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A study is made of polarization of vacuum in strong static fields when bound states with energies close to that of particle 
production in vacuum arise. It is shown that allowance for interaction between the particles ensures stability of vacuum since 
vacuum polarization leads to strong screening fields which do not permit the levels to approach dangerous values. Possible 
physical and astrophysical consequences of such alteration of the vacuum are considered. 

I. POLARIZATION OF VACUUM IN STRONG FIELDS 

J N the study of the polarization of vacuum one usually 
excludes from consideration fields in which there are 
deep bound states of particles. We consider in this arti
cle phenomena that arise when bound states with energy 
close to the energy of particle production from vacuum 
appear in a strong external field in the single-particle 
problem. In Sec. II we consider examples of such criti
cal fields and critical levels. 

The best known example of the appearance of critical 
levels is the point-like nucleus with charge Zc = 137 or 
the nucleus with finite radius R = roA113 and charge Zc 
= 170[1]. It can be shownE2J that at Z > Zc the state of 
lowest energy corresponds to vacuum with an altered 
polarization charge. This charge lies in the region 
~ n/mc. Owing to the Pauli principle, which does not 
allow the particles to accumulate in a "dangerous" 
state, a relatively weak screening field is produced. 
The stability of the "new" vacuum is ensured by the 
Pauli principle. 

A much more important realignment of the vacuum 
occurs in fields in which Bose particles can be pro
duced. Allowance for the interaction between the parti
cles ensures the stability of the vacuum, viz., when the 
wall deepens beyond a critical value, a strong polariza
tion of the vacuum sets in and a screening field appears 
and prevents the level from approaching the limiting 
value. Thus, owing to the existence of Bose particles, 
the effective field, i.e., the external field plus the 
vacuum- polarization field, cannot exceed a limiting value 
at which the critical value of the particle energy is 
reached (Sec. III). 

Particularly interesting phenomena occur in the 
scalar field that is realized in nuclear matter. The 
scalar field acting on the mesons in nucleon matter is 
determined by the formula 

v = -4nnf, 

where n is the density of the nucleons and f is the am
plitude of scattering of a 1r0 meson by a nucleon (formula 
(40)). At a sufficient nucleon density the mesonic vac
uum becomes realigned and a phase transition occurs, 
in which the equation of state of the nuclear matter is 
altered (Sec. IV). Such a phase transition can apparently 
be realized in neutron stars, in regions of high neutron 
density. 

In atomic nuclei, the dense phase, if it does exist at 

all, is separated from the usual one by a tremendous 
potential barrier. One can attempt to seek such super
dense nuclei in cosmic rays. The charge- to- mass ratio 
in such nuclei would differ considerably from the usual 
one. 

II. BOUND STATES OF RELATIVISTIC PARTICLES 

1. Scalar Particle in Scalar Field 

A. We start with a consideration of a scalar particle 
in a scalar external field. The particle is described by 
the Klein- Gordon equation 

~'I'.+ (e•' -1- v(r) )'I'• = 0 (It= c = li = 1). (1) 

We assume that v is added in the Lagrangian to 11 2 , 

and therefore vis an unbounded quantity. If a scalar 
field v1 were to be added to 11 (for which there are no 
grounds), then the quantity in (1) would be 

Let v have the form of a well: 

v(r) <0, r<R; v(r)-+0, r-+oo. 

The bound- state condition in our notation is EA < 1. As 
the well deepens, the lower level drops and at v = v c it 
approaches the value Eo = 0. Let us trace the course of 
the level when the potential is varied near vc. From the 
equations 

we obtain 

i\'1' + (e'- 1- v)'l' = 0, 

i\'1', = (l + v,)'l', 

, ('I' I v- v, I w,) 
8 = -'--'--:::=-::::::-':--'-

('1', 'I',) 

When v is sufficiently close to v c we have \}1 ~ \}te and 

e'= (lv, v'l') - ('1', v,'l') ""'V- v,. (2) (2) 

Thus, the level energy as a function of the parameter 
v proportional to the depth of the well takes the form 
shown in Fig. 1. 

B. The lower branches of the curves shown in Fig. 1 
should be discarded for the following reason. Equation 
(1) without a field or in weak fields has superfluous solu
tions (corresponding to negative energy). In strong 
fields, when bound states arise, the selection rule for 
the physical solutions should be formulated in the fol
lowing manner: It is necessary to discard all the solu-
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FIG. I 

tions that arise from states with negative energy when 
the field is turned on adiabatically, i.e., discard the 
solutions that come from the negative continuum. 

