency oscilla
tions of the Rayleigh-wave type in a Fermi liquid. In the 
present work, this problem is considered for a Fermi 
liquid in which the function F(EI ), which describes the 
interaction of quasi particles in the Landau theory, [3 l 

contains only two spherical harmonics: F(EI} = F0 + F1 

x cos El. We shall also assume that F0 and F1 are such 
that there exist longitudinal and transverse modes of 
the zero sound. 

1. STATEMENT OF THE PROBLEM 

At low frequencies, the distribution function of quasi
particles satisfies the kinetic equation without the col
lision integral: 

~ ~h ~h ( -+-----=0. 1) ot or op op or 
Setting n =flo+ z;(I}Clflo/ClE, where flo is the equilib

rium Fermi function and 1 is the unit vector in the di
rection of the momentum of the quasiparticle, we lin
earize Eq. (1); as a result, we get 

Ov 
at+(vV)<p = 0. (2) 

Here v is the Fermi velocity, and r.p is a function con
nected with z; by the relation 

(3) 
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The bar above denotes averaging over the solid angle. 
It is convenient to introduce the additional operator G, 
such that 

v =(1- G)<p == <p- G,rr·- a,z;q,z;. (3' ) 

It is easy to see that Pz; = Gr.p, G = Fof(l + F0 ) and 
G1 = F1 /(1 + F 1 /3). Substituting (3') in (2), we get the 
equation for r.p: 

~ o<p 
(1- G) at +(vV)<p = 0. (4) 

We choose the boundary of the liquid as the xy plane 
and direct the z axis into the liquid. Solutions of Eq. 
(4} which are proportional to exp [ i(kxx- wt)], which 
fall off as z ~ oo and satisfy definite boundary condi
tions at z = 0, correspond to surface waves. We shall 
write out these conditions. The reflection of the quasi
particles on the free surface of the liquid can be as
sumed to be specular,[ 4 J when the condition 

cp(l,) = <p(-l,)- 2p,ul, for z = 0; (5) 

is obtained for waves of small amplitude. Here Po is 
the Fermi momentum and u is the z component of the 
velocity of the boundary. 

In addition, it is necessary to require continuity of 
the momentum flux through the boundary. We shall as
sume that the vapor pressure is equal to zero; then the 
conditions for the z component of the momentum flux 
tensor are written in the form 

o's 
Il.~z = cr axz ' (6} 

where t: (x} is the displacement of the surface from its 
equilibrium position. In a Fermi liquid llik 
=- 3Nr.plilk = -3Nr.pik• N is the number of particles in 
a unit volume. Vanishing of the xz and yz components 
follows from the condition (5} and the equation for llzz 
is an additional restriction: 

(J o'(; 
<p, = - 3N ox' for z = 0. (6'} 

The effect of the surface tension on the surface waves 
in the case under consideration can be neglected: their 
contribution is small in comparison with the contribu
tion of the remaining terms in llzz in the high-frequency 
region, and is measured by the ratio of the interatomic 
distance to the wavelength; therefore, we can replace 
(6') by the condition 
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'Jl,(z = 0) = 0. (7) 

Thus, the desired solution of Eq. (4) should satisfy the 
conditions (5) and (7) for z = 0. 

2. DERIVATION OF THE DISPERSION EQUATION 

The problem stated is analogous in many ways to the 
problem solved by Bekarevich and Khalatnikov [sJ in 
connection with the calculation of the thermal discontin
uity at the boundary of liquid helium 3 with a solid. The 
difference is that we are dealing with the dependence of 
the distribution function on two spatial variables instead 
of one; however, the method of solution is not changed 
in this case. 

We introduce the unknown function x according to 
the equation 

_ _ { - 2p,ul,e'" for l, > 0, ( 8) 
'1'-x+~v- o fur~<~ 

while q is so chosen that the function y satisfies the 
equation 

-iwy +(vV)y =0, 

i.e., v(lxkx + lzq) = w; then the specular condition for 
the function x is written in the form 

;r.(l,)=x(-1,) for z=O. (9) 

Substituting (8) in (4) and keeping it in mind that the de
sired solution is proportional to exp [ i(kxx- wt)], we 
obtain an inhomogeneous integrodifferential equation 
for x: 

- iwx + iwG(x + y) + ik,v.x + v, :~ = 0. (10) 

This equation is conveniently solved by the Fourier 
method, extending provisionally the quantity Gy to nega
tive values of z, so that the condition (9) is satisfied. 
As will be seen from the answer, it is sufficient to con
tinue y and y lx in even fashion and y lz in odd. We 
now transform in (10) to the Fourier components in z: 

1 +oo 

x(z) =- Je",'x(k,)dk,. 
2n -oo 

Similarly, for y, yl'A ('A = x, z), we obtain as a result 
the equation for the Fourier components 

