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The electro-hydrodynamical effect in liquid crystals is examined for frequencies of the alternating 
electric field which are much larger than the inverse relaxation time of the volume charge. It is 
established that for a fixed frequency w the effect exists in the region of field amplitudes E ;::: Emin(w), 
and for a fixed electric field amplitude E-the effect exists in the frequency range w :s Wmax(E). The 
dependence of the wave vector of the generated periodic structure on the frequency w is found. 

1. Depending on the frequency of the variable electric 
field E(t) = E sin wt the electro-hydrodynamical effect 
in liquid crystals has a different qualitative character. 
The onset of stationary flow of a nematic liquid, analo
gous to stationary convection, under the influence of 
low-frequency electric fields (the frequency w is small 
in comparison with the inverse relaxation time T{/ of the 
volume charge in the anisotropic liquid) was considered 
in Cll. ·In this case the volume charges, being generated 
in the liquid crystal due to the anisotropy of the conduc
tivity, play an essential role. 

The formation of a periodic structure in a layer of 
liquid crystal, placed between the plates of a capacitor, 
in fields with w » Te1 is investigated in the present ar
ticle. Here one can neglect the volume charges andre
gard the liquid as electrically neutral. In this connec
tion the mechanism for the formation of a banded struc
ture which is perio4ically changing with time becomes 
a purely dielectric mechanism. c2• 31 Such an effect, which 
has been observed experimentally in [2-41, has the follow
ing characteristics: 1) For a fixed amplitude E there is 
a range of frequencies Te1< w :s Wmax in which the cor
responding electro-optical effect is observed; for w 
> Wmax the effect vanishes; 2) the thickness of the layer 
of anisotropic liquid significantly influences the threshold 
characteristics of the generated structure; 3) the thresh
old value of the amplitude Emin depends on the frequency 
and increases with increasing w (the proportional rela
tion E:nin ~ w is theoretically derived in c41 ); 4) the 
period de of the banded structure may markedly depend 
on the frequency w and may be much smaller than the 
layer thickness l. These characteristic features of the 
high-frequency electro-hydrodynamical effect are ac
counted for in the present article. The threshold char
acteristics Emin and de are found in a unique manner 
from the minimum of the functional dependence E(d) 
which we assume for the regime under consideration. 

2. We take the geometry of the liquid-crystal layer 
to be the same as in the problem Cll: The molecules are 
oriented on the average along the x axis, parallel to the 
plane of the electrode, and the electric field is directed 
along the z axis, normal to the plane of the electrode; a 
small deviation of the long axes of the molecules from 
their average orientation takes place in the zx plane and 
is characterized by the angle (), One can show that for 
negative anisotropy of the dielectric permittivity Eik 
(Ea = Eu - €1 < 0), taking account of the deviations of 
the axes of the molecules from the zx plane and also 
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taking the dependence on the y coordinate into account 
leads to second-order quantities in the equations. Ac
cording to Cll and the assumptions made above, the sys
tem of linearized equations describing a layer of aniso
tropic liquid has the following form. 

The equation of continuity for an incompressible 
fluid: 

av. 1 ax + av, I az = o. 
The Navier-Stokes equations: 

av. aP a•v. a•v. a•o 
pat= -a;+ ~.'"Ox'+~·~+ a, ataz 

(1) 

av, aP a'v, a•v, a'S 
P--at=-az+B· ax' +~·---;w-+a, atax' (2) 

where p is the density of the liquid, Pis the pressure, 
and the viscosity constants f3j are related to the Leslie 
constants O'i by the relations 

~~=a, +as+ 'J,(a, +a,+ d,), '~'='/,(as+ ,a,+ ao), 
~. = '1.(-a, +a,+ a,), ~' = '1.(-a, +a,- a,). 

Neglecting the small moment of inertia of the liquid, 
the equation of motion of the director is given by: 

1 ( aw a•e a•e 
4;r e,E(t) OE(t)-a;;-) + Kuij;f+K"ax' (3) 

= Y•+Y• av. + y,-y, !!.::.:_+y,ao 
2 i}z 2 iJx at' 

where l/J denotes the small deviation of the potential cp 
= - E(t)z + l/J from the value - E(t)z, -l/2 :s z :s l/2, 
'Y1 = O's- 0'2, 'Y2 = O's- 0' 5, and K11 and K33 are the elas
tic constants. 

