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An exact calculation is presented for the vicinity of a second-order transition point for a three-dimensional model of a 
ferroelectric with hydrogen bonds. This is a Slater model in which the external strong electric field makes the partition function 
of one of the configurations vanish. A model of this type w:1s first calculated in the two-dimensional case by Wu. The small 
parameter is the deviation of the temperature from the transition point. Interesting features of the model are the simplifications 
which appear just in the vicinity of the transition point. Thus the path density (see the article) vanishes at the transition point. 
Below the transition point the specific heat is zero, and above the point it possesses a logarithmic singularity. 

TnE principal task of the theory of second-order 
phase transitions is to calculate the thermodynamic 
functions in the vicinity of the transition point. A gen­
eral shortcoming of the existing approximate theories, 
experiments, and computer calculations is that the 
errors have not been estimated. At the same time, 
there are many considerations that point to a sharp 
growth in the values of the errors near the transition 
point. Exactly-solvable models are therefore of par­
ticular interest. 

At the present time there are two known exactly­
solvable models with short-range action: the two­
qimensional Ising model, calculated by Onsager, and 
the two-dimensional Slater model (ferroelectric model, 
calculated by Sutherland(!] and LiebE21). There is also 
the Wu model rs1, which is apparently the simplest sys­
tern having a second-order phase transition. The Wu 
model can be calculated both by the Onsager method 
and by the Sutherland-Lieb method. The generalized 
Wu model was calculated in[4J by the Vdovichenko 
method[ 5 J. 

The purpose of the present paper is to calculate the 
three-dimensional Wu model. The methods mentioned 
above are not suitable for three-dimensional models, 
and our calculation is based on a generalization of a 
method described in[ 6J, 

FIG. I. Hydrogen bonds inside 
one cell of the crystal. 

The model is shown in Fig. 1. The lines joining the 
lattice points are hydrogen bonds. The protons, one 
per bond, are located near one of the ends of the bond. 
For each point, 16 configurations are possible, six of 
which (neutral configurations) are shown in Fig. 2a. 
Each configuration s is ascribed an energy Es (see 
Fig. 2b) and a statistical weight exp ( -Es/kT). The 
problem consists of calculating the sum over all the 
configurations--the partition function ( {s} denotes the 
set of the parameters specifying the proton configura­
tion): 

(1) 

We assume that the energy level of the charged 
configurations lies so high that it suffices to take into 
account only six neutral configurations in the partition 
function (1). The energies of these six configurations 
depend on the molecule located at the lattice point (for 
the ferroelectric KlhP04 these are the P04 ions) and 
on the external field; in the Wu model, we chose the 
energy values indicated in Fig. 2b. 

The summation procedure can be made more lucid 
by representing the bonds in which the proton is 
located near the upper end (see Fig. 2a) by a solid line 
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FIG. 2. Neutral proton configurations for one point: a-possible 
proton configurations; b-energy levels and statistical weight; c-cor­
responding path configurations. Each upper and each lower pair of 
bonds pertaining to one point lie in mutally perpendicular planes. 
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joining the points, and by not showing at all the bonds 
in which the proton is located near the lower end. For 
the six neutral points we obtained the configurations of 
Fig. 2c. 

We see that any arrangement of the protons in the 
lattice (provided the electron neutrality condition is 
satisfied) can be represented by an aggregate of paths 
going from point to point in vertical direction without 
interruptions and without turning back. For a crystal 
with an edge (height) L, the partition function in the 
W Wu takes the form 

(2) 

where nu is the number of ways by which n paths can 
pass through the lattice from the lower limit to the 
upper one without meeting even in a single point. The 
problem of calculating the partition function of the 
three-dimensional Ising model can also be reduced to 
a calculation of the number of non-self intersecting 
paths[ 5 l. In the Ising model, however, backward turns 
are permitted, and this complicates the problem 
greatly. 

We introduce the following notation: x = exp ( -E/kT); 
S is the area of the base of the crystal. Since nn (L) 
< ( 2Ls)n (the number of paths without limitations on 
the encounters), we have 

where <Pn( L) < 1 is a factor taking into account the 
interaction of the paths. 

(3) 

At x < %, the expression in the square brackets 
S( 2x)L- 0, and therefore when x < % we have for 
the partition function Z = 1. 