-sx + v,l,x + G, (xo +Yo) + sG,l, (X• + y,) = 0. (11) 

In Eq. (11), the following notation is introduced: 
s = w/kv, v'A the unit vector in the direction k 
= (kx, 0, kz) and also Xo = x, Yo= y, X 'A = Xl'A, Y'A = Yl'A, 
and summation is carried out over repeated indices. 
The Fourier transforms are denoted by the same letters 
as the original functions and the argument will be given 
only in those cases in which confusion is possible. We 
then solve ( 11) relative to x : 

X= - 8 -[Go(Xo +yo)+ G,l,(x, + y,) ]. (12) 
s- Z.v, 

Averaging (11) over the angle, we find Xo + y0 : 

where y 11 =X'AV'A· 

svo +xu 
Xo+vo= s( 1 -Go)' 

(13) 

We then multiply (12) by lm and average over the 
angle: 

Z:: lmlA ( ) Xm =--1-sGo(Xo+Yo)+--1-sG,(x, +y,). 14 
s- ,v'A. s- '-v" 

The quantities Zm/(s -l'Av'A), lklm/(s -l'A v'A) and also 

li lklm/(s -l'Av'A) are calculated in the Appendix. Using 
the notation introduced there, we get 

x,., =• b,vmsGo(Xo +Yo)+ a,sG,(xm + y,) + b,vmsG,(XI +VII). (15) 

We multiply (15) by Vm, sum over m and express 
x 11 + Yll in terms of the resultant equation: 

where 

(i+F./3) 
X11 + Y11 = 1'1 [wF,(sy,- Y11l + Y11J. 

II 

1'1 11 = (1- wFo) (1 + F./3)- s'wF" 

s s+ 1 
w == w(s) = -ln---1. 

2 s -1 

(16) 

(17) 

Substituting the values of Xo and Xm found from (13), 
(15), (16) in (12), we get 

1 f [ G sb, ( l, v.) GoGL ] ( + ) 
x=-;:-i,h l so+ 1-a,sG, Xo Yo 

s'G,'b,(l,v,) (1 + F,/3) [ F +(1 - F) ) } 
+ WS oYo W o Yo · 

1- a,sG, !111 
(18) 

We can now convince ourselves that in the chosen meth
od of continuation of y 0 , Yx and Yz in negative values of 
z, the quantity x satisfies the condition (9). Actually, 
for the simultaneous substitution lz - -lz and 
Vz- -vz, (18) does not change, i.e., 

z(l, k,) = x(-1, -k,). 

Then 
1 +oo 1 +oo 

x(l, z = 0) = -s x(l,,k,)dk, = -s x(-l,,- k,)dk, 
2n , 2n -~ 

1 +oo 

= "2,';' J:(-l,k,)dk, = x(-l.,z = 0), 

i.e., the condition (9) is satisfied. 
The connection between the frequency of the surface 

waves w and their wave vector kx is found from the 
condition (7). This condition contains the quantity Xzz• 
for the calculation of which we multiply (12) by z; and 
average over the angle. After a number of simplifica
tions, we obtain 

x, = (a,+ b,v,')sGo(Xo + )'o) + [(a,+ b,v,') (XII+ Yu) 
+ 2a,v,(x.+v.))sG,. 

It is convenient to express x z + Yz in terms of Y 11 + X 11 

and the new quantity x 1 + y 1 = X '1\T'A + YAT'I\, where T'l\ 
is a two-dimensional vector with components Tx = -vz, 
Tz = vx; it is orthogonal to the vector V'A· We find 
from (15) 

where 

F, 
L'l.L = 1--[1 + 3(1- s')w]. 

6 

(20) 

(21) 
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Keeping in mind the definitions of X 1 + y 1 and X 11 

+ y 11 , we get 

'X• + y, = v,(Xu + Yu) + vx(X.l. + Y.1.). (22) 

We substitute (22) in (19); then 

_ 2 [ wF,(sy,-yii)+YII ] ( 1 1) 
'Xn- v, s ~ 11 VII + 2v,v,sy.l. !'J..1.-

+vx'{ F,(sy,-yu)+(s'-1)yn + 2s' [wF,(sy,-yii)+YII] 
2s '-'II 

[ (1 + F,/3) (1 + F,) 
X s' 

(23) 

It is convenient to make the substitution y = - 2p0uif/k. 
With the help of the definition of y(8), we easily estab
lish the fact that 

f, = l,' I (s- v,Z,), r .. = lml.' I (s- v,l,). 

The value of the indices in f corresponds to their value 
in y. 