Maxwell's equation: 

· ae a•..p a'w 
e.E(t) -- e 11-- e.~.-= 0. Ox Ox' Oz' (4) 

One can write the boundary conditions for the system 
of equations (1) through (4) in the form 

8=0, ¢=0, v.=v,=O forz=±l/2. (5) 

The first condition in (5) is achieved by special process
ing of the solid surface (by polishing the plates along the 
x axis). 

Out of the parameters of the problem one can form 
the following dimensionless combinations which appear 
in Eqs. (1) through (4): 

e.E' K ( :rt )' K ( :rt )' ~ ( :rt )' -~ (~)' 
- Bnlku ' tJ;; T ' ~ d ' pro< l pw d 
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where K and {3 are the avera~e constants of elasticity 
and viscosity. Since pK « {3 in a liquid crystal, and the 
threshold values of the quantities (- EaE2/8{Jw), ({3/pw) 
x (rr/l}2, or ({J/pw)(rr/d)2 are larger than or of the order 
of unity, then one can neglect the terms containing K11 

and K33 in the equations which determine the threshold 
characteristics of the generated structure. We also take 
into consideration that in a nematic liquid y 2 = as+ a 2, rsJ 
a 1 ~ O, as= (y1 + y2)/2 ~ 0, a 2 ~ {32 - f3s, and lEal « E1. 

It is necessary to take the elasticity of the liquid 
crystal into account in a thin boundary layer, whose 
thickness in order of magnitude is given by 

h ~ (- BnK ) "~ ( pK ) v. l < (l d). 
e.E' p' ' 

In this layer 9 rapidly changes from zero on the solid 
surface to a certain value 9, which is obtained from the 
solution of the equations for the base layer. Since h 
« d, in the boundary layer Eq. (3) takes the form 

layer, one can also require fulfilment of the condition 
Vz on the boundary of the base layer. As a consequence, 
on the boundary of the base layer the function 2 must 
satisfy the condition 2 = 0 with the same degree of ac
curacy, according to Eqs. (1)-(5). 

3. We seek the solution of Eq. (7) in the form 2 
= f(t)exp (ikx)cos (p+nz) or 2 = f(t)exp (ikx) sin (p_nz), 
where f(t) is a periodic function of the time and 

(2n+1)n 2nn 
P+·=- 1_ 27i (n=0,±1, ... ), P-·=~(n=±1,±2, ... ). 

Since h « l, we shall neglect below the quantity h. 
The least distorted structure of a liquid crystal corre
sponds to the wave vector p = P+o ~ rrjl. As a result, by 
substituting E(t) = E sin wt and introducing the dimen
sionless variable ~ = wtjrr we obtain the following equa
tion for the function f: 

u'f at 
a~'+ p, + v(1- cos(2ns)) ]af +(fL-v (1- cos(2ns)) (8) 

1 , a's as 
-e.E (t)S+Ku-=-az-, 
4n dz' ilt (6) where 

+ 2nv sin(2ns) ]I= 0, 

The solution of Eq. (6), having a periodic dependence on 
the time, is given by the series 

S(t) = ~ a.sh(q,.Z)sh-'(q,.7i)exp [tnwt + (~)sin(2wt)], 
~ 16na,w 

Jl=-I>D 

where 
e,E' a,nw l 

q .. ' = ---- i-,-,0.:;;; z =--:--lzJ.:;;; n, h < n~(l,d). 
8:tK11 Ku 2 

The coefficients an are determined from the condition 
that on the boundary of the base layer the obtained se
ries must be equal to the function e(t), which is the value 
of the solution of the equations for the base layer when 
lzl = (l/2)- h: 

(b/m) . EZ 
a,,=;_ J il(t)exp[·-inult- (~"----)sin(2wt)]dt. 