The dangerous situation arises for the first time near 
the point v = v~0 >. The particle-production energy in 
this state is equal to zero. Particles should be produced 
from the vacuum. We shall show below that the solution 
of the field equation rather than the single-particle equa
tion, with allowance for the interaction between the par
ticles, changes strongly the curve of Fig. 1 and leads to 
stability of the vacuum, namely, the particle-production 
energy does not reach zero for any well. 

C. We present the dependence of the energy of the 
lower level on the depth of the well for a spherical 
square well. The lowest level corresponds to a zero 
orbital angular momentum. Separating in (1) the angle 
variables and putting -.¥0 = ( 1/ fu)u/r, we obtain 

u" +(eo' -1 + Vo)u = 0, r < R, 
u" + (eo'- 1)u = 0, r > R, 

where v0 =- v and r < R. The condition for continuity 
at r = R yields 

K ctg KR =-A.,, K' = e,' - 1 + Vo, Ao = i1 - e,'. 

In the case of a narrow well (R « 1) we have K ~ 1/R 
» 1, and consequently 

" 1, " KR e; 2 + K S!G 2(1 + A.,R). 

The energy Eo is determined by the expression 
n' 

e02 -1 + Vo ~ 4R' (1 + 2A.,R), 
n' 

-v,~1+-. 
4R' 

( 3) 

In the case of a broad well (R « 1) we have K ~ 1/ R 
» 1 and for Eo we easily obtain 

n• ( 2 ) n' e,'-1+vo=- 1-- -v ~1+-
R' A.,R ' ' R'. 

( 4) 

D. In the case of a broad well, when R » 1, the dis
tance between the first levels is of order 1/R2 and at 
v = vc, when Eo= 0, many levels have near-zero energy. 
All these levels contribute to the polarization of the 
vacuum. 

It is convenient to consider the case of the broad 
well in the quasiclassical approximation. We confine 
ourselves to presenting an expression for the energy 
levels in a cubic well of dimension L. From (1) it fol
lows that 

(5) 

where k is equal to 

k = nn/ L, n = (nx, ny, n,). 

Here nx, ny, and nz are the numbers of nodes of -.¥ along 
the axes x, y, and z; Vo =-vat x, y, z < L. The bound 
states correspond to Ek < 1 and v c 2" -1- rr2/L2 • Thus, 
the energy spectrum inside a broad well differs from 

the spectrum of the free particles in that the mass is 
replaced by the quantity 1- v0 , which vanishes when 
v = v0 • 

2. Scalar Particle in Electric Fields. Bound States in 
the Case of a Repulsion Potential 

A. The Klein-Gordon equation in a static electric 
field is of the form 

~'¥, + [ (e,- V)'- 1]'¥, = 0. (6) 

It is somewhat difficult to operate with this equation, 
since the eigenfunctions -.¥.\ are not orthogonal. Proceed
ing in the usual manner, i.e., multiplying the equations 
for -.¥1 and Wz by Wz and -.¥1 respectively, and subtracting, 
we obtain (for -.¥1 -;r "IJ!z) 

(e,- e,) ('¥,, '¥,) = 2('¥, V1¥,). (7) 

Relation (7) replaces the orthogonality condition. 
One more feature of (6) is that at sufficiently large 

lVI (lVI > 1), regardless of the sign of V, there is a 
region of r where w.\(r) has an oscillating solution, i.e., 
there is effective attractionC5J. This can give rise to a 
bound state even in the case when V(r) > 0 for all r. 

The existence of an attraction region becomes par
ticularly clear if we write the equivalent Schrl:idinger 
equation, putting E 2 - 1 = 2E, and then the equivalent 
potential energy is 

v = - 1/2V' +eV. 

In the region where V2 > 2EV we have v < 0, i.e., attrac
tion (one must not forget that the analogy with the 
Schr5dinger equation is incomplete, since v depends on 
E, and this leads to non- orthogonality of the functions). 

B. Let us find the character of the dependence of the 
level energy on the depth of the potential well. We show 
first that oE.\/av = oo at E.\ = (-.¥.\, Vw.\); here, as above, 
v is a parameter proportional to the depth of the well. 

Indeed, writing down the two equations of (6) for two 
close values of v, multiplying by the corresponding func
tions, and subtracting, we obtain 

08 
[e-('¥, V'¥)]--a;v = e('¥, V'¥)-('¥, V''¥), (8) 

from which it foi.wws that 

Therefore the plot of E.\ vs. v has the form shown in 
Fig. 2C 1J. 

(9) 

Curve 1 corresponds to particles for which V < 0, 
and curve 2 to particles of opposite charge (V > 0). As 
follows from (6), curve 2 differs from curve 1 in that E 
is replaced by- E. It follows from (9) that the point 

I 
I 

/ 

-If----~--~~~/~/---

FIG. 2 



, 
1 

1186 A. B. MIGDAL 

adav = oo on curve 1 corresponds to the value E~1 > < 0, 
and on curve 2 to E~2 > > 0. 

C. How are these curves to be interpreted? Repeat
ing the selection rule given above for the physical solu
tions, it is necessary to discard all those solutions that 
result from negative energies when the field is adia
batically turned on. Thus, it is necessary to leave only 
those branches of curves 1 and 2 which go from the posi
tive continuum. 

At 11 = llo, a bound state appears in spite of the repul
sion potential! 

At ll = lie we arrive at the ctitical situation referred 
to above, namely, the pair-production energy W = E~1 > 
+ EA2 ' vanishes at ll = ll c· Indeed, at the critical point 
E~< = (W"A VW"A) and Et =- (W"A VW"A). As will be shown 
in the next section, a strong polarization of the vacuum 
sets in when ll = lie is approached, and leads to the ap
pearance of a compensating field such that the pair en
ergy cannot reach zero at any value of V. 

D. The energy E< 1> at the critical point lies in the 
interval (-1, 0). For potentials with large radius 
(R >> 1), E~0 and E~2 > tend to-1 and +1, respectively. 

To explain the character of these tendencies, we 
present without proof a formula for the critical energy 
of the first level for a spherical square well with a 
penetrability barrier e-Y: 

For a narrow well (1 + Eg')/IEg'l ~ 1; thus, for ex
ample, for a square spherical well with R «:: 1 we have 
Et ~ -0.8. For a broad well with a flat bottom we ob
tain from (6) for the lower state, in analogy with (5), 

<•> , n• <•> C,n• ( 5') 
(e, -V) =1+C•v· e, =-V,+1+w· v,~-2, 

where L are the characteristic dimensions of the well 
and C1 is a number of the order of unity (C1 = 1 for a 
cubic well). 

III. POLARIZATION OF VACUUM. SCREENING FIELDS 

1. Polarization of Vacuum in the Case of a Scalar Field 

A. Let us explain the role of polarization, using first 
as an example a scalar particle in a scalar field. This 
will facilitate the transition to the case of an electric 
field. 

Assume we have a field cp of scalar particles in an 
external scalar field v with an interaction 

As~ H' = 4 cp'dV, 0 < A~ 1. 

We expand cp in terms of the eigenfunctions of (1): 

(10) 

We confine ourselves for the time being to the case 
of a narrow well with lv- v c 1/lv c I « 1. Then there is 
only one level near the critical value ( E = 0) and it is 
precisely this level that makes the decisive contribution 
to the polarization of the vacuum, i.e., to the change of 
the energy spectrum of one or several particles in the 
field v1'. It is therefore necessary to retain in the ex-

1'The case of a broad well is considered in Sec. IV. 

pansion (1) one term: 
~ 1 
cp =-=(a+ a+)'¥. 

"J'2oo, 
(10') 

We used the fact that w is real for a bound state, and 
denoted by Wo the unperturbed energy of the level under 
consideration. 

It is easy to verify, for example, graphically that 
allowance for the remaining terms in the expansion (10) 
leads to corrections that contain powers of A. More
over, it can be assumed that allowance for the discarded 
terms leads only to a renormalization of the interaction 
H' and does not alter the results qualitatively even when 
A ~ 1. 

Let us consider by way of illustration two very sim
ple self- energy diagrams 

d d 

~= d~d, Iz= ll<:2:>d 

d ll 
The symbols 0 and 1 denote respectively the dangerous 
state and the state with energy E1• We obtain directly 
the estimate 

I,/ I, - Eo'/ 812 ; 

Near V c we obtain h /11 ~ A. ~ 13 • 
B. The Hamiltonian of the system can be written in 

the form 

H=(a+a+_oo+)ooo+~( a++a) • 
4 l"2ooo (11) 

We put 
At= A f'¥'dV. 

a+ a+ 1/ (l)o-
q =--= p = -i v-(a-a+). 

-y'2oo0 2 

Then 
P'+oo 'q' A 

H= o +-'- • 2 4 q. (11') 

Thus, the problem of determining the levels of the sys
tem has reduced to the problem of the energy spectrum 
of an anharmonic oscillator. 

According to formula (2) we have . - -COo == V -Vc• (2') 

Expression (2'), when substituted in (11'), makes it pos
sible to continue analytically the solution of the problem 
from the subcritical region (v - v c > 0) to the trans
critical region (v- v c < 0), since the operator (11') has 
no singularity at wo = 0. 

C. We can obtain a Hamiltonian suitable in the trans
critical region also without an analytic continuation. To 
this end, we choose the basis functions W"A for a fixed 
potential v = v1 which is sufficiently close to v c· The 
Hamiltonian takes the form 

Retaining again only one term, we obtain 

H= p'+oo,'q'+(v-ii.)q' +A,q' (11 ") 
2 4 . 

In particular, we can take v1 = vc. Then w1 = 0 and (11") 
goes over into (11') with the condition (2'). By the same 
token we have proved the validity of the analytic con
tinuation and refined the constant A1, namely, in such a 
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basis the -J! function which enters in A1 is the eigenfunc
tion of the considered level at v = v c· 

D. The energy spectrum of the Hamiltonian (11') is 
obtained with good accuracy quasiclassically: 

•• J {2[E(n)-U(q)]}'"dq=(n+'f,)n, (12) .. 
U(q) = 'f,(v- v,)q' + '/, >.,q'. 

Comparison with computer calculations (see below) 
shows that the error in the determination of the single
particle energy (w = E(1)- E(O) is of the order of 5%. 

For clarification, let us consider separately regions 
far from the critical point and the region close to it. 
The parameter separating the different limiting cases 
is the quantity 

11 =A., I 4lv- ii,l'1•. 

At 1J « 1 and v - v c > 0 (weak anharmonicity) we have 

E (n) = (n + 1/2) w, + '/,>.,(n I q' In). 

The averaging is over the eigenfunction of the n-th state 
of the oscillator. It is easy to obtain 

(13) 

Consequently the corrected energy of the single- particle 
state is 

"'= E(1)- E(O) = w,(1 + 21]), 1J ~ 1. (13') 

When 1J » 1 or lv- v c 1 « A~ 13 , i.e., in the immediate 
vicinity of the critical point, we can obtain from (12) 

E(n) = AA.'Ia(n + 112)'". 

. ( n ) ''• r(z)r(y) 
4 = , B('/,, '/•) ' B(z, y) = r(z + y) 

We present for comparison the values of e(n) 
= E(n)/A 113 , obtained quasi classically (I) and with a 
computer (II): 

I II 
e (OJ: o.35 o.42os 
8(1): 1,50 f.5079 
e (2): 2.96 2.9587 
8 (3) : 4,62 4.6210 

The energy of the single-particle state isC3 J 

(14) 

w =E(1) -E(O) = 1.09>.'1•, (14') 

and the quasiclassical value is 

"'= 1.15>.'1•. 

The energy w as a function of v- v c• obtained quasi
classically, is given in Fig. 3. At IV- v I » A~ 13 the 
energy w = E(1)- E(O) approaches zero 'itsymptotically. 

E. Let us find the asymptotic form of w when lv- v c I 
» A~ 13 • In this region, the potential-energy curve of the 
oscillator (11') has the form shown in Fig. 4. U(q) has 
two symmetrical minima separated by a barrier. The 

U{IJ) 

FIG. 3 FIG. 4 

eigenfunctions break up into two classes, symmetrical 
and antisymmetrical with respect to the reversal of the 
sign of q. 

The character of the spectrum can be easily under
stood: if the barrier separating the two wells has low 
penetrability, then the energy of the symmetrical state 
will be lower than the energy of the corresponding anti
symmetrical state by a small amount proportional to 
the barrier penetrability. On the other hand, the dis
tance between levels that differ in the number of nodes 
in each of the wells is not only not small, but, as we 
shall show, increases with increasing distance from the 
critical point. 

This can be easily verified by expanding U(q) near 
the minimum: 

q,:,. =I w,'l !>-., qm,. = ± il wo' I/>-,, 
(15) 

Thus, the question of the gross structure of the spec
trum has been reduced to the problem of an oscillator 
with frequency -121wol. Let us verify that the oscillations 
of the oscillator do not take the expansion (15) beyond 
the limits of applicability. Indeed, 

((q- q+)')/q+'~i.,f lwol'~ 1. 

Therefore, the gross structure of the levels will be 

E' (n') = -w,' I 4A., + (n' + 1/2)l'2"j OJo 1. 
where n' is the number of nodes in each well. The 
splitting of each of these levels is exponentially small 
because of the influence of the second "well." The mag
nitude of the splitting is proportional to the penetrability 
of the barrier separating the wells, i.e., it decreases 
exponentially with increasing separation between the 
minima and with increasing depth of each well. In par
ticular, there are two exponentially close states with 
n' = 0: a symmetrical one, corresponding to E(O) and 
an antisymmetrical one corresponding to E(1). The 
quasiclassical calculation yields 

E(1)-E(0)= Wo'/2 exp{-nlwol'}. 
· n 4>-, . 

The energy of the two particles 

"'' = E(2)- E(O) ~ 2f'2(v,- v) 

. increases with increasing distance from the critical 
point. 

Attention should be called to the fact that the energy 
of the ground state decreases with deepening of the well: 

(16) 

2. Polarization of Vacuum in Electric Field 

A. Let us consider the polarization of the vacuum of 
a field of charged mesons placed in a static electric 
field. The Lagrangian of the system takes the form 

(
{} )~({} )~ AA !l' = at- iV QJ+ at+ iV cp- VQJ+VQJ 

~ ~ A A A (17) 
-J.L'q>+QJ-2(QJ+QJ)', A.>O. 

We have assumed the simplest interaction between 
the mesons. It can be shown that stability of the vacuum 
is ensured also by a purely electric interaction, but it 
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is natural to assume that the hadron interaction is more 
significant, i.e., A > e2. From the character of the con
clusion it will become clear that a change in the form of 
the hadron interaction does not influence the qualitative 
results. 

It is first necessary to carry out the program of 
second quantization with respect to the basis functions 
of Eq. (6), which, as we have seen, are not orthogonal. 
We write cP in the form 

(18) 

Here >ltu> and >lt<2> are the solutions of Eq. (6) for V and 
- V, respectively (>It~2 > = >It' 0 >). The coefficients c~> and 
c~> are obtained from the requirement that the free 
Hamiltonian (A = 0) take the form 

(19) 

Let us explain the scheme of action and present the 
results. From the Lagrangian (17) without the interac
tion term we obtain the Hamiltonian 

S o!E, . a£e, . H,= T00dr, T00 =.......,......q>+-.-q>+-£e, 
fJq> fJcp+ 

in which, after substituting (18), the terms with A ;r A' 
vanish by virtue of relation (7), which replaces the 
orthogonality condition. Comparison with (19) yields 

I c <t> I' - 1 I c <•> I' - 1 
'- - 2 (e,<1>- Vn<1>)' '- - 2 (e,_<•> + v,,_<•>) i (20) 

where 

We take. the eigenfunctions of Eq. (6) with potential 
v = vl close to critical to be the system of basis func
tions, and consider the "dangerous" state. Then 'IJip> 
~ >It?>, since d 1 > ~ - d2> near the critical point. From 
Eq. (6) for >It?> and 'IJI?> we obtain, after multiplying 
respectively by 'IJI?> and 'IJI?>, 

(e~·>- e~·>) ('I'~·>, w?>) = 2('1'\'1 vw\'>). (21) 

Assuming that >Itf!> ~ >lt~2 >, we obtain 

1/2(00,-oo,) = V, (21') 

where E1 = E11 > and E2 = d2>. Substitution in (20) yields 

lc?> I'= lc~'l I'= 1/(ro, + oo,). (20') 

Thus, for the "dangerous" state the coefficients ci1> 
and c12> tend to infinity near the critical point, whereas 
the remaining coefficients remain finite. Therefore near 
the critical potential, just as in the case of a scalar 
well, we are justified in retaining only one term in the 
expansion (18): 

~ a+ b+ (22) cp = '1'. 
yoo,+oo, 

We have omitted the identifying symbols of a, b+, and 'IJI. 
B. We can improve the expansion (18) by choosing 

an optimal system of eigenfunctions such that the cor
rections to the main term (22) become minimal. To 
this end we write cP in the form 

(22') 

and obtain an equation for 'IJI from the exact equation for 

the operators cP: 
~ [ (i} )' ]~ ~~ Aql + - {ii + iV - JL" fP- Aql+ql' = 0. (23) 

We obtain the equatiol\ for 'IJI from the condition 

~ (acP) ~ q.,'l' = cp.,, i at "= ( [H, cp J )., = m.~ ... 

The matrix elements are taken for the exact states, 
namely vacuum and vacuum plus one particle. Then >It 
is the exact (normalized) functions, and w 1 is the exact 
energy of one particle with allowance for the interac
tion. The equation for >It follows from (23): 

1\'l'+[(w,-V)'-JA.']'I'-A'I'' (q+q')., =0. (24) 
.rl .. 