The condition (7) has the form 

1 +~ p,u -Jx .. dk, = -y.,(O) =-. 
2n_~ 4 

(24) 

Substituting (23) in (24), we obtain 

_ 2;J+:x~{2c'+((1+Fo)(1+F,/3)-3s'] (wF, ) 
2 '!'J. 3 +ill 

-~ C C II 

( s' ) 4 s' ( s' ) 1 [ 2 1 
- 1-7 f11+p;'-;;; 1-~ ~-2 F,+3 

+( 1 -s')w]~(i-~)+ F,+3(s'2-1)/11 ' =~, 
c c 6c 2 (25) 

where c = w/kxv. Integration on the left side of (25) is 
carried out over the new variable K = cvkz /w along the 
straight line which passes through the origin of the co
ordinates at an angle a = arg c to the real axis. The 
functions w, A 11 , A 1 and f 11 depend on s, and s 2 

= c2/(1 + K 2). In the transformation, we used the relation 
sfo = f 11 =%,and also the fact that 

1 s' 
fn = s'w -,3 -Tc'[(3s' -1)w -1]. 

The singularities of the integrand are the poles for K 

which correspond to the vanishing of A 11 and A 1' and 
also the branch for s = ± 1. The root of the equation 
A 11 (s) (which we denote by s 11 ) is the velocity of propa
gation of the longitudinal mode of zero sound in Fermi 
units, s 1 is the analogous quantity for the transverse 
mode. The drawing shows the poles K 11 and K 1 and the 
branch for K = ±.fi?"'=T for the case in which c is 
real and satisfies the inequalities c > 1, c < s 11 and 
c < s 1 . Integration in this case is carried out along the 
real axis. The cuts must be circled as shown in the 
drawing. This rule of circling is obtained with account 
of the small collision integral, i.e., with the substitution 
of w +io for w, where o is a small positive quantity. 
On the upper edge of the right-hand cut, 

s ., s + 1 I in in 
w(s)=-ln -- -1+-s==w,+-s. 

2 s-1 2 2 
(26) 

We close the contour of integration in the upper half
plane K. After calculation of the residues, we obtain 

-ZncJ' s'ds {2c'+(1+Fo){1+F,/3)-3s'. 

0 l'c'-s' 2c'j!'J.1d' 

X [ 1 + ( 1 + F,) (1 + F,/3) ] 2 ( s') 1- s' ( 1- s')' } +- 1-·- --+ =0 
2c' c' c' I !'J..1. I' 8c' · 

(27) 

in lA 11 12 and lA 1l 2 we must substitute the value of w 
according to (26). 

Equation (27) is the dispersion equation for the sur
face vibrations of the Fermi liquid in the high-frequency 
limit; its roots c determine the dispersion law of these 
vibrations w = cvkx. Equation (27) remains correct also 
for complex values of c, inasmuch as the character of 
the location of the singularities of the integrand in (25) 
relative to the contour of integration does not change in 
this case. The real roots of Eq. (27) correspond to un
damped surface waves, satisfying the inequalities c > 1 
and c < s 1, s II• Real roots c < 1 cannot exist, inas
much as any collective mode with a propagation velocity 
less than the Fermi velocity experiences Landau damp
ing. If, for example, c > s 1 , then the pole correspond
ing to s 1 is shifted on the real axis and this means, by 
virtue of the properties of the Fourier transformation, 
that as z - oo, the quantity x zz will behave as 
exp (ik1 z), where k 1 = (w/cv).fc2/si- 1, i.e., it will 
not decay and the vibration will not be a surface vibra
tion. We note that the contribution of the cut falls off as 
z-oo according to the law 1/z2 (see, for example, l 6 l). 

However, real roots satisfying the inequalities given 
above for Ec •. (27) do not exist, inasmuch as for real 
c < s 1, s 11 , .:he first two terms in Eq. (27) are purely 
imaginary, and the third term is real; it is generally 
impossible to satisfy Eq. (27) with real c in this case. 
The absence of real roots means the absence of un
damped surface waves. The physical reason for the 
damping of the waves is the scattering of quasiparticles 
by the vibrating surface of the liquid. In order to estab
lish this fact, we note that the left side of Eq. (27) is 
equal to the Ilzz component of the momentum flux ten
sor on the boundary of the liquid, with accuracy to 
within a real factor. The contribution of the collective 
modes to the momentum flux is shifted in phase by the 
imaginary unit through a quarter period relative to the 
surface velocity, and therefore does not lead to dissi
pation. The contribution of the cut itself, i.e., the con
tribution of the quasiparticles scattered by the vibrating 
surface of the liquid, is out of phase with the vibrations 
of the liquid; this part of the momentum flux also pro
duces energy dissipation. 

I 
r~~ 

!''M7 
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3. CASE OF LARGE F0 , F1 

Equation (27) can only be solved numerically for ar
bitrary values of F0 and F1 • We shall not make use of 
this, but shall consider the asymptotic behavior of x as 
·Fa and F1 - oo. This permits us to understand the gen
eral character of the change of c with change in Fa and 
Fl' 

We shall first assume that only F 1 is large. With in
creasing F v s 11 and s 1 also increase. Limiting our
selves to the terms that do not decay as F 1 ~ 00 , we ob
tain for them 

s 11'=+(~·+F,)(1+F,/3), s_c'= :~+ ~- (28) 

The principal term of the imaginary part of (27) will be 
the following: 

2nis_c [ (£'-2)' _ 4l'1 -s']. 
~'F, l'1- e£' 

(29) 

Here we have introduced a new unknown ~ from the for
mula c = ~s 1 , and also the notation E = (s 1 /s11)2 • The 
given expression tends to zero as 1/ s 1 for s 1- oo. It 
is easy to establish the fact that the real part of Eq. (27) 
falls off as 1/s4 ; therefore, in first approximation, the 
integral term in (27) can be omitted and the imaginary 
part substituted in (29). 

The equation that is thus obtained can be reduced to 
the form 

(;'- 81;' + 81;'(3- 2e)- 16(1- e) = 0. (30) 

The resultant equation is identical with the equation for 
the dimensionless velocity of Rayleigh waves in a solid; 
it has a real root ~ < 1 which changes from 0.96 to 
0.87 when E changes from 0 to%. l 2 J 

In order to estimate the damping of the surface 
waves, we assu:rr.e that Fa- oo; then s}/s~1 ~ 3/5Fa 
- 0. Neglecting this ratio, we obtain the result that the 
principal term of the real part of Eq. (2") is equal to 

n [s' s'ds 1 s' 31 ')'d 1 (31) -2? 0 Wo'+n's'/4 +2', s ( -s 8 .. 

The contribution of the term with 1'6 112 falls off as c -a 
and can be neglected. The first of the two integrals en
tering into (3.1) was found numerically and is equal to 
0.19; the second is computed exactly and amounts to 
Y24' Using (29) for E = 0 and (31), we obtain the equa
tion 

~- 0,79 
(s'- 2)'- 41''1- (;' ~- 1;s_c' i. (32) 

We then substitute ~ = 17 +it, 1: << 17. From the equa
tion 

( rt'- 2) 2 - 4l'1 - rt' = 0 

we obtain 17 ~ 0.96. 
For the imaginary part, we have 

4 ] 0,79 
4rt[(rt'-2)+ (rt'-2)' \;~-llS_c'' 

whence 

\:/11"" 1/10s_c'. (33) 

Thus, in a Fermi liquid for which s~ >> 1, there are 

weakly damped, high-frequency surface waves with a 
linear dispersion law. The fvrmulas obtained in this 
section cannot, unfortunately, be applied to liquid he
lium 3, for which F 1 = 6.25 and s1 = 1.006; however, 
Eq. (33) indicates that for s 1 ~ 1, 1: ~ 1, i.e., the damp
ing is large. It is clear from physical considerations 
that upon decrease in Fa and F 1 , the contribution of the 
collective modes to the momentum flux tensor decreases 
in favor of the contribution of incoherent quasiparticles. 
On the basis of the results obtained, we can draw a con
clusion on the absence in liquid helium 3 of weakly 
damped surface waves at absolute zero. 

The author is grateful to A. F. Andreev for useful 
discussions. 

APPENDIX 

It is clear from symmetry considerations that 

lm/ (s -l,v,) = b,vm, (A.1) 

l,lm/ (s- l,v,) = a,i\,m + b,v,vm, (A.2) 

l.Z,lm/ (s -z,v,) = a,(ll,vm + ll;mVk + .S,mv,) + b,v,v,vm. (A.3) 

Here a and B 1 2 3 are functions of s; for their de-
2, 3 ' ' 

termination, we must set vx = 0, llz = 1 and compute 
several components of the described tensors by the 
number of unknown functions. We shall show how this 
is done, for example, for a 2 and b 2 • Setting l = m = z 
in (A.2), we obtain 

+t t' dt 
a,+b,= s---=sw(s): 

s- t 2 _, 

Now ta.!dng the convolution, we get 

+t 1 dt w + 1 
3a,+b,=J s-t 2=-s-. 

-1 

We can find a 2 and b2 from these considerations. For 
reference, we write down the expressions for a and b 
and useful relations between them: 

b1 =W, 

a,= - 1-[ (1- s') W + 1], 
2s 

3 w+1 
b2 =-sw---, 

2 2s 

a,= '/,[1 + 3(1- s')w], b, = '/,s'w- '(,, 

3a, + b, = s'w- 1/a, 2a, + b, = sb,, 

a, -a, Is = 1/3s. 
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