At x > %, the growth of the factor [S( 2x)Lt with 
increasing n is offset, at sufficiently large n, by the 
factor <Pn( L). If x exceeds Y2 only slightly (the tem­
perature is close to the transition point), then n is 
small compared with S and the problem reduces to a 
calculation of rpn( L) at a small average path density. 

At first glance it seems that this problem can be 
resolved by writing the kinetic equation for the paths 
in the low-density approximation. Thus, Bely1 and 
Ovchinnikov[7 J consider the related problem of random 
walks of particles that are annihilated by collisions, 
taking as the basis the kinetic equation for the number 
of mutual distances between particles, However, the 
approximations usually made in the derivation of the 
corresponding three-dimensional kinetic equations 
become doubtful in the present case. In the two-dimen­
sional case (and all the more in the one-dimensional 
one) the particles interact more intensely than in the 
three-dimensional case, and therefore the picture of 
freely moving (in the first approximation) particles is 
incorrect even in the case of a low density and a small 
interaction radius. This will be seen from the calcula­
tion presented below. 

On the other hand, the replacement of p and p 2 (p 
is the density) by their mean values, which was carried 
out in [71, raises doubts precisely because of the small 
radius and the strong fluctuations of the interactions, 
i.e., it may happen that the fluctuations of p and the 
random approaches of the particles associated with 

these fluctuations are more important than the value of 
the average density of the particles or of the particle 
pairs. 

Indeed, as shown in [6 1, for the random walk of one 
particle over a lattice with randomly scattered for­
bidden points, the contribution of the fluctuations will 
be of the order of 1/jln p j, i.e., this contribution de­
creases very slowly, although it can be made small as 
p- 0. At the present time, an analogous problem is 
being considered, the role of forbidden points is being 
played by the particles themselves, and therefore the 
fluctuations should decrease. Since the contribution of 
the fluctuations is small, the point motion, which con­
tributes only to the value of the fluctuations, does not 
change the result[6J. We obtain, in accordance with [SJ, 

<Pn(L)~ exp(-SLp 2/4JTjlnpj), where p =n/S. How­
ever, the consistent calculation differs strongly from 
the calculation in [6 1, although it retains its main fea­
tures. 

We introduce the symbol W(x 1, x2, ... ,xn, t) for the 
probability that n particles will end up, after t transi­
tions along the z axis, at the points x 1, x2, ... , xu, re­
spectively, of a two-dimensional plane (x, y). As seen 
from Fig. 1, there are two types of points in the lattice, 
marked 1 and 2. It is therefore convenient to introduce 
the quantity Wi(xl> x2, .•. ,xnt) where the index i takes 
on values 1 and 2, and Wi denotes the probability of 
finding the first particle at a point of type i with co­
ordinates x1, the second at a point of type i with co­
ordinates x2, etc. The length along the axis is meas­
ured in units of one-quarter of the edge of the unit cell 
(see Fig. 1). The quantities <Pn in the partition function 
(2) are connected with Wi by the obvious relation 

<r~'1 (L) = ~ W,(x,, x,, ... , x"' 4£). (4) 

The calculation is then carried out as follows. From 
the exact recurrence relation for Wi with respect to t, 
we obtain an expression for the binary function 
Wi(x, y, t + 1) at the instant t + 1 in terms of the 
binary, ternary, and quaternary functions of the instant 
t. At low density, all these functions can be expressed 
in terms of the binary function, and then we obtain a 
closed equation which can subsequently be solved. 
However, the calculation differs significantly from the 
usual calculation of a low-density gas. This difference 
is connected with the two-dimensional character of the 
gas. Unlike in the three-dimensional case, we obtain 
here, in addition to the usual terms connected with the 
scattering of the particles by one another, also the ef­
fective interaction with the neighbors. At low density 
p, this interaction takes in ln2 p neighbors and the 
problem is solved under the assumption that the radius 
of this interaction is large. Some interest attaches 
also to the method by which the total energy is trans­
formed into two-particle energy in the derivation of 
the equation for the binary function. 

Let us proceed to the calculation. If we disregard 
the path interaction, then the recurrence relation for 
Wi take the form 

W,(t + 1) = i:W,(t), W,(t + 1) = MW, (t), (5) 

where (ks and ls are the coordinates of the point xs) 
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Lw, ( k, · · · k. t) = ~ ~ w, ( k, · · · k. t), 
l, ... l. 2" l, +a, ... l. + <Jn 

u,==±t 

In accordance with the summation rule described 
above only one path passes through each point in the 
Wu model. Therefore the transitions into one and the 
same point should be discarded from (5 ). In order to 
cause the contributions of these transitions to vanish, 
we add them in (5) with a minus sign. To abbreviate 
the notation, we introduce the symbols 

~ ~ w.(x,, ... k, ... ,xn) = W,(xh····x/, ... Xn), 
2 "-' l,- (J 

o=±i 

-;--~ W, ( X~o ... ,k, t (J ••• , Xn) = W, (x, ... x,' ... Xn), 

u=±l 

Osp = OkskpOZslp are the Kronecker symbols. We ob­
tain 

W,(t+1) =LW,(t)-G(t), W,(t-(1) =MW,(t)-F(t), (6) 

where 

G= Lbr,W2 (x,', ... ,x,'), 
p-=;i=s 

"*' 
From (6) and (7), after summing with respect to xs, 
we obtain with the aid of (4) analogous relations for 
<Pn· We introduce first a special symbol for a binary 
function of two close values of the arguments 

, , 1 ~ (k+a k-a\ 
W,(x,x)=z.t....w' 1 1 

W,(x',x1)=~ ~ w,( k k ) 
2 "-' L+a l-a · 

o=±t 

We obtain 

cp}'1 (t + 1) = cp~) (I)- n(n- 1) 2: ll~;) (x1 , X 1 , t), 

(2)( 1 (!)( ~ (n) I ' cp. t+ )=cp. t)-n(n-t)LJ W, (x,x,t). 

(7) 

(8) 

To find the binary function that enters here, we 
integrate Eqs. (6) with respect to all but two variables 
Xs. We obtain 

W, (x, )', t + 1) = W,(x', y 1 , t)- 6,_,W,(x', y', I)- (n- 2) W,(x'. x', y, t) 

- (n- 2) W,(x 1 , Y1 , y 1, t)- (n- 2) (n- 3) ~ W, (x1 , y 1 , z', z1 , t), 

W,(x, y, t + 1) = W, (x1 , y 1, t)- .S,,, W, (x', y', t)- (n- 2) W, (x1 , X 1 y' t) 

- (n- 2) W, (x1 , y', y1, t)- (n- 2) (n- 3)~ W, (x1, y', z1 , z', t). 

(9) 

The first term in the right-hand side is the free ran­
dom walk, the second term occurs when the two paths 
in the left-hand side of (9) come close together, the 
third and fourth terms occur when one of the these 
paths comes close to the remaining n - 2 paths, and 
the fifth occurs when the paths which do not enter in 
the left side come close together. The quantities W 1 

and W2 denote everywhere functions that are sym­
metrized with respect to their arguments 

At low density or at a large interaction radius (in 
this case both conditions are satisfied, as seen from 
(13 ), the interaction radius being of the order of 
(1- At 112 or, according to (15), (llnp i/p) 112 > 1/..fj) 
at small values of p ), we neglect the triple collisions 
and represent the normalized probability in the form 
(we put here <P h1> = <P ~t = cp n• this follows from the 
symmetry of the lattice). 

Wt(n) (x', y', z' z') 

'Pn 

wf•l (x1, Y1 ) w.'") (z1 , z'l 

Substituting this expression in the last term of (9), we 
obtain with the aid of (8) the following expression for 
this term: 

(n- 2) (n- 3) ~ w,<n) (x', y', Z1 , Z1 ) 

(n-2)(n-3) w<•>(, ')~w<•l(, ·') 
2 X I y .l....J ::: z 'z 

'fn , 

=- ~~~--=-'?.2. ( 'l'n (t + 1) - 1) w!•l (x', v'). 
n(n- 1) <p.(t) · ' 

If we seek Whlll(t) in the form W~lll(t) = W2(An)At 
then we obtain at large values of n the following ex­
pression for the last term in (9): 

- ( 1- ~)(An -1)W;"l (x',y1 ). 

The purpose of the subsequent calculations is to 
find the smallest eigenvalue An· The quantity An is 
connected with the single-particle value A sought in[ 6J 
by the relation An= An, Therefore, to be able to use 
the method of( 6J, we write down a recurrence relation 
of the type (Y) not for Wi(x, y), but for the partially 
normalized binary function Willl(x, y)/cpn-2, which de­
pends on t, roughly speaking, like A2t. 