Near the critical point at A « 1, this equation differs 
little from Eq. (6) for V ~ V c· 

Equation (24) makes it possible to consider also the 
case of a field lVI :C IV c 1. 

In order for the problem to be closed, it remains t,o 
diagonalize the Hamiltonian, which depends on q and q 
and which we now obtain. It then becomes easy to obtain 
the matrix elements (q+q2)01 and q01 • 

C. Substituting expression (22') in the density of the 
Lagrangian function (17) and integrating over the volume, 
we obtain 

L=i.Ur=-(f''+.D'-VO) q+q + q+q +iV(q+q-q+q) -~(·+')• 
~ 2 2 2 4qq, 

where the bar denotes averaging over >It, 

A, = ~ J 'l''dr, p' = J ( V'l')' dr. 

We introduce in place of q and q+ the Hermitian opera
tors ql and q2: 

q = q, + tq,, q+ = q,- iq,; 

The generalized momenta corresponding to q1 and q2 are 
iJL _ ·aL 

P·=-0. =q,-vq,, p,=-0. =q,+V'q,. (25) 
q, q, 

We obtain the Hamiltonian 

H=p, fJL +p,!.!:....-L= p,'+p,• +-roo'(q,'+q,') 
. fJq, fJq, 2 2 (26) 

A,(q,'+ q.')' -+ 4 + V(p,q,- p,q,). 

Here 

co,'= V'- V'+ IL'+p': (27) 

Near V = V c at (IV I - IV c 1)/ IV c I « 1 the function >It dif
fers little from 'IJic, and w~ can be written in the form 

•OOo2 = V'- V'- V.' + V.'""" y(v- v,), 

where 11 is a parameter proportional to the depth of the 
well. 

Thus, the problem was reduced to that of a two
dimensional anharmonic oscillator with a potential en
ergy that is independent of the angle. The stability of 
the problem is ensured by the fact that A > 0. The en
ergy of such an oscillator depends on two quantum num
bers: the radial quantum number nand the angular mo
mentum m relative to the axis perpendicular to the os
cillator plane. It is easy to verify that 
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i.e., the angular momentum m has the meaning of the 
total charge of the particle. The radial quantum number 
n has the meaning of the number of pairs. 

D. The energy E{n, m) is determined in terms of the 
self-energy of the equation for the radial oscillator 
function 

namely, 

x" +2[E'(n,m)- U(s)- m'; '/, ]x =0, 

'E(n, m) = Vm+E'(n, m), 6= (q,'+q,')"', 
um =ooo'6'/2+'A.6'/4 .. 

In the quasiclassical approximation, which, as we 
have seen with the scalar well as an example, gives good 
accuracy[4 J, we have 

•• z ~ J { 2 [ E'(n, m)- U(s)- n:]} 'd~; =(n + '/,)n. (28) 
0 6 

Figure 5 shows the result of a quasiclassical calcula
tion of the quantities w1 and w2, which play the role of 
single-particle energies for two signs of the charge: 

(;i', = E(0,-1)- :E(O,O), "i:J, = E(0,1) -E(O,O). 

Let us find E{n, m) in explicit form for the trans
critical region 

-ooo'=y(v,-v) >'A''•. 

In this case the potential energy U( ~) has a minimum 
at 

s' = so'= -wo' I 'J.., 

and the problem reduces, as above, to the problem of 
the harmonic oscillator with frequency w' :: v'2twg 1. 

We obtain for E{n, m): 

'E(n,m)= U(soH ;• + {n + 2
1 )l'2lwo'l+ Vm (29) 

w,• m• { 1)-
=Vm- 4'J.., +~'A,+ n+2 l'2looo'l, 

hence 

ill,=E(0,-1)-E(O,O)=oo,,+ s~' =V+ ~~.~~, (30) 

A., 
illa = E(O, f)- E(O, 0) = - V + ~. 

The pair energy does not depend on z = m, and is 
equal to 

E(i, m) -E(O, m) =l'2lwo'l, 

i.e., it increases with increasing distance from the 
critical point. Since we have put if = if c• our results 
are bounded by the condition 

(31) 

Therefore, at our accuracy, V = Vc in formulas (30). To 

get rid of the limitation (31), it is necessary to find if 
from Eq. (24). It can be shown that at any V we have 

m,+w,>O, w,>-1, Wz < 1. 

3. Screening Fields 

A. The main result obtained above reduces to the 
following: 

In spite of the increase of the external field, the 
"dangerous" levels do not go through the critical value 
corresponding to the potential V = V c· Consequently, 
the deepening of the well beyond the critical value is 
compensated for by the additional field resulting from 
the polarization of the vacuum. 

Let us first find the screening field for the case of a 
scalar well. The equation for the field operators in the 
scalar well is analogous to (23) and takes the form 

- ( . ) Aq> + -iii'- 11'- v ~-'A~'= 0. 

Introducing, just as in the case of an electric field, 
:P = cPif, we obtain for if an equation similar to (24) 

(32) 

A 'I'+ (w'- ~t'- v)'l'- A.'l''(q') 01 / q01 = 0. (33) 

The equation of the free particle is 

A 'I',+ (ooo'- 11'- v)'l'o = 0. 

From the comparison we see that the role of the com
pensating field is played by the quantity 

v.(r) = -A.'I''(r) (q').,/ q.,. (34) 

B. The matrix elements of the operators q2 and q 
should be calculated from the eigenfunctions of the 
Hamiltonian of the anharmonic oscillator (11'). These 
functions can be approximately written in quasiclassical 
form. We confine ourselves to deriving an expression 
for vp in the transcritical region and present an esti
mate for the case v ~ v c· 

At w~ = 0 (v ~ v c) we have 

''J..(q') ~ A.,'t., (q') ~ A.,-'1•. 

Consequently 
A.''• 

v. ~ --'l''(r), l=J 'l''dr. 
Flo 

Multiplying by if2 and integrating we obtain 

wa - - Vp ,_ A:'•' 
in accord with the earlier result. 

Let us consider now the particularly interesting 
region, when 

lvl-lv,l >'A:''. 

In this case the operator q has a classical term q~ 
= -wU.\1. We write the matrix element (q3) 01 in the 
form 

(q')ot = (q')ooqOl + (q') .. qu + (q').,q,.. 

By virtue of the symmetry of the problem q11 = 0. The 
last term is small compared with the first in the ratio 
.\1/ tv- v cl· As a result, (34) yields 

v.(r)=-A.'I''(r)q.o'= ~o''l''(r)= v,;v'l''(r). (35) 

Thus, the screening field in the case of a narrow well 
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arises in a region with radius ~ 1/j..l., which is much 
larger than the radius of the well. The screening field 
is practically independent of the interaction constant. 

In the case of an electric field we have from (24) 

v.(r} = -A.'I''(r} (q+q') 01 / q01 • 

The state 1, which differs from the ground state only 
in m, we obtain 

(q+q'} .. - ( '+ '}. -- oo,• 
q.. - q, q, .. - T.' 

Substituting in Vp, we obtain 

Vp =- loo;'l 'l''(r}, (36) 

where w~ is given by expression (27). 
C. Besides the screening field vp, an electrically 

polarized field is also produced in the case of charged 
particles. Let us find the charge-density operator: 

~ t . . 
p = T(cp+cp- cpcp+)- 2Vcp+cp. 

Using cp = q>Ji and the expressions in (25), we obtain 

P = z'¥' + 2e(V- V} (q,• + q,')'¥'. (37) 

The charge density in the ground state (z = 0) differs 
from zero: 

poo(r} = 2e(V ~ V(r}} (s'}oo'¥1• 

In the transcritical region we obtain 

Poo(r}- 2e(V- V(r)} ~~:1 'l''(r}. 

The additional electric field is determined from the 
Poisson formula 

~v. = -4np. 

(38) 

The electromagnetic interaction between the particles 
can be written in analogy with the hadron interaction in 
the form 

(39) 

where 
A. -4 •J[(Ji'-V}'I''],[(V-V}'¥'],• d dr' 
.- e lr-r'l r . (39') 

At .\e « .\, which we assume, the screening field is de
termined by the hadron interaction. 

Let us explain how the formula (39') comes about. 
We note first that the electromagnetic interaction be
tween the mesons can be assumed to be non- retarded. 
Indeed, the frequencies for the production of one or 
several pairs near V = V cis of the order of .xt 13 (or 
.\~13), whereas the spatial gradients are proportional to 
1/ R or to jJ.. Therefore the square of the wave vector 
is k2 = w 2 - k2 = -k2 , and the D-function in the coordin
ate representation takes the form 

D(x-z')= lr~r'l tl(t-t'). 

In addition, the vector part of the current is 

i· = __;_ (cp+ acp _ q> aq>+) = o, 
' ax. ax. 

According to (22) and (22'). Therefore the exact formula 
for the interaction 

H' = ! J j,(x}Du.(x -z')j.(z')dxdz' 

goes over into 
H'=_.!_J p(r}p(r') drdr'. 

2 lr-r'l 
(39") 

The first term in p, as can be readily seen, results in 
small changes (on the order of e2 } in Ho, and we are left 
only with expression (39) with .\e given by (39'). 

IV. POSSIBLE PHYSICAL CONSEQUENCES OF 
REALIGNMENT OF VACUUM 

The discussion in this section is preliminary in na
ture-a more detailed analysis will be presented in our 
next paper. 

1. Phase Transformation of Nuclear Matter at High 
Density 

We consider first the question of the possible phase 
transition in nuclear matter at high density. Such a 
phase transition could occur in neutron stars. 

Nuclear matter produces a scalar well for mesons, 
whose depth in the gas approximation is equal to 

v, = 4nnf == 4nn(f.+ + k}/ 2, 

where n is the nucleon density and f(k) the amplitude of 
zero- angle pion scattering. 

It follows from (5) that under the condition 

v, = 4nf(k}n >eo'= J.t' + k' 

mesons with zero energy appear, i.e., an instability of 
vacuum sets in. The instability arises for mesons with 
momentum k, at which f(k) has a maximum, and this 
yields Ec ~ 2j..1.. 

The results obtained in the preceding section per
tained to the case of a narrow well, when an important 
role was played by one dangerous level. In the case of a 
broad well, a large number of levels approach immed
iately the critical value, but the problem of the meson 
field can be easily solved by confining oneself to the 
transcritical region, when a sufficiently strong class
ical meson field is produced. This field is determined 
by the energy minimum 

(o) e.' - 4nnf • A. • 
Ec1. = 2 (jlci' + 4 !pel , 

i.e., it equals 
!pel'= (4nnj- e.'} I A.. (40) 

The corresponding energy is 

E~'f'=-(4nnf-s,)'/41.. (41) 
At sufficiently large n, this energy will be much larger 
than the quantum part connected with the change of the 
zero-point oscillation energy. 

Formula (41) is perfectly analogous to formula (16). 
Thus, at n = nc = E~/ 41Tf, a second- order phase tran

sition takes place (a jump of dP/dn occurs, where 
P = -dE/dV is the pressure). The new equation of 
state is determined by the expression 

E=E<•l(n}- (4nnf-s,'}'/4A., (42) 

where E<lol is the energy density of the nucleons. 

2. Possible Existence or Superdense Stars 

The phase transition described above can apparently 
be realized in a finite system, i.e., in an ordinary 
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nucleus. However, as we shall see, the superdense 
state, if it does exist, is separated from the usual one 
by a colassal energy barrier. 

Let us consider a sufficiently heavy nucleus, when it 
is possible to neglect the term (Y'cp) 2 ~ cp2/R2 in com
parison with 4mrfcp 2 , and also neglect the surface effects 
(A3 ?> 1, R ?> 1/IJ.). Then the additional energy of the 
mesic field is 

E<"> = _ (4nnf- eo')' r = _ (4nnf- eo')' A 
41.. 4A. ' 

where r is the value of the nucleus. At 47Tnf < t~ the 
value of E(7T) is equal to zero (<Pel= 0). 

In order for a phase transition to occur it is neces
sary to go through a potential barrier whose height is 
determined by the condition 

dE<"! I dn + dE<•> I dn = 0. 

As an estimate for E(n) at high density (n ?> nnuc) we 
can take the energy of a Fermi gas of nucleons 

PF is the Fermi momentum and A the number of parti
cles. The order of magnitude of the barrier is deter
mined by the expression 

(4nnj- e,') I A.n ~ 1/ n'", 

or neglecting iJ. 2 

n'h ~ A. I 4nj, 4nnf > e,'. 

The second condition is apparently more stringent and 
corresponds ton ~ (3-4)nnuc· The height of the bar
rier at such values of n is 

Emox ~ (nlnnuc)'1'eFA. 

An estimate of the penetrability of such a barrier yields 
ln p-1 ~ 20A 413 • Therefore if superdense nuclei do not 
appear during the process of element formation, they 
cannot occur in practice from ordinary nuclei without 
external actions. It is possible that among the heavy 
nuclei of cosmic rays there are superdense nuclei with 
a charge- to- mass ratio much different from that of 
ordinary nuclei. Who knows? 

In conclusion the author thanks S. V. Kudyakov, A. M. 
Dyugaev, V. N. Gribov, and L. B. Okun' for interesting 
discussions. 
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