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The properties of metallic hydrogen at atmospheric pressure are considered. The problem may be of great theoretical and 
practical importance. Perturbation theory is employed, which previously was successfully used for analysis of nontransition 
metals and which takes into account electron-ion interaction up to the third order inclusively. In the given case third-order 
terms were found to be very essential. It is found that metallic hydrogen tends to crystallize at P=O into sharply anisotropic 
structures. This tendency in tum leads to the existence of a whole family of structures with very close energies. All Bravais 
lattices and the most important two-atom lattices are analyzed. It is found that minimum energy is possessed by a triangular 
family generated by a primitive hexagonal lattice and yielding a triangular filamentary structure with two-dimensional peri­
odicity. The elastic properties and phonon spectrum of the structure are determined and local stability of the corresponding 
metastable phase is proven. The properties of metallic hydrogen under pressure will be considered in a separate paper. 

1. INTRODUCTION 

THE problem of metallic hydrogen has been attracting 
attention for a long time. Interest in it was initially 
connected primarily with astro-physical problems. 
Recently, however, this problem has also acquired a 
purely "terrestrial" interest, dictated mainly by two 
circumstances. First, hopes were raised that the 
technical problem of effecting under laboratory condi­
tions the tremendous pressure necessary for the forma­
tion of the metallic phase of hydrogen would be solved 
in the nearest future. Second, a number of interesting 
aspects of the use of metallic hydrogen have been re­
vealed, particularly, for example, in connection with 
the assumption that this state will have high-tempera­
ture superconductivity with Tc exceeding by several 
times the values for all presently known superconduc­
tors. 

Wigner and Huntington(ll were apparently the first 
to state that the molecular hydrogen phase which is 
stable under normal conditions should go over into the 
metallic phase at very high pressure. In subsequent 
years, a whole series of papers was publishedr2- 7l, in 
which an attempt was made to find the thermodynamic 
potentials of the molecular and metallic phases of hy­
drogen as functions of the density and to determine from 
them the transition pressure p*. The limited accuracy 
of the approximations assumed in these papers has led 
to a noticeable spread in the critical pressures ob­
tained by different authors. 

In addition to these papers, a series of articles was 
also published, in which different physical properties 
of the metallic phase of hydrogen under pressure were 
analyzed. Mention should be made above all here of the 
work of Abrikosov[B-loJ. Recently published papers are 
devoted to estimates of the temperature of the super­
conducting transitions for metallic hydrogen (Ash­
croft[llJ and Schneider and Stollr 12l). 

There is no doubt that hydrogen becomes a metal 
under high pressure. However, even judging from the 
papers devoted to the calculation of the thermodynamic. 
potential of the metallic phase in a crude structureless 
approximation (a detailed discussion is given below) we 

might assume that the plot of E against the volume U 
at rs ~ 1.6 should have, in all probability, a stationary 
point aEjao = -P = 0, so that it is not excluded in 
principle that there exists a metallic state of hydrogen 
at atmospheric pressure. It corresponds, however, to 
an energy lying much above the energy of the ground 
state of the molecular phase at P = 0 (and the densities 
of the two phases differ by almost one order of magni­
tude), and therefore the metallic phase will in this 
case naturally be metastable. An analysis of the actual 
realizability of such a metastable phase of hydrogen, 
which is actually of prime significance for all "ter­
restrial" applications, presupposes the solution of an 
entire series of interrelated problems. 

1. Determination 0f the energy of the metallic state 
of hydrogen and the proof of the existence of a station­
ary point with respect to all the parameters character­
izing the phase, and also the determination of the 
crystal structure corresponding to the lowest possible 
energy at P = 0. 

2. Proof of the stability of such a phase. It should 
include a test for dynamic stability, and furthermore 
both in the long-wave limit and at excitations with 
arbitrary wavelength (reality of the phonon frequencies 
for the entire momentum space), and also a verifica­
tion of the stability of the phase relative to thermal 
fluctuations. 

3. Determination of a relation between the structure 
obtained at a pressure corresponding to the phase 
transition from the molecular to the metallic phase, 
and the structure of a metastable phase at atmospheric 
pressure (generally speaking the two structures need 
not necessarily coincide, and also an analysis of the 
processes occurring when the pressure is removed. 

4. A determination of the lifetime of the metastable 
state (which should also include an analysis of the 
possible existence of a metastable phase at P < P* ). 

With all these questions answered in the affirmative, 
it would remain to solve yet another much more 
"pleasant" problem-determination of the phonon 
spectrum for this phase and, on its basis, knowing the 
electron-phonon interaction, estimation of the tempera­
ture of the superconducting transition. 
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To analyze the first two of the foregoing problems, 
it is necessary to solve the rather unique problem of 
finding the absolute minimum of the energy of the 
metallic phase (it is assumed that T = 0) 

E = E(Q,, y;) (1.1) 

as a function of the unit-cell parameters Yi (we have 
explicitly separated one parameter, the atomic volume 
0 0). The problem of finding the optimal structure at a 
known Hamiltonian of interaction of all the particles 
making up the medium, and with complete absence of 
a priori information, is raised actually in such general 
form for the first time. 

It must be emphasized that if the obtained phase 
corresponds to a minimum with respect to all the 
parameters in (1.1), then it automatically has long­
wave dynamic stability. Indeed, positiveness of the 
corresponding quadratic form determines the stability 
of the phase relative to any type of homogeneous de­
formation, including with respect to a displacement of 
the sublattices relative to one another, if there is more 
than one ion per unit cell. If the minimum of the energy 
is sought on a class of structures with one atom per 
unit cell, then the energy depends on six variables (the 
number of independent parameters defining the unit 
cell), and in the notation of (1.1), if P = 0, there are in 
the general case five independent parameters Yi· In 
such a five-dimensional space, points correspond to 
cubic crystals, lines to a family of uniaxial crystals, 
planes to rhombic crystals, etc. 
. A theoretical determination of the energy of the 
metallic phase for different values of the parameters 
ri is a very delicate problem. The point is that we 
encounter the need for calculating small differences 
that result from the change of the configuration of the 
protons against the background of much larger volume 
contributions. Therefore the traditional single-particle 
methods of band theory or methods of the Wigner-Seitz 
type, in which it is precisely the structural part of the 
energy which is poorly calculated, are practically 
hopeless. 

In this connection we regard as most adequate for 
the problem the theoretical scheme developed in[ 13- 161 
and used to determine the properties of nontransition 
metals (see, for example,[ 17 ' 181). It is based on the 
possibility of writing down, in the absence of overlap 
between the ionic cores, the explicit form of the many­
particle Hamiltonian of the electron-ion system of the 
metal, and presupposes determination of the energy 
and of the remaining physical quantities in the form of 
a series in powers of the electron-ion interaction, 
which actually represents a series in powers of the 
small ratio VK/ € F ( VK is the Fourier component of 
the electron-ion interaction at a momentum transfer 
equal to the reciprocal-lattice vector K ~ 0). The 
configuration part of the electron energy, which corre­
sponds to the series terms containing the electron-ion 
interaction in the second and higher degrees, is then 
separated directly (as is also the energy of the ion 
lattice, which, naturally, depends on the configuration 
of the ions and the determination of which entails no 
fundamental difficulties). 

Of very great importance for the developed theory 
is the possibility of going outside the framework of an 

approximation equivalent to allowance for only the 
term quadratic in the electron-ion interaction. The 
point is that an account of the higher-order terms is 
fundamental for the analysis of many properties (see, 
for example ,(15• 161) and significantly alters also the 
purely quantitative picture, as is clearly demonstrated 
by direct calculations of the properties of metals (see, 
for example,P81 ). In this case it is the third-order 
terms that are singled out. This is connected with the 
appreciable cancellation of the contribution made to the 
energy by the ion lattice and by the part of the electron 
energy which is quadratic in the interactionP4 • 18J. The 
role of the higher-order terms turns out, as a rule, to 
be weak. 

When this scheme is used in the case of metallic 
hydrogen, we encounter a number of simplifying cir­
cumstances. 

First, there is no problem of overlap of electron 
cores, since the latter are completely absent. 

Second, the uncertainty in the value of the electron­
ion interaction, which is inevitable in metals, is now 
eliminated, since the interaction now has a pure 
Coulomb character. (As a result, the problem has no 
free parameters at all, and includes only universal 
constants). As to the small parameter noted above, it 
can therefore easily be estimated: 

(1.2) 

and for Kmin (rs- 1.6) it turns out to equal -Ys, i.e., 
is approximately the same as in the case of ordinary 
multivalent nontransition metals. 

Third, the rough approximation used for description 
of the polarization operator and of the three-pole dia­
gram corresponding to three-ion interaction via con­
duction electrons (see, for example,P81), becomes more 
accurate the higher the electron density, and conse­
quently it operates better in the metallic phase of hy­
drogen than in ordinary metals. As will be shown below, 
inclusion of third-order terms in the case of metallic 
hydrogen is even more fundamental in character than 
in the case of ordinary metals. A perturbation theory 
which takes only the second order into account leads, 
when the zero-point oscillation energy is taken into 
account, to a near-zero or even positive value of the 
adhesion energy, which makes the lattice unstable 
against disintegration into atoms. 

Naturally, the use of a perturbation theory neglecting 
fourth-order terms entails a certain inaccuracy. It is 
very difficult to estimate realistically the resultant 
error in the determination of the different physical 
quantities. However, all the calculations of properties 
of non-transition metals within the framework of this 
approximation, and their comparison with experimental 
results for a large circle of static and dynamic charac­
teristics, including the equation of state in the entire 
interval of accessible pressures and the phonon spec­
trum in the entire phase volume, give grounds for hop­
ing that it will be small. This concerns, in particular, 
the determination of the relative change of the physical 
quantities on a change in the parameters of the struc­
ture, which properly speaking, is the main point in our 
paper. 

Actually the only paper where account was taken of 
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the structure of metallic hydrogen was that by 
Schneider[7l, in which the calculation scheme corre­
sponds, in principle, to allowance for only second­
order terms in the electron-ion interaction. One can 
make a few remarks with respect to the theoretical 
part of this paper, since some of the approximations 
mentioned by Schneider are in fact missing in a con­
sistent many-particle theory. For example, there is 
actually no neglect in the "nonlocal character of the 
interaction" (using Schneider's terminology[7l); the 
nonadiabaticity, as is now well knownr 13 l, gives rise to 
a negligible correction to the energy and amounts to 
~ ( w / € F )2 of the vibrational energy. As to the results 
of his calculations, Schneider[7l has considered only 
one particular form of the structure (hexagonal close­
packed lattice) which, as will be shown below, does not, 
on top of everything else, realize an absolute minimum 
of the energy at P = 0. 

The present paper is devoted to a determination of 
the structure of the metallic phase of hydrogen at 
P = 0 and to a discussion of its properties. We used 
the already mentioned scheme ofP3-18l, in which the 
electron-ion interaction was taken into account to 
third-order terms inclusive and we obtained the abso­
lute minimum of the energy (1.1) in the six-dimensional 
space of the parameters corresponding to lattices with 
one atom per unit cell. For cubic, uniaxial, and 
rhombic lattices, (for all 11 Bravais lattices) the prob­
lem was analyzed in the entire range of variation of the 
parameters. For structures having a lower symmetry, 
the Monte Carlo method in six-dimensional parameter 
space was used in the analysis. 

We considered simultaneously also the known types 
of symmetrical lattices with two ions per unit cell, 
namely lattices of the diamond, white tin, and hexa­
gonal close-packed types. 

The analysis of the results has shown that the 
metallic-hydrogen phase most favored energywise has 
a unique structurf' which can be visualized as a system 
of proton filaments forming a rigid triangular lattice in 
a plane perpendicular to them and actually moving 
freely relative to one another in the direction along the 
filaments. Thus, we are dealing with a three-dimen­
sional system having a two-dimensional periodic sym­
metry. 

The question of the equation of state for the different 
phases and the character of the transition under pres­
sure will be considered separately in a second part of 
the paper (to be published). 

2. THE ENERGY OF THE METALLIC PHASE 

By virtue of the validity of the adiabatic approxima­
tion, the energy of the metallic phase can always be 
represented as a sum of static and vibrational ener­
gies: 

E, = E + E,,.,. (2.1) 

In the region of densities of interest to us, where 
P = 0, the energy is determined to a decisive degree 
by the static contribution. On the other hand, Evib• 
being an integral characteristic of the vibrational 
spectrum, varies smoothly with changing ion configura­
tion, and the density corresponding to P = 0 depends 

little on the structure. Therefore our search for op­
timal structures will be based on an analysis of the 
static part of the energy E, and only at the conclusion 
will we determine Evib directly for minimal-energy 
structures. 

The total static energy of the metal at T = 0 can be 
represented in the form of a series in the powers of 
the electron-ion interaction: 

E = E, + E, E, = E<'> + E<'i + E<'> + E<'i +... (2.2) 

Here Ei is the energy of the ion lattice placed in a 
homogeneous negative background. For a proton lattice 
( z = 1) 

(2.3) 

We have introduced here the standard symbol rs for 
the dimensionless radius of the sphere corresponding 
to the atomic volume U0 , expressed in Bohr radii, 
ilo = % 1rd = % 1rr~aB, and the Made lung constant O!M, 
which depends on the ion configuration. The energy 
(2.3), like the subsequent expressions, pertains to one 
ion and is expressed in Rydbergs. E1 OJ is the energy of 
the homogeneous electron gas: 

E<'J _ 3 1 3 1 
- -;;:--,-, --2 -+ ew,(r,), (2.4) 

v a r, n ars 

a = ( 4/9n) '" ,::::; 0.521. 
In the Nozieres-Pines approximationP9l 

e,on (r,) ,::::; -0.115+0.031 In r,. (2 .4') 

From (2.4') we can easily conclude that in the range of 
variation of rs of interest to us the inaccuracy in the 
determination of the correlation energy has practically 
no influence on the determination of the optimal struc­
ture and of the equilibrium value of the density. 

Inasmuch as the electron-ion interaction is purely 
Coulomb in this case, there is no constant term b in 
the potential, connected with the presence of an elec­
tronr15'16l, and accordingly 

E<'I=O. (2.5) 

An exact expression for the electron contribution to 
the energy of second order in the electron-ion inter­
actionf 15•161 can be represented in the form 

E(Z) =- 27a' ~. 1 g(K) IS(K) J' .f;, (K/K,)' e(K) ' 

(2.6) 
e(K)- 1 9a'r, - + (K/K,)' g(K). 

Here K is the reciprocal-lattice vector, KF the Fermi 
momentum (KF = 1/0!rsaB), and S(K) the structure 
factor of the unit cell, and the dimensionless function 
g( K) coincides, apart from a factor, with the static 
polarizability of the electron gas: 

3 1 
n(K) = --..--g(K). 

2 Q,e, 

In concrete calculations we used for g( K) the same 
approximation, in the spirit of Hubbard, which was 
used by us earlier in the analysis of the properties of 
metalsr 14•17•18l, and which is widely used in contempor­
ary calculations of the metallic state: 

g(K) = g,(K/ K,) / (1- 9a'r.(K/ K,)-'f(Ki K,)g,(K! K,)), (2. 7) 
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1 x' 1 1- x'/4 I x + 21 g,(x)=-+ In -- , 
2 2x x-2 f(x) = 2 x' +A , A;:::; 2. 

The expression E1 3> can be represented in the 
form [13-15] 

E<'> =- 216a"r .E S(K,)S(K,)S(K,) 
' (K,/K,) '(K,fK,) '(K,fK,)' (2.8) 

K 1K2K3;;;i::O 

A<'>(K./K,, K,/KF, K,fK,) 
X e(K,)e(K,)e(K,) ~(K,+K,+K,) 

(the coefficients of the sums in (2.6) and (2.8), when 
account is taken of the definition of a, are quantities 
of the order of unity). 

The dimensionless three-pole 1\P> is connected 
with the previosuly introduced three-pole A 13>[151 by 
the simple relation 

(2.9) 

In the calculations we used for A< 3 > the approximate 
three-pole value corresponding to a self-consistent 
definition of the energy of the free electron gas in the 
field of independently screened ions (see the corre­
sponding expression, for example, in[ 18l), 

At a fixed configuration, K/KF and S( K) do not 
depend generally on the density. On the other hand, 
even at the nearest lattice points, particularly in the 
case of a univalent metal, such as hydrogen is indeed, 
the dielectric constant no longer differs much from 
unity. By virtue of this we can conclude from (2.6)­
(2.9) that at a fixed configuration E1 2> is practically 
independent of the density rs, while E13> is propor­
tional to rs with good approximation. As to the depend­
ence on the ion configuration, it becomes manifest in 
full measure in both terms E 12 > and E1 3>, and also in 
Ei via the O!M(Yi) dependence. 

It is interesting that the weak dependence of E1 2> on 
rs makes it easy to obtain an a priori estimate of the 
equilibrium density corresponding to the condition 
P = 0. To this end we determine the pressure in the 
so-called "zero model"[ 16l, where the contribution of 
E1 2> and E1 31 is neglected completely (the contribution 
of E1 3> to the pressure is certainly small compared 
with the contributions from Ei and E1 0> ). In this ap­
proximation we have, consequently, 

E;:::; ,;_ ____;, _ _2__1_+~ (2.10) 
;) a"'rb 2n ars ra 

and accordingly the condition P = 0, where 

(2.11) 

leads to the critical density 

(o) _ 1 21 2 ( 1,5 ) 
Ta - • <l -- aM . 

na 
(2.12) 

Recognizing that O!M varies relatively little from con­
figuration to configuration, we assume tentatively the 
value aM = -1.8, which corresponds to a spherical ap­
proximation (see, for example,[ 20l), This yields rs 
~ 1.65. For the compressibility K we obtain in the 
"zero model" 

(2 .13) 

and, as can readily be seen, 1/ K > 0 (where rs i':j 1.65). 
As we shall see subsequently, the values (2.12) and 

(2.13) do not change greatly when account is taken of 
the structure-dependent terms. We can therefore as­
sume that the presented simple estimates offer evi­
dtnce of the existence of a density point that corre­
sponds in the metallic phase to the condition P = 0 and 
simultaneously to a positive compressibility, i.e., to 
stability with respect to change of volume at a fixed 
structure. It must be emphasized that, in contrast to 
an ordinary metal, this stationary point, and conse­
quently the metallic bond, arise not as a result of com­
petition between the contributions of Ei and E1 11 , but 
as a result of the competition of Ei and E1 a>, which 
leads to a much larger equilibrium densityr 16l, 

The question of the dependence of the system energy 
on the parameters Yi characterizing the structure is 
much more complicated, and the solution of the prob­
lem of the optimal structure can be obtained only on 
the basis of a complete analysis of the behavior of the 
energy in multidimensional parameter space. Some 
general considerations, however, can be advanced even 
now. 

The optimal-energy structure arises as a result of 
competition between the ionic and electronic terms 
E1 2 > and E1 3 >. Although the term E1 2 > makes no prac­
tic ally no contribution to the pressure, its absolute 
value is comparable in magnitude with Ei (albeit 
smaller) at rs ~ 1.65 and is noticeably larger than 
E1 3>. The qualitative features should therefore be re­
vealed by a comparison of Ei and E1 2>. 

From the form of expression (2.6), which contains 
a very sharp dependence on K, it follows directly that 
by changing over to anisotropic structures we can de­
crease the energy E 12 > (increase its absolute value). 
Indeed, at a fixed volume of the unit cell, the transition 
to sharply anisotropic structures leads to the occur­
rence of reciprocal-lattice points that lie in the region 
of small K and give accordingly a large contribution 
to E 12>. The inevitable moving-aside of certain other 
reciprocal-lattice points has a much smaller effect, 
owing to the sharp decrease of Vk with increasing K. 
We note that the term E1 3> only intensifies this tendency. 
In particular, in E1 3 > there are contributions connected 
with the double scattering of the electron by the same 
ion, and these terms, together with E12>, form a term 
similar to (2.6), but with a scattering amplitude that is 
renormalized to become stronger. 

On the other hand, the transition to anisotropic 
structures is inconvenient from the point of view of the 
ion energy, since it leads to an increase of Ei. Indeed, 
the parameter aM in (2.3) has a maximum value for 
structures that are close to close-packed, and at a 
noticeable anisotropy it decreases continuously as the 
latter increases. 

Which of these tendencies will prevail depends to a 
considerable degree on the density interval under con­
sideration, since the role of Ei increases continuously 
with decreasing rs. Thus, at rs « 1 one can be as­
sured that the energy minimum will correspond to 
symmetrical structures. At the density of interest to 
us, on the other hand, owing to the specific nature of 
the behavior of the Fourier component of the hydrogen 
potential, the tendency to anisotropy becomes manifest 
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to a much greater degree than in ordinary metals. 
Therefore, when searching for a structure that is 
optimal from the point of view of the energy, we cannot 
confine ourselves to an investigation of only the sym­
metrical structures that are usual for metals, and our 
analysis must include also sharply anisotropic lattices. 

3. SEARCH FOR OPTIMAL STRUCTURE 

In this section we present the results of a search 
for an optimal structure of metallic hydrogen. The 
investigation was carried out by successively increas­
ing the number of parameters Yi characterizing the 
structure. This has made it possible, in particular, to 
reveal clearly the instability tendencies that are 
characteristic of the system under consideration in 
different modifications, and approach purposefully the 
determination of the stable structure with minimum 
energy. To solve such a problem, it would be most 
important to choose parameters 'Yi that specify the 
deformation of the unit cell in a form that is as con­
venient as possible, and furthermore for an arbitrary 
structure. It turns out that it is very convenient to 
introduce these parameters in the following manner 
(the connection with the usual strain tensor ull!/3 is 
established With the aid Of the relation Ur, {3 = Yd Ua f3 
+ u/30 ); uap = aua/Bxp, for details see[21 ): 

1 +uu = (1 +v.)''•(1 +v,)-'1•(1 + y,)-Y•, 

1 + u., = {1 + y,) '1•(1 + y,)-''•(1 + y,)Y•, 

1 + u., = (1 + y,)''•(1 + y,)'\ 

We see therefore that 'h describes the change of the 
volume of the unit cell: 

Q' = Q,det{c'l.~ + u.,) = Q,(1 + u11 ) (1 + u,) {1 + u,) 

={1 +y,)£1,. 
(3.2) 

The remaining 'Yi describe pure shear deformations 
that conserve Sl 0• For example, 'Y2 characterizes the 
change of ( c/ a) in uniaxial crystals: 

c' x,' {1 + u.,)x, ( c 
~=-= = 1+y,)-
a' x', (1 + u11 )x1 a ' 

(c'fa')-(cfa) = (3 3) 
(cfa) i'•· • 

Analogously' 'Ys describes the dilatation along the x2 
axis and the contraction along the X 1 axis at an un­
changed length of the edge along X3 : 

(b'fa') -(b/a) 

(b/a) 
=y,. (3.4) 

The remaining three deformations have the meaning of 
"inclinations" of one axis to another: 

x,'-x,=y,x,, x,'-x,=x,'-x,=O (3.5) 
x/- Xt = VsXa, :ez'- Zz = xa'- Xa = 0, (3 .6) 

x,'- x, = y.x,, x,'- x, = x,'- x, = 0. (3.7) 

We note that since the choice of (3.1) is in a certain 
sense arbitrary, we shall sometimes use other defor­
mation parameters, namely in (3.5)-(3.7) we shall use 
the "inclination" in the opposite direction: 

xs'- x!l = VvXz, x/ - X1 = xz' - x 2 = 0, 

x/ + Xa = y5..x,, xt'- Xt = x/- X2 = 0, 

Xa'- x2 = Vs,Xt, xt' - .Xt = xs'- Xa = fJ. 

(3.8) 
(3.9) 

(3.10) 

Now, expanding the lattice energy after deformation 
in a series, we obtain 

(E'- E) I Q, = B.y, + 1/2B<!WVJ +... (3.11) 
It is precisely these moduli Bi and Bij that can be 
obtained directly from calculations, and these, in turn, 
can then readily be connected with the usual elastic 
moduli Ci and Cij (see[21 l). (Expansion with the aid 
of ')'41, y 51, and 'Ya1 corresponds to the moduli Bb.) 

Thus, the shape of the unit cell was specified with 
the aid of parameters 'Yi that distort some primitive, 
say cubic, lattice. We considered initially single­
parameter cubic crystals, then two-parameter uniaxial 
crystals, all three-parameter rhombic crystals, and 
finally the general case of a triclinic system. Inas­
much as cubic crystals are a particular case of uni­
axial ones, we do not devote a separate section to them. 

A. Uniaxial Lattices 

Figure 1 shows the results of the calculation of the 
static energy as a function of the parameter c/ a for all 
uniaxial Bravais lattices (i.e., assuming one ion per 
unit cell). In addition, the same dependence is given for 
two widely prevalent structures with two ions per unit 
cell-the {3-Sn structure and the hexagonal close­
packed structure. (In lattices where the Z axis coin­
cides with the edge of the unit cell, the choice of c/a 
is obvious. For the rhombohedral structure, the Z 
axis was chosen along the three-dimensional diagonal, 
so that a simple cube, for example, corresponds to 
c/a = 1//2.) 

Each individual curve corresponds to a definite 
structure, marked by a figure on the right-hand side 
of the figure. The arrows designate especially the 
particular cases corresponding to single-parameter 
cubic lattices. All curves have been plotted under the 
additional condition (at each point relative to c/a) 

8E/8Q, = 0, (3.12) 

so that different points on the curves correspond, in 

IJ.Z M f.fl 

~:EI ~~! 
-1.(}4 ~~ 

t·flb 1 ~JQJ 
~-(,{},I \t=J @I 
:~f./JJ~..,... 1m 

-f. PI 7 1---::=-------c 

-t.co~f!lJ 

::::1 \::A: 0 ~ 
·:;·;;1,.,,~ 

-Z.IJ -f./J fl.fl f./1 
In (&/a) · 

FIG. l. Energy of uniaxial lattices. The following structures are 
marked: 1-face-centered cubic (FCC); 2-body-centered cubic (BCC); 
3-hexagonal close packed (HCP); 4-diamond; 5-white tin, 6-face­
centered tetragonal (FCT); 7-primitive cubic (PC); 8-primitive tetra­
gonal (PT); 9-trigonal (rhombohedral) (RH); 10-primitive hexagonal 
(PH). 
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principle, to different densities. The extrema of the 
energy for each structure correspond to minima and 
maxima on the corresponding curves. It is important 
that by virtue of the symmetry of the structure and the 
condition (3.12), these minima and maxima are auto-
matically extremal points with respect to all six 
parameters. Some of these extremal points correspond 
to more symmetrical cubic structures, for which sta-
tionarity with respect to ( c/ a) follows from symmetry, 
and others pertain to specifically two-parameter 
lattices. The question of whether a given extremum is 
a minimum with respect to other parameters must be 
solved separately every time, but for an analysis of 
single-parameter lattices Fig. 1 is already sufficient. 

From the form of the curves we can immediately 
verify that all cubic structures are unstable. Indeed, 
a primitive cubic (PC) lattice corresponds to a mini-
mum on the curve for the primitive tetragonal struc-
ture (PT); a body-centered lattice corresponds to 
maxima on the curves for face-centered tetragonal 
(FCT) and rhombohedral (RH) structures; a body-
centered lattice corresponds to a maximum on the 
curve for the rhombohedral structure. A diamond-type 
lattice is also unstable, namely it corresponds to a 
maximum on the curve for the {3-Sn structure. It is 
interesting that from the form of the presented curves 
one can incidentally draw qualitative conclusions con-
cerning ordinary metals as well. For example, the 
character of the behavior of the curve for the PT 
lattice near the extremum corresponding to a PC 
lattice makes it possible to assume that in the case of 
indium, whose lattice has a tetragonal symmetry with 
a puzzlingly weak deviation of c/ a from unity, we ap­
parently encounter just such a situation (in the ab­
sence, of course, of a left-side minimum capable of 
competition). 

Another interesting circumstance is the almost 
complete absence of a barrier between the BCC and 
FCC structures on the curve for the FCT lattice. This 
implies instability with respect to tetragonal distor­
tion. It is important that this circumstance also prevails 
separately for the energy of the ion lattice in such a 
structure, and explains why one transverse elastic 
modulus ( Cu - C12 )/2 is anomalously small in metals 
of the Na type. It is possible that an analogous situa­
tion (a very weak barrier in a certain direction) is the 
cause of the low-temperature martensitic transition in 
these metals . 

Analyzing the extrema belonging to already properly 
uniaxial structures, we must immediately call attention 
to the existence of an entire series of deep minima 
characterized each time by a strong structure aniso­
tropy, namely, c/ a differs strongly from unity. The 
smallest value of the energy is reached here in the 
primitive hexagonal (PH) and RH structures with c/a 
< 1, where the values of E are almost the same and 
amount to R: -1.063 Ry. 

The presence of a deep minimum is evidence of the 
existence of stability with respect to one more parame­
ter besides the density, namely with respect to c/ a, 
corresponding to a large value of the modulus B22• In 
order to analyze which of the obtained structures are 
stable with respect to all parameters J'i, we found all 
the elastic moduli for the extremal points, and for 

Structure 

FCf (6) I 0.399 
BCC (2) lfi2 
FCC (/) I 
FCf (6) 1.642 

PT (8) I 0.793 
PC (7) I 
PT (8) 1.113 

PH uo> I 0.5U3 
PH (10) 1107 

RH 
(9) I 0.198 

BCC (2) !fiB 
PC (7) l/i2 
FCC (/) i2 
RH (9) 1.925 

White 0.397 
tin 
(5) 

White 0,926 
tin 
(5) 

Diamond j2 
(4) 

White 4.583 
tin 
(5) 

HCP (8) I 0.764 

I HCP (8) 1.171 
HCP (3) 2.217 

Table I 

!lola~ I E, Unstable 
:Ry/atom moduli 

Face-centered tetragonal 

18.96 

1

-1.0591
1 

-
17.91 -1.0453 B .. , (B,) 
17.90 -1.0459 B" 
18.58 -1.0523 (B33), (B .. ) 

Primitive tetragonal 

19.07 1-1.05871 18.51 -1.0512 B, 
18.60 -1.0536 B,. 

Primitive hexagonal 

20.83 1-1.0631 I 
1.8.48 -1.0536 

Rhombohedral 

20.82 -1.0631 I 17,91 -1,0453 B«, (B.,) 
18.51 -1.0512 B, 
17.90 -1.0459 B .. 
18.41 -1.0536 

White tin (~.Sn) 

19,03 -1.0588 (roc2) 

19.37 -1.0493 (B,.j, OJa2 

19.97 -1.0583 B .. , (B,j 

18.60 -1.0528 Bss, B44 

Hexagonal close-packed 

18.53 1-1.05081 B&a, roc2 

18.21 -1.0505 OJa' 
18.40 -1.0535 (roa2) 

"Soft" moduli· 

(B44), (B,.) 

(B,) 
(B") 

B .. , (B66) 

(B.,), (B,.) 

B .. 
B.,, (886) 

(B,) 
B .. , (B33), (B,.) 

lattices with two ions per unit cell also both limiting 
frequencies of the optical phonons at q = 0. 

The results of such an investigation for all extremal 
points are gathered in Table I. This table indicates, 
besides the equilibrium values of ( c/ a)o and ( 0 0) 0 and 
the values of the energy, also the unstable (negative) 
elastic moduli in explicit form. A separate column is 
devoted to the so-called soft moduli, i.e., elastic 
moduli which, while positive, are very close to zero 
(at least of the order of 10-2 of the compressibility 
modulus B11). In the same two columns, the moduli 
with absolute values lower by one order of magnitude 
than B11 are given in the parentheses. 

It can be concluded from the presented results that 
long-wave stability is possessed by anisotropic struc­
tures corresponding to both minima c/a > 1 and c/a 
< 1 for the PH and RH families, and minima with c/a 
( 1 for the PT, FCT, and p-Sn families. For all these 
structures there remains, however, the problem con­
nected with the existence of one "soft" modulus, the 
modulus B44 in each case. The physical meaning of 
this will be explained in Sec. 4 on the basis of an analy­
sis of the entire picture as a unit. 

Besides the considered structures, it is necessary 
to single out also structures with "weak" instability; 
such structures are the FCT lattice at c/a < 1 and the 
HCP lattice at c/a = 2.217. These structures are char­
acterized by the presence of only small negative 
moduli (in the case of the HCP lattice, an unstable 
homogeneous deformation turned out to be a displace­
ment of the sublattices relative to each other, so that 
the square of the frequency of the limiting optical pho­
non with polarization in the basal plane, wi, is there­
fore negative). We have separated these modifications, 
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f.Jr--r---------.--------~ 

------0 
-~ / I C 

I -
I Q 

I 0 I 1,0 

FIG. 2. Equal-energy levels for a family of primitive rhombic 
Bravais lattices. 

D -

-IJ.J D 

------0 
·-·-·-@_ 

FIG. 3. Equal-energy levels for a family of rhombic base-centered 
Bravais lattices. 

since one cannot exclude the possibility of their be­
coming stable under relatively small pressure. 

B. Rhombic Lattices 

The four rhombic Bravais lattices are already 
three-parameter structures. It is natural to choose, in 
addition to the density, also the ratio of the sides of the 
parallelepiped characterizing the lattice symmetry. 
Figures 2-5 show the constant-energy lines on the 
plane of these two parameters. The value at each point 
was obtained under the additional condition (3.12), so 
that the volume does not remain constant when moving 
along the constant-energy line or on going from one 
line to another. The same figures show the crystallo­
graphic cells and indicate especially how the parame­
ters a, b, and c, the combinations of which are marked 
on the axes, are chosen. The figures show only the 
symmetry-irreducible part of the parameter plane, 
which amounts to one-sixth for the primitive (Fig. 2), 
body-centered (Fig. 4), and face-centered (Fig. 5) 
lattices. For a lattice with centered bases (Fig. 3) it 
amounts to one-half of the plane. 

In the figures there are separated lines along sym-

!.Dr-..--------r-------,,--------, 

----0 

-q f.D 
~·· 
c 

D 

FIG. 5. Equal-energy levels for a family of face-centered rhombic 
Bravais lattices. 

metrical directions, corresponding to the uniaxial 
lattices already considered in Fig. 1. Thus, in Figs. 2 
and 3 line 8 corresponds to the PT lattice, line 10 in 
Fig. 3 to the PH lattice, and line 6 in Figs. 4 and 5 to 
the FCT lattice. Naturally, with such a construction, it 
becomes possible to trace the evolution of the stability 
of lattices corresponding to extrema with respect to at 
least one deformation parameter, and particularly for 
the extrema shown in Fig. 1. Thus, on the PT line of 
Fig. 2 we see that the deepest minimum corresponds, 
besides large B22, also to a rigid modulus Bss (defor­
mation corresponding to a change of b/a), whereas it 
is clear from Fig. 3 that the modulus B66 (a deforma­
tion of the same type but in a different structure) 
should be relatively soft. On the FCT line, one can 
conclude for the deepest minimum from Fig. 5 that the 
modulus B3s is of the same scale as the rigid modulus 
B22, and from Fig. 4 it can be concluded that the defor­
mation corresponding to the change of b/a corresponds 
to a weak modulus, which in our nomenclature is B6s. 

Let us now analyze the question as to which of the 
deepest energy minima are observed for rhombic 
structures. What is striking from the very outset is the 
absence of minima below the extreme ones obtained for 
uniaxial crystals. However, such a value at the mini­
mum, E = -1.063, is observed not only at the obvious 
point corresponding to the PH line of Fig. 3, but also 
at the asymmetrical point on Fig. 4, corresponding to 
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Table IT 

Type of structure lin ( l'Qiiic) In (afb) ll,.la1 I Ryi~tom I siability 

0.225 0.920 19.02 -1.0588 + 
Base-centered rhombic 0.530 0,760 18.85 -1.0520 

0.630 0.280 19.15 -1.0577 

Body-centered rhombic '{ 0.793 0.549 20.79 -1.0631 + 
0.660 0.350 19,76 -1.0575 

the BCR lattice. The minima following them in depth 
turn out to be very close to those observed for tetra­
gonal structures (E = -1.059). Here again, certain 
points are trivial, for example, the minima on the PT 
lines in Figs. 2 and 3 and on the FCT lines of Figs. 4 
and 5. However, a minimum with the same value of the 
energy is also observed at a point of no definite sym­
metry, this time in Fig. 3. 

In addition to the minima, the figures also show the 
saddle points, which are marked by crosses. All these 
points taken together represent the extremal values of 
the energy as a function of the six parameters. Table 
n gives the values of the parameters characterizing 
those extrema which were not previously involved in 
Table I. The last column of Table II designates the 
stability (plus) or instability (minus) of the correspond­
ing structure with respect to all long-wave deforma­
tions. 

We note in conclusion that the figures presented 
contain a large amount of information concerning the 
character of the possible instabilities. Thus, for ex­
ample, from Fig. 4 we can deduce immediately that the 
second minimum on the FCT line is actually a saddle 
point and this structure is not separated by any energy 
barriers from the structure with the lowest value of 
the energy. 

C. Triclinic Lattices 

The next step was to consider lattices of arbitrary 
symmetry, i.e., the transition to the six-parameter 
space characteristic of the triclinic syngony. Since a 

regular analysis is practically impossible in this case, 
the Monte Carlo method was used. The random quanti­
ties were chosen to be the values of five parameters, 
and the sixth parameter, the density, was determined 
from the condition (3.12) for each set. Five convenient 
parameters were the logarithms of the ratios of the 
sides of the parallelepiped and the arctangents of the 
three angles characterizing the unit cell, 

A random-number generator was used to choose 
directions in five-dimensional space, which were 
covered in equal steps, and the total energy E was 
calculated at each point. The motion was stopped only 
when the energy exceeded a certain limiting value and 
continued to grow continuously along the line, i.e., when 
we found ourselves clearly outside the region where 
deep minima are possible. Provision was made for 
further decrease in the calculation interval to be able 
to investigate all the local minima appearing during the 
course of motion along the line. 

We investigated altogether 90 directions, and the 
energy was determined at approximately 1400 points of 
five-dimensional space. This has made it possible to 
trace quite thoroughly the entire potential relief in this 
space and to investigate a "valley" surrounded by 
"mountains" of height E > -1.040. We found 65 energy 
minima with E < -1.055, 26 minima with E < -1.058, 
and four minima with E < -1.060. To characterize the 
barriers, we note that the lowest maximum occurred at 
E = -1.057, and the highest one (in the "valley") at 
E = -1.028 (at two points); We used eight of the deep­
est minima (all four with E < -1.060 and four from the 
group with E < -1.058) as the starting points for the 
method of steepest descent (we used the improved 
variant of the method described in[ 22 l). As a result we 
obtained local minima already in all the parameters, 
which in five cases.led to close values of the energy, 
equal to E ~ -1.063. Three minima from the second 
group led to a value E ~ -1.059. All these eight cases 
are given in Table III, where the coordinates of the 
eight points are given in rectangular coordinates before 
and after using the method of steepest descent. 

Table m 
Initial vectors 

I • I 
Final vectors ... 

0 

~ 
I I I I 

.8= 
~ a, a, ... a, a, ... I E, ~ ·5 :f 1'Ry/atom 1 Ry/atom z > 

(1 3.997 0,920 1.853 3.857 0.929 1.730 
I 0 1.819 --{) 485 -1.06199 0 1.816 -0,390 -1.06313 109 

0 0 2.867 0 0 2,970 

11 
3,976 --0,624 0,809 3,834 -0.615 0.900 

2 0 3.952 1.062 -1.06087 0 3.975 1.209 -1.06307 601 
0 0 1.422 0 0 1.368 

(r 2.136 -1.162 0.330 2.041 -1.050 0,348 
3 0 3,218 1.698 -1.06097 0 3.424 1.715 -1.06308 619 

0 0 2,880 0 0 2,970 

(r 2.090 0.705 0.404 2,041 0,699 0.359 
4 0 3,209 1.570 -1.06130 0 3.430 1,714 -1.06313 721 

0 0 3.018 0 0 2,973 

{1 2.008 1,372 3.703 2.037 1.206 3,609 
5 0 6.010 2.717 -1,05839 0 5.951 2,972 --1.06308 710 

0 0 I. 771 0 0 1,720 

{~ 
3.075 0.631 --{).080 3.034 0,731 -0.268 

6 0 2.170 -0,388 -1.05864 0 2.174 -0.900 -1.05900 205 
0 0 2.874 0 0 2.878 

{~ 
3.185 0,663 2 .• 232 3.124 0,488 2.226 

7 0 3,088 --o .. 770 --1.05903 0 3.094 -0,780 -1.05909 222 
0 0 1,932 0 0 1,962 

8 {~ 8.7901 
1.156 3.563 4.726 1.194 3,544 
4,599 2,701 -1.05892 0 4,537 2,707 -1.05910 602 
0 0.870 0 0 0.884 
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Table IV -
Type of I Num-1 I E, structure ber of • ~ Ry/atom 

variant 

PH - 0.000 0,000 -1.06310 
RH - 0.333 0.333 -1.06313 
BCR - 0.500 0.000 -1.06307 

109 0.22 0.65 -1.06313 

rriclinic 
601 0.83 1.03 -1.06307 
619 -0.52 0.69 -1.06307 
721 0.34 -0.17 -1.06313 
710 -2.96 +1.78 -1.06308 

FIG. 6. Example of lattice belonging to the hexagonal two-para­
meter family. 

It is interesting that no minima with energy lower 
than for the record-setting uniaxial lattices were ob­
served among these values. The obtained five minima 
lie at arbitrary points of the space under consideration, 
i.e., they correspond to a triclinic system and have 
practically the same energy as the deepest minima of 
the two-parameter and three-parameter lattices. The 
three other minima have an energy that coincides in 
magnitude with the deepest minima of the tetragonal 
structures . 

4. ANALYSIS OF RESULTS 

An examination of the results obtained in the preced­
ing section reveals the following interesting circum­
stance: the eight deepest minima corresponding to the 
different structures (one PH, one RH (Table 1), one BC 
rhombic (Table II), and five triclinic (Table III)) cor­
respond to very close values of the energy, within 
5 x 10-5 Ry Rj 10°K, The next minima are separated 
from this family by an energy interval of 4 x 10-3 Ry 
Rj 650°K, i.e., the separation is of the same scale as 
that between different modifications for ordinary 
metals. Finally, the third type of stable minima (see 
Table I) follows at approximately another 800°K higher 
(we note that although these energy intervals are small 
compared with the total energy, they are nevertheless 
comparable in magnitude with the entire structure­
dependent part of the energy, and consequently are 
reliably determined within the framework of the em­
ployed scheme). 

Such a surprising degeneracy for structures that are 
at first glance entirely different in symmetry and cor­
respond to minimum energy suggests the presence of a 
certain internal connection between them. 

An attentive analysis of the crystallographic struc­
ture of the "record setting" lattices shows that this is 

Table V 

ts< I 18~ 1 
E, 

Ry/atom. 

0 0 -1,06310 
3 0 -1.06311 
6 0 -1.06311 
9 0 -1.06307 
2 2 -1,06312 
5 2 -1.06312 
8 2 -1.06310 
4 4 -1.06313 
7 4 -1.06315 
6. 6 -1.06313 

indeed the case. All eight lattices can be obtained by 
starting from the primitive hexagonal lattice (it is also 
a member of the family) if the lattice points are shifted 
along the Z axis (parallel to C), but the hexagonal pro­
jection on the XY plane and the distance between the 
lattice points along the axis remain unchanged (see 
Fig. 6, which shows both the initial PH lattice and an 
example of the distorted lattice). Since the lattice 
must remain a Bravais lattice, it is easily understood 
that we have two independent possibilities for such 
distortion of the unit cell, by shifting through an arbi­
trary distance, for example, the chain of atoms passing 
through the ends of the vectors a10 and a2 0 (Fig. 6). 
We thus obtain a two-parameter family, which we 
shall describe by means of the relative shifts ~ and 1]. 

Denoting the basis vectors of the initial hexagonal 
lattice by a10, a2 0 and a3o, we obtain for the basis vec­
tors of the transformed lattice 

It is clear that in terms of such coordinates the PH 
lattice corresponds to ~ = 0 and 11 = 0, while the RH 
lattice corresponds to ~ = 11 = Y3. It is not directly 
obvious that the triclinic lattices belong to the family, 
and to check on this it is necessary to change over from 
the basis vectors given in Table III to the new axes X, 
Y, and Z. The results are given in Table IV. We note 
also that in all cases it was found that the volume of 
the unit cell, Uo.., 20.8 a8, and the distance between 
ions along the Z axis, d = 2.04aB, remain constant with 
high accuracy. 

In order to verify that we are dealing with a contin­
uous family of structures, we undertook a calculation 
of the energy for lattices with basis vectors (4.1) with 
regular variation of ~ and 11. It is clear that, owing to 
the periodicity, it suffices to consider the region 0 < ~, 
11 < 1, and since these are Bravais lattices, in general 
one-twelfth of this square is irreducible. 

The energy values corresponding to the points ~ and 
11 obtained by regular subdivision of the corresponding 
irreducible triangle are listed in Table V. It is seen 
from these data that the energy difference for different 
structures of the family does not exceed 10°K, Thus, 
on the basis of the results we can conclude that the 
minimum energy for the metallic phase of hydrogen 
indeed corresponds to a continuous family of struc­
tures of the type (4.1) with fixed distances between the 
atoms along the Z axis and with potential barriers 
within the family on the order of 10°K and below. Be­
fore we discuss other properties of this family, let us 
analyze the physical factors that give rise to it. 

As noted in Sec. 2, an equilibrium structure is the 
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-0,5 -D,/1 -D.Z D,D D,Z 0.11 . 
Ln(t/a) 

FIG. 7. Energy of primitive 
hexagonal lattice of metallic hy­
drogen as a function of c/a, n0 = 
20.8 a8 3 • 

FIG. 8. Energy of primitive hexa­
gonal lattice of sodium as a function 
of c/a, no = 254 aa3 • 

result of competition between the ion-lattice energy Ei 
(2,3) and the structure-dependent part of the electron 
energy E12> + E13> ((2.6) and (2.8)). The behavior of the 
first of these quantities calls for a tendency towards 
close-packed structures, whereas the electronic part 
of the energy is smaller the more anisotropic the struc­
ture. The tendency to anisotropy turns out to be 
stronger the larger the value of the Fourier component 
Vq of the electron interaction, at wave vectors on the 
order of the nearest reciprocal-lattice vectors if the 
density remains unchanged. In this sense, metallic 
hydrogen occupies a special place, since its Vq corre­
sponds to ordinary Coulomb interaction and retains the 
same sign in the entire interval of variation of q, 
whereas for all nontransition metals the Fourier com­
ponent of the pseudopotential passes through zero pre­
cisely in the interesting region of variation of q (see, 
for example,r23l), Therefore the gain due to the asym­
metry causing the shift of some of the reciprocal­
lattice points towards smaller q (see Sec. 2) in the 
case of ordinary metals turns out, as a rule, to be 
much less pronounced than in the case of hydrogen, 
and the structure there is governed decisively by the 
behavior of Ei· 

In the case of metallic hydrogen, the picture is es­
sentially different and the structure-dependent part of 
the electronic energy gives rise to sharply anisotropic 
equilibrium structures, as follows from all the previ-

ously obtained results. Incidentally, the tendency of the 
electronic energy towards anisotropic structures can 
be explained without resorting to (2.6), using the 
following simple reasoning: in an anisotropic metal the 
distances to certain reciprocal-lattice points, and con­
sequently to the corresponding Brillouin planes, de­
crease. The energy gaps on these planes increase and 
"squeeze" the entire electron spectrum downward, 
increasing the total electron energy. (The distortion of 
the dispersion law near the gap in a univalent metal 
has in itself very little effect on the total energy, and 
can be obtained by perturbation theory, as was done 
above.) 

To illustrate all the foregoing, Fig. 7 shows the 
total energy of the primitive hexagonal lattice of 
metallic hydrogen and individual contributions made to 
it as functions of c/ a at a fixed density. For compari­
son, Fig. 8 shows the same curves for ordinary uni­
valent metallic sodium with equilibrium density and 
with a pseudopotential taken from our earlier paperr 17l, 
Curves analogous to those of Fig. 8 were obtained by 
us also for the PH lattice of Mg, although the contribu­
tion of the electron energy in this case is somewhat 
higher. For an HCP lattice these data are given inr18l, 

It is seen from the figures that the sharp growth of 
Ei as c/ a- 0 and c/ a - oo, due to the coming to­
gether of the planes with like charges, always operates 
against very sharp deviations from unity. On the other 
hand, in the region c/a ~ 1 in the case of ordinary 
metals, the electronic part of the energy changes little 
and the minimum of the total energy is close to the 
minimum of the energy of the ion lattice (c/a ~ 0.95). 
To the contrary, in the case of hydrogen, when c/a 
deviates from the ideal value the decrease of the 
electronic energy in this region is faster than the in­
crease of Ei, as a result of which the total-energy 
curve acquires two minima corresponding to strongly 
anisotropic structures. The deeper minimum corre­
sponds to a lattice that is compressed along the Z 
axis, in which, in reciprocal space, six of the first 
lattice points, which are symmetrically disposed in the 
basal plane of the reciprocal lattice, are shifted much 
closer to K = 0, and two of the first points along the 
Z axis, to the contrary, are shifted to larger distances 
in comparison with the close-packed structure, where 
all eight points are at equal distances. Owing to the 
very strong decrease of the contribution from the in­
dividual reciprocal-lattice points with increasing K 
(see Sec. 2) the electronic contribution to the energy is 
determined principally precisely by these first six 
points in the basal plane. The second minimum, to the 
contrary, corresponds to a lattice that is elongated 
along the Z axis, in which it is precisely the first two 
points along the Z axis, which play in this case the 
decisive role, that are closer together in reciprocal 
space. 

We note that a similar picture in the behavior of the 
total energy and of the individual contributions to it as 
functions of c/a can be traced also with two other 
structures of metallic hydrogen as examples (see Fig. 
1), particularly tetragonal ones. At the same time, it 
is clear from general considerations that it is pre­
cisely in the hexagonal lattice that the gain in the elec­
tronic energy is maximal, since we are dealing with 
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Table VI 

Primitive hexagonal lattice 

~;~: } ,2.038 
0.12323 -22.41 - 42.0 -

-0.16191 0.4 16.8 -0.3 -38.9 -12 -4.4 0.3 
E!a) -0.05612 -0.8 6.8 0.8 -21.9 0.5 11.1 0.3 
E, -0.96830 22.8 -23.6 -30.4 86.3 7.9 17.4 -0.5 

Sum -1.06310 0,0 0.0 12.1 25.5 7.2 24.1 0.1 soB<'<' B,. 

Rhombohedral lattice 

I I 0.12369 -22.41- I 42.0 - - I -
2.040 1-0.16140 0.4 16.91-0.3 -38.2 -1.2 j -4.4 

-0.05590 -0.8 6.8 0.8 -21.9 0.5 11.0 
-0.96952 22.8 -23.7 -30.4 85.4 7.9 17.3 

----'----

-~:~ = I ~:b 
0.2 - 17.3 

Sum -1.06313, o.o I o.o 12.1 25,3 1.2 23.9 0.3 sB4 • 4 •[ 23.9 

Rhombic lattice 

Sum I 2.034 l-!.063071 o I o I 12,11 25.51 7.2 I 24.31 "'o I "'o I 24.0 

Note. Moduli in units of 1011 Jyne/cm2 = 100 kbar. The same for Tables VII and VIII. 
For the rhombic lattice, B13 ""0 and B23 ""0. 

r 
liz 

II, 

a b 

FIG. 9. Projection on the XY plane of lattices from the "triangular" 
(a) and "quadrati.::" (b) families. 

six closest lattice points, an.:i not with four as in the 
tetragonal case. 

The situation, with the special role played by the 
six nearest reciprocal-lattice points lying in the basal 
plane, explains the appearance of an entire family of 
energywise-close structures. The point is that for all 
the members of the hexagonal family it is precisely the 
position of these nearest lattice points that remains 
constant, owing to the fact that in direct space the pro­
jection of the direct-lattice points on the XY plane 
forms one and the same triangular plane lattice (see 
Fig. 9a). If we denote by b 10, b2o, and bso the recipro­
cal-lattice vect0rs for PH, then we have for family 
(4.1) the following values of the reciprocal-lattice basis 
vectors: 

b, = b,., b,= b20, b, = b,.- (£b,.+1']b20)· (4.2) 

Thus, on going from one member of the family to 
another, only the more remote !attic e points, w hie h 
make a small contribution to the electronic energy, are 
shifted. Noting in addition that, for the same reason, 
Ei for this family also changes very little (in other 
words, the distance between the ions in the XY plane is 
large compared with the distance along Z), then it be­
comes clear why these structures, which at first glance 
are so different, have anomalously close energy values. 

We proceed now to an analysis of the dynamic char­
acteristics of lattices from the hexagonal family. We 
consider first the long-wave properties determined by 
the elastic moduli. It was found already in the analysis 
of uniaxial lattices that two members of the family, 
corresponding to PH and RH lattices, have long-wave 

dynamic stability. A similar result was also obtained 
for the other members of the family. Table VI gives by 
way of an example the values of all the elastic moduli 
for three members of the family in the symmetric 
structures PH, RH, and BC rhombic, in the first two 
cases with complete breakdown of the contributions 
from the individual terms of the series (2.2). The 
striking result is here not only the close agreement 
between the values of all the corresponding moduli, but 
also of the individual contributions to them (the modu­
lus B4 ' 4 ' is discussed later on). Even the contributions 
to the modulus B66 coincide here with the contributions 
to B33 in RH, although from symmetry considerations 
they are equal only for hexagonal-symmetry lattices. 
The three additional moduli which appear in the 
rhombic structure are practically equal to zero. 

Thus, the elastic properties of the rhombohedral 
and rhombic lattices would appear to put them in the 
more symmetrical hexagonal class. It is easily under­
stood now that this is another manifestation of the 
microscopic picture outlined above, where the decisive 
role is played only by the six nearest reciprocal-lattice 
points, and therefore the elastic properties correspond 
not to the symmetry of the space group of the crystal, 
but to the hexagonal symmetry of the arrangement of 
these points. The statement that the individual contri­
butions are equal pertains also to the energy as well 
as to the first-order moduli given in the first columns 
of the table, It is quite clearly seen here, in particular, 
that the condition P = 0 is indeed reached as a result 
of the contributions from Ei and E1 01 (see Sec. 2), and 
that the equilibrium with respect to the parameter c/a 
( B2 = 0) is due to the competition between E( 21 , E1 31 , 

and Ei, all the contributions being large (see Fig. 7), 
i.e., far from the stationary value of each contribution. 

The most interesting result that follows from the 
presented table is that in all three structures the same 
modulus, B4, 4', turns out to be smaller by two orders 
of magnitude than the remaining moduli. This modulus 
is defined (see above) as the second derivative with 
respect to y 4 , of the energy for the shear deformation 
(3.8). It is easy to visualize that in such a definition of 
the deformation, the smallness of the modulus B4 ' 4' 

reflects precisely the very small energy change follow­
ing a distortion corresponding to a transition to other 
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FIG. 10. Ionic contribution to the elastic moduli B22 , B44 , and B4 •4 • 

as functions of c/a for primitive hexagonal lattice. c/a = 0.59 for the 
case P = 0. 
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FIG. II. Phonon spectrum for primitive hexagonal lattice of metal­
lic hydrogen, no= 20.1aB3 , c/a = 0.596. 

members of the family via a small displacement. Thus, 
the existence of a family of structures with very close 
energies and the presence of an anomalously "soft" 
modulus are two aspects of one and the same physical 
picture. 

It is important to emphasize that it is not only the 
modulus B•'•' itself that is anonamously small, but 
also the individual contributions to it, a fact that can be 
understood, incidentally, already from the close values 
of the individual contributions to the energy for differ­
ent members of the family (see Table VI). In Fig. 10 
we have shown the contribution made to B4' 4' by the ion 
lattice at a fixed density for PH, and for the sake of 
comparison also the same dependence for the modulus 
B22· We see that with increasing anisotropy, the value 
of this contribution of B4'•' decreases exceedingly 
rapidly, in full agreement with the physical considera­
tions advanced above. It should be noted that the abso­
lute value of B•'•', for all the members of the family, 
is determined with a relatively large error, which is 
natural if it is recognized that the change corresponds 
to motion along an energy relief with fluctuations on 
the order of only l0°K. Therefore, strictly, speaking, 
one can only state that B4' 4' ~ 0. 

To analyze the overall dynamic stability, it was 
necessary to find the phonon spectrum for the entire 
phase space of the wave vectors. To this end, we con­
structed the dynamic matrix of the oscillations, with 
allowance for third-order terms in the electron-proton 
interaction (see, for example, r 181) and obtained the 
spectrum for two members of the family-the PH and 
RH structures. In both cases, the spectrum turned out 
to be stable, i.e., 

IDi(q) ;;::;. 0 (4.3) 
for all wave vectors q and all modes a. 

Figure 11 shows the phonon spectrum of a primitive 

hexagonal lattice for three symmetrical directions of 
the wave vector. The two transverse oscillation modes 
with polarization along Z, one with q along ~ and the 
other with q along qy, turn out to be anomalously low 
in the entire interval of variation of q, and were not 
shown at all in Fig. 11, since the accuracy with which 
these frequencies are determined is extremely low 
(for the same physical reasons as B4' 4', and see also 
below). These are the same modes for which the 
initial section of the spectrum determines the speed of 
sound, which is connected with the modulus B4 ' 4'. We 
see that not only under uniform deformation correspond­
ing to the elastic moduli, but also under a small rela­
tive displacement of close chains along Z, the energy 
changes very little, corresponding to near-zero values 
of the excitation energy. 

It is interesting that, owing to symmetry, the modu­
lus B4'4' also determines the velocity of transverse 
sound in the propagation of a phonon along qz, and 
this velocity is thus also anomalously low. However, 
at noticeable values of q, the distortion caused by such 
a wave is in no way "easy," and accordingly, the pho­
non frequencies assume the usual orders of magnitude . 

For a rhombohedral structure, the phonon frequen­
cies turned out to be practically the same, and all the 
results described above remain in force. 

The entire discussion in the present section has 
pertained so far to Bravais lattices, i.e., lattices with 
a single atom per unit cell. In particular, as we have 
seen, an easy motion, which transforms one member of 
the hexagonal family into another, corresponds to arbi­
trary shifts of chains of atoms along the Z axis, but 
the lattice remains monatomic, which, of course, im­
poses stringent limitations on the shifts of the other 
chains along the Z axis. 

However, on the basis of the microscopic analysis 
given above, one can assume that if a polyatomic 
lattice is produced as a result of distortion, but the 
nearest reciprocal-lattice points remain the same, 
then the energy of the new lattice should again differ 
very little from the initial one. By way of illustration, 
let us consider the following two-atom lattice. Let the 
cell along the a20 axis double compared with the initial 
PH lattice: 

and let a second atom appear in the unit cell: 

p, = 0, P• =a,.+ I.a.,. 

Then, as can readily be seen, we have for the recipro­
cal-lattice vectors 

b, = b,., b, = b,. /2, b, = b,.. 

Thus, we get "extra" reciprocal-lattice points in the 
basal plane, for example b2o/2. It must be remem­
bered, however, that in a two-atom lattice the potential 
in the expression for the energy (2.6), (2.8) is multi­
plied by a structure factor (% )[1 + exp ( iKp 2)]. It is 
easy to see that this structure factor precisely 
"extinguishes" the contribution from the point b20/2. 
At the same time, new lattice points, not cancelled out 
by the structure factor, do indeed occur in the next 
plane along Z, for example (b20/2) + b30• The energy 
of the new lattice is different by precisely the amount 
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of the contribution of these remote lattice points, and 
thus depends on the parameter A, but very weakly. To 
verify this, we have performed a direct calculation of 
the energy of such two-atom lattices. The calculation 
has confirmed the assumption fully and yielded for the 
energy difference a value on the order of l0°K, A 
similar conclusion can be drawn also for the case of 
polyatomic lattices. 

Thus, the family of "optimal" structures also in­
cludes polyatomic lattices of the type described. This 
allows us to draw the important conclusion that the 
energy of such structures remains unchanged, with the 
same accuracy as before ( ~ l0°K), even after arbitrary 
relative motion of all the atom chains, provided a fixed 
triangular lattice is conserved in the projection on the 
XY plane. (As to the phonons, of course, additional 
optical modes arise when the cell is doubled, and the 
optical oscillations corresponding to polarization along 
the Z axis turn out to be anomalously low.) 

It is interesting that the tendency of the metallic 
phase of hydrogen to form families of structures dif­
fering very little in energy pertains not only to the 
lowest value of the system energy. The next aggregate 
of close minima, corresponding to tetragonal-sym­
metry lattices, also turns out to form a family of 
structures, whose characteristic features is now a 
fixed quadratic lattice (see Fig. 9b) for the projection 
of the chains on the basal plane XY. This can easily 
be verified by analyzing the data pertaining to three 
tetragonal structures and gathered in Table VII. We 
again encounter very slight differences in the energy 
and in the value of U0 , and close values of all the 
elastic moduli. Again the modulus B4 ' 4 ' turns out to 
be anomalously low, as is also the square of the optical 
frequency w~ with polarization along C for the j3-Sn 
structure. (This lattice is an example of a two-atom 
lattice belonging to the family.) It is clear that a 
similar analysis is possible also for this family (com­
pressed lattice, small value of c/a, contribution made 
by practically only the nearest reciprocal-lattice 
points in the basal plane, whose positions remain un­
changed, etc.), as in the case of the "triangular" 
family. 

Thus, the transition from the optimum modification 

to a modification that lies higher in energy is actually a 
transition from a "triangular" to a "quadratic" family 
of structures. 

Attention should be called to the fact that the set of 
stable or nearly-stable extrema next on the energy 
scale, which correspond to elongated structures with 
c/a > 1 (see Table 1), also has a unique tendency to 
form a certain unified family. This can be seen best in 
Table VIII, where all the results are gathered for four 
entirely different crystal modifications. 

Again we have close values of the energies; the 
distances dpl between the nearest crystal planes along 
the C axis, as well as the atomic volume U0 , are also 
close in value. It is interesting that in addition to the 
modulus B4 ' 4', there also appear relatively "soft" 
moduli B 66 and B33, corresponding to deformation in 
the basal plane (with the distance between planes and 
U0 remaining constant). In comparison with the 
"triangular" family (see Table VI), these moduli have 
dropped by at least one order of magnitude. Thus, we 
are dealing with ease of deformation of the structure 
in the plane perpendicular to the Z axis. This is why 
we especially replace B 4 ' 4 ' by the modulus B44, which 
is defined in terms of the second derivative of the 
energy with respect to y 4 (3 .5). 

It is easy to see that for small deformations B4'4' 

= B44 under the equilibrium condition (P2 = 0), i.e., 
for the summary value of the modulus. This is not so, 
however, for the individual contributions to the moduli, 
since each contribution is realized, as it were, at a 
corresponding B2 ;e. 0. It is all the more interesting to 
verify that at c/ a > 1 it is precisely the ionic contribu­
tion to B44 which becomes small, and furthermore very 
rapidly with increasing anisotropy (see Fig. 10). Thus, 
there is a tendency to a relatively weak change of the 
energy upon deformution of the structure in the plane 
with the distance between planes maintained constant, 
and furthermore separately for the ionic and electronic 
contributions (in the latter case, the greatest role 
should be played by two fixed close reciprocal-lattice 
points along the C axis, which dominate by virtue of 
the elongation of the unit cell). This explains the 
tendency towards formation of a single family of lat­
tices that differ only in the realignment of the structure 

Table VII 

lattice type f nwa11 cia I dian I E, Ry/atom I B, I Bn I B, I B,, I n,.,. I B,. 

--------T---T---T---T-----~~ 

I :~:g~ I ~:~6 1 ~:~~ \ -=t~~~~~ I :g I ~:g I ~-.i \ m 1-g:~ I ~;~ 
19.03 0,39 2,290 -1,05880 13.9 22.1 4.0 27.9 0.2 2.5 

Note. a2 pw,'/16 = 19.4 and c2pwc 2 /4"" -1.0 for /3-Sn. 

Lattice 
type 

PH, 
RH 
HCP 
Fer, 

Table VID 

/nwa11 cia h1/•a I E, Ry/atom I n, I B, I 
I 
118.48 

1,107 2.973 -1.05362 15.6 20.0 
18.41 1.925 2.971 -1.05363 14.7 19.4 
18.40 2.217 2.966 -1.05346 14.5 19,8 
18.58 1.642 2.931 -1.05230 14,4 21.5 

-2.5 
-2,9 
-2,8 
-2.9 

Note. a2pwa 2 /4 = -1.6 and c2pwc 2/4 = 96.1 for the HCP lattice. 

1,1 0,3 Jii5iBss 
2.5 0.4 fliiiiiBss 
2.6 0.5 !!!iEi!i.B3s 

-1.1 -0.8 2.7 
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in a plane with a negligible change of dpl and with a 
low value of the energy barriers between structures 
{planar family). 

It follows from the foregoing analysis that the 
electron-proton system has in the considered density 
interval clearly-pronounced tendencies towards forma­
tion of strongly anisotropic structures. We note that 
this result is also obtained when account is taken of 
the electron-ion interaction only up to terms of second 
order. But the depth of the minima in this case de­
creases noticeably .. Thus, for the PH lattice the left­
side minimum (c/a = 0.69) has a value E = -1.01631, 
and the right-side minimum (c/a = 1.08) is 
E = -1.02165. For the HCP lattice, the minimum is 
located at c/a = 2.12 and equals E = -1.02211. As a 
result, when the vibrational part of the energy is 
turned on (see the next section), the cohesion energy 
(reckoned from the energy of the isolated atoms) be­
comes positive or close to zero, and this should cause 
instability of the lattice relative to trivial disintegra­
tion into atoms. Thus, inclusion of third-order terms 
is of fundamental significance here. Physically this is 
due to the stronger electron-ion interaction at small 
distances in metallic hydrogen as compared to ordi­
nary metals, which, in turn, is due to the absence of 
an ionic core. The spatial inhomogeneity of the elec­
tron density turns out to be more strongly pronounced 
than when account is taken of only the second order of 
perturbation theory, which leads to an increase of the 
cohesion. 
. Inclusion of terms of fourth and higher orders will 
in all probability lead only to a certain further deepen­
ing of the minima obtained with allowance for the third 
order, but the anisotropic picture and the associated 
tendency to the formation of structure families will be 
fully retained. 

5. PROPERTIES OF GROUND STATE OF METALLIC 
PHASE OF HYDROGEN. ROLE OF ZERO-POINT 
OSCILLATIONS 

The analysis of the results obtained in the preced­
ing section leads us to the notion of a rather unique 
structure of the ground state of metallic hydrogen at 
P = 0. Indeed, if we take the zero-point oscillations 
into account (or, for example, a temperature of several 
degrees), then it becomes clear that the individual 
structures of the obtained family lose their individual­
ity. There should arise, apparently, a single state, 
which will have the structure of filaments forming a 
triangular lattice in a plane perpendicular to them, and 
having no fixed periodicity in space in a direction 
parallel to the filaments. Thus, we are dealing with a 
state of matter having only two-dimensional periodicity. 

The qualitative picture becomes particularly clear 
if we consider the role of the long-wave fluctuations in 
such a system. We introduce the dynamic oscillation 
matrix Dai3(q) for a structure corresponding to one 
of the members of the family, specifically for the 
primitive hexagonal lattice. If the coordinates of the 
ions are characterized by two indices m (index of two­
dimensional coordinate of the filament) and p (number 
of the ion along the filament): 

R,., = r,.'+p., (5.1) 

so that the vector Pp is directed along the Z axis, 

then we have for Daf3(q) 

m,p 

(5.2) 

Her"l A~fit,op is the force matrix, which is determined, 
as usual, via the second derivatives of the potential 
energy with respect to the displacements of the corre­
sponding ions. 

Let the wave vector of the phonon lie in the basal 
plane. Then the zz component of the dynamic matrix 
can be written in the form 

D"(q., q., 0) = L,A;,:,;,.(e-'•',.- 1) 
m,p 

= E ( .E A~~;op) (e-'"'m -1). 

(5.3) 

~=;!=0 

This component obviously determines the square of the 
frequency of the oscillation for the mode with displace­
ment amplitude {polarization) along the Z axis. 
Recognizing that it is precisely this mode which turns 
out to be practically equal to zero for an arbitrary 
value of q in the basal plane, we obtain directly 

~' " ~ Aom;o.p~ 0 (m=FO). (5.4) 

Physically, this equality denotes that the shift of the 
filament as a whole along the Z axis produces no force 
in this direction for the ions making up the neighboring 
filaments. 

If we now consider the region of arbitrary small 
wave vectors, i.e., containing already a weak displace­
ment from the basal plane (small qz), then we can 
readily establish, by expanding the dynamic matrix 
in powers of qz, that if (5.4) is strictly equal to zero 
then the dispersion law of the considered mode with 
polarization along Z will take the form 

oo'(q) = a(q,)'. 

From this it follows directly that the mean square of 
the displacement of an individual ion along the Z axis 

((u')')- £ f d'q je.,('l)' (2n(q,a)+ 1] (5.5) 
~ (1)(1 q 

( e a is the polarization vector and n( q, a) is the 
Planck distribution for the phonon q, a) diverges 
logarithmically at the lower limit at T = 0 (n = 0), and 
diverges like 1/qz at T"" 0, i.e., exactly as in the 
purely one-dimensional case. 

Let us now find the square of the displacement of 
the ion in the basal plane. The danger of destroying 
the two-dimensional structure arises in connection 
with the vanishing of the modulus B44, or, what is the 
same, of the velocity of the transverse sound when the 
phonons propagate along the Z axis. We shall there­
fore consider specially the phase space near this 
direction ( nz and n 1 are unit vectors along Z and in 
the basal plane): 

q = q,n, + Aqn-L 

and analyze the behavior of the dynamic-matrix com­
ponent 

D"(q) = L,Ao':;op(exp{- iq,n,p,- it'.q(n.trm)}-1). (5.6) 
m,p 
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At t::.. q = 0 this component determines the square of the 
frequency of the phonon for the mode with polarization 
along the X axis. The quadratic term of the expansion 
of the right-hand side of (5.6) in powers of qz (at 
small qz) should vanish. 

Taking this into account, we can readily conclude 
from the form of (5.6) that at small q the dispersion 
law for this mode should be 

(l)'(q) = a,q,' + a,(q.' + q,'). 

If we calculate the mean-squared displacement along 
the X axis, taking into account the obtained dispersion 
law, then we verify directly that (( ux )2 ) remains a 
finite quantity, both for T = 0 and T ¢ 0. Thus, flue­
tuations do not destroy the regular structure in a plane 
perpendicular to the filaments. 

The results obtained here are in full agreement with 
the analysis by Landaur24l, who was the first to formu­
late the possibility, in principle, of the existence of 
bodies whose density function depends on only two 
coordinates. We note that his analysis implicitly sug­
gested precisely a liquid-like character of motion 
along Z (and not simply amorphous behavior of the 
body in this direction, which also leads to p = p(x, y)), 
which corresponds precisely to the obtained divergence 
of the squared displacement (5.5). 

Thus, the results and qualitative considerations 
give grounds for assuming that metallic hydrogen in 
the ground state is a substance made up of proton 
filaments in an electron fluid, forming a rigid triangu­
lar lattice in a perpendicular plane (Fig. 9a) with high 
frequencies of the transverse oscillations in this plane 
(Fig. 11 ), and at the same time with a tendency towards 
a liquid-like motion in a direction parallel to the fila­
ments. 

2. The entire energy analysis above was based on 
consideration of the static part of the energy. It is 
clear at the same time that since we are dealing with 
such a light atom as hydrogen, the vibrational part 
Evib should also make a noticeable contribution to the 
total energy. However, as can be easily understood 
(and as was shown by direct calculations), Evib has 
practically the same value for all members of one 
family, and therefore produces no additional energy 
barriers and consequently does not change the above 
results. At the same time, the energy gap between the 
"triangular" and "quadratic" families is increased 
even more by Evib· 

To estimate the zero-point oscillations, we have 
calculated the phonon frequencies for a number of 
wave vectors in the first Brillouin zone (at 7 x 7 x 7 
points), making it possible to determine with good ac­
curacy the energy of the zero-point oscillations. It was 
found to be 

E,," = 0.0168 for a "triangular" family, 
E,;" = 0.0291 for a ''quadratic'' family. 

(5.7) 

The energy of the zero-point oscillations for structures 
of a planar family turns out to be even lower than for a 
triangular family, as a result of the weakening of the 
shear moduli in the XY plane (see the discussion at the 
end of the preceding section), but the total energy is as 
before, higher. (With increasing pressure, the picture 

may change-details will be reported in the next arti­
cle.) 

It is interesting that, as follows from (5.7), the 
energy of the zero-point oscillations turns out to be 
strongly dependent on the structure. It is clear there­
fore that a certain structureless approximation 
customarily used for the determination of the Evib 
(see, for example/6• 71) is in fact very crude. 

In connection with the foregoing results, attention 
can be called to the following interesting circumstance. 
The specific character of the potential structure in 
this system with the simplest interaction leads, in ad­
dition to the tendency towards formation of an entire 
family of crystal structures and by the same token to 
the appearance of "soft" moduli, also to an overall 
lowering of the total phonon energy; this lowering is 
stronger the more sharply pronounced the tendency 
towards formation of a continuous family. Therefore 
allowance for Evib only puts the state with the lower 
energy more definitely into the continuous family of 
structures. 

6. CONCLUDING REMARKS 

In the Introduction we have formulated four prob­
lems, the solution of which would essentially answer 
the question of the feasibility and properties of a meta­
stable metallic phase of hydrogen and the fundamental 
possibility of its production. 

The foregoing analysis solves the first two problems. 
Let us formulate first the results that will remain un­
changed when the theory is subsequently quantitatively 
improved. This pertains primarily to the main result­
it should be regarded as established that there exists a 
metallic phase of hydrogen even at P = 0; this phase 
is locally stable in all the macroscopic parameters and 
has a large binding energy relative to disintegration 
into isolated atoms. It was found that in this system 
with the simplest interparticle interaction, only 
strongly anisotropic structures are stable. Cubic 
structures, for example, which are so characteristic 
of ordinary metals, are absolutely unstable. Aniso­
tropy, in turn, leads to a very interesting fact: there 
appear families of structures characterized by almost 
complete absence of energy barriers between struc­
tures of one family, and the structures themselves go 
over into one another by means of a definite type of 
deformation. 

The absolute minimum of the energy turned out to 
be realizable with the so-called triangular family of 
structures, which constitutes an aggregate of struc­
tures obtained from a primitive hexagonal lattice by 
shifting the ions parallel to the C axis and conserving 
the projection in a plane perpendicular to the C axis. 
There is a tendency here for a unified family to be 
formed with loss of long-range order along C, but with 
conservation of a rigid triangular lattice for the pro­
jection of the chains in the basal plane. The fact that 
it is precisely the triangular family that has a minimum 
with respect to energy can depend, strictly speaking, on 
the quantitative accuracy of the assumed approximation. 
It is not very likely, however, that allowance for the 
next terms of the expansion will change the relative 
positions of the minima. 
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The third problem, namely the behavior of the 
metallic phase under pressure and the question of 
phase transitions, will be considered in the second part 
of the paper. 

As to the lifetime of the obtained state, which is 
metastable with respect to a transition to the molecular 
phase, this question, being purely kinetic and connected 
with nucleus-formation, remains open. It is interesting 
that, in principle, owing to quantum effects, this time 
is finite also at T = 0. Unfortunately, one cannot state 
that the lifetime will be sufficiently large, by virtue of 
the significant difference between the energies of the 
metastable phase and of molecular hydrogen at P = 0 
and the small mass of the hydrogen ions. In this con­
nection, metallic deuterium has undisputed advantages 
over metallic hydrogen. A factor greatly contributing 
to the stabilization in the volume is the large difference 
between the densities of the two phases. (Stability 
against decay from the surface can be attained by 
covering the latter with a specially chosen substance.) 
In this connection, the question of the real dependence 
of the energy of the molecular phase on the density can 
become quite critical. It is clear that the lifetime of 
the metastable state can increase very strongly if we 
consider in place of P = 0 a certain pressure that is 
finite although much lower than the pressure of the 
transition from the molecular phase into the metallic 
one. 

We note in conclusion that the results obtained in 
the present paper should be of considerable interest 
also for the general theory of metals, since in fact we 
have considered in detail a certain ideal model of a 
metal. 
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