We introduce the notation p~lll(x, y) 
= Willl(x, y)/f{Jn-2• From (8) aJd (9) we obtain an ana­
logous expression for p (we assume here in (9) 

W ( 1 1 1) _ W ( 1 ') W,(y') _ W,(x 1 ,x') 
2 X 1 X, y - z X , X -IJ'-.-- S 

and recognize that n >> 1): 

p 1 (x, y, t + 1) = p, (x', y', t) ~-b .• ,p,(x', y', t) 
- ns~'[p,(x', x', t) + p,(y', y', t] -· vp,(x', y 1 , t), 

p,(x, y, t -!-1) = p,(x', y', t) -· (k ,p, (x', y', t) 
- nS-'[p,(x', x', t) -1- J',(y', y', t)]- Yp,(x', y', t), (10) 

where 

1' = ( 1 - 4/ n) (A. - 1) - i ,_, -1- L 

In the momentum representation we obtain for the 
functions Pi(k, q), where k = (k1, k2) and q = (~1, q2) 
the system of algebraic equations (p(t) = p(A)A2 ) 

i.'p, = (cos k, cos q, -1- v) P· -- G, 

j,'p, = (cos k, cos q, -1- 1·) p, -· F, 

where (p = n/ S) 

G (k, q) = ~eikx+•qy {6, ,p,(x', y')- p[p,(x', x') -1- p,(y', y') ]}, 
.\.!f 

(11) 

F(k, q) = ~e'kx+'"'{6x_,p,(x1 y')- p[p 1 (x1,x')-l- p,(y' y')]}. 
X' (12) 



1370 G. V. RYAZANOV 

The solution of these equations is 

p 1 =- {i.'G +(cos k, cos q, +,-]F) I D, 

p, = {1-.'F +(cos k, cosq, + i.]G} / D, 

D = i.'' - [cos k, cos q, + v] [cos k, cos q, + v]. (13) 

If we now rewrite (13) in the coordinate representation 
and take in the left-hand side Pi(x, y) at two close 
points, then we obtain a closed system of equations for 
Pi(x', x'). 

At large t (and at corresponding values of A close 
to unity) the particle spreads out over a region of the 
order of ff. At the same time, it is seen from the 
expression for D in (13) (it will be shown below that 
11 is small) that the main contribution is made by 
momenta on the order of ~.i.e., dimensions of 
the order of ( 1 - A 2t 112 are close, according to (15 ), to 
(llnp l/p) 112 . Under these conditions, the dependence of 
p on the absolute value of the coordinates can be 
neglected, and we can put Pi(x', x') = Ci (constants). 
Substituting this value in (12), we obtain 

c = C,f o(k + q)+ 2po {k)o(<J) J, 

F = c,[o(k + q) + 2po(k)o(q)J. 
(14) 

Substituting these expressions in (13), we change over 
to the coordinate representation and take Pi(X, y) at 
two closed points. From the symmetry of the lattice 
(or from the symmetry of the equations for Pi(x', x' )) 
it follows that C1 = C2 =C. We obtain in place of (13) 
the two identical relations, 

[ ln{!-i.'-v)- r> ]c=O. 
2n(1-A'-v) 

From this at 11 « 1 - A 2 (it will be shown below that 
this is actually the case) 

i.=1-pl4nllupl. (15) 

The quantities <Pn can be obtained from the relation 

!pn ~ 
--=f....; p(x, y) = p(O, 0), 

'Pn-2 
x,y 

where p(O, 0) is the Fourier transform of p(x, y) at 
zero momenta. 

From (13) and (14) it follows that 

'Pn I 'Pc-2 = p(O, 0)= c I S(A2 -1- v). 

Since C(t) ~ A2t = exp ( -pt/4n lln pI), we have 

<Jln ~ '-"' = exp{-nptl4n lin pI} = exp{-Str'l4.n lin p 1}. 

After substituting in (3) and integrating with respect 
to p , we obtain ( T = 2 ( x - %) « 1 ) 

Z ={ exp {- 4m'ln T·LS}, T > 0, 
1, •<0. 

The specific heat per unit cell (per group of four points): 

Cv = {4nklnT, 't > 0, 
0, •<0. 

It remains to show that 11 « 1 - A 2. Substituting (15) 
in the expression for 11 in (10 ), we obtain 

p 
v- ~1-,-exp{- np/nllnpl} ~ 1- /,,' = p/nllnpl. 

n P 

for all n. 
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