2:-t " 16:ta,w 

With the aid of Eqs. (1) and (2), where as= 0, we find 
that the component vx of the velocity tangential to the 
solid surface varies rapidly in the boundary layer ac
cording to the law vx ~ (z/n)vx, where vx is the value 
of the velocity Vx on the boundary of the base layer, 
which is obtained from the solution of the equations for 
the base layer. The variation of the velocity component 
Vz normal to the surface is small in the boundary layer 
and amounts to a quantity of the order of (h/d)vx. The 
distribution of the electric field potential near the solid 
surface can be determined in similar fashion. 

Eliminating the function 1/J, vx, and Vz from Eqs. (1)
(4), we find that in the base layer the function 2 = ae;ax 
must satisfy the equation 

{ a• a• a• • a a' a• ' 1 a' -(-+-) --(-+--) [-(~.--at' ax' az' at ax' ()z' p i)z' 
+ ~,~) _ e,E'(t) ] _ e,E'(t) ~( ~.~ (7) 

Ox' 4na, 4na 2 p i)z' 

+ ~, :~) ( a:: + ~·, ) } s = o. 
Since the change of the velocity Vz in the boundary layer 
is small and the true behavior of the normal component 
of the velocity does not have any singularities in this 

e.E' 
v=--, 

Sa,w 

na, k' 
l.=fL+---k,-'. 

pw +P 

In order for Eq. (8) to have a periodic solution corre
sponding to the experimentally observed oscillating re
gime, it is necessary and sufficient if only one of the 
roots of the characteristic equation is given by a = 1. rsJ 
In the present case the characteristic equation has the 
form 

(9) 

where 

(i = 1,2,r =0, 1), 

/ •.• (6)= 1, t •.• m=s, 
I 

/.w(s) =-J (s- u) {[f!v(1- cos(2nu)) + 2nv sin(2nu) ]f,,,(u) 
0 

+ [I.+ v(1- cos(2nu)) ]f,~!l (u) }du. 

Equating the root of Eq. (9) to the value a = 1, we obtain 
the function v(IJ., ~). where according to Eq. (8) ll is a 
function of~ and of the ratio (w0 /w) ~ ({Jp 2jpw). The 
equation for v as a function of ll and ~ is represented 
by a series in powers of v with coefficients which de
pend on ll and~. The solution of this equation is found 
numerically. The excitation threshold associated with 
a fixed frequency w corresponds to the minimum value 
vc(w0 jw) of the function v when the value of the param
eter~ is equal to ~c(w0 /w). In the case w > w0 , {3 3 

~ 2{32 (in paraazoxyanisole) the threshold characteris
tics of the oscillatory regime with frequency 2w are 
given by vc ~ 1 and ~c ~ 1. 

Using the characteristic equation one can verify that 
the regime under consideration is energetically the most 
favorable, that is, it corresponds to the smallest thresh
old values for the quantities v or E. The non-periodic 
solutions, which correspond to complex values of a 
(a= ei77, lal = 1, f (t + rrjw) = f (t)ei77) are less favorable 
since in this case vc > 2. Thus, in the range of frequen
cies w > w0 ~ {Jp2/p the threshold amplitude Emin of the 
electric field, at which the oscillatory regime with fre
quency w appears, is given by 
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(10) 

For a fixed amplitude E the considered effect will ob
viously exist in the range of frequencies w ~ Wmax 
~ EaE2/8a2• For E = Emin (w > w0 ) the wave vector k 
of the generated structure, which is periodic along the 
x axis, is given by the formula 

ko'(w > w,) ~ pw In~,> p', (11) 

and the period de = 1T/kc is correspondingly given by 

d,(w > wo) ~ nl"ro~,fvw < l. (12) 

From Eqs. (10)-(12) it is clear that in contrast to the 
low-frequency electro-hydrodynamical effect, [ll for 
larger frequencies of the electric field the threshold 
voltage Vmin = lEmin is proportional to the thickness 
of the liquid-crystal layer, but the period de of the 
structure does not depend on the layer thickness l. 

Since w0 ~ z-2, the frequency w0 for a sufficiently 
large thickness of the liquid-crystal layer becomes of 
the order of magnitude of the inverse relaxation time 
of the volume charge. In this case for w ~ w0 ~ r(/ the 
mechanism for the formation of the banded structure 
connected with the anisotropy of the conductivityr1' 4J is 
switched on, but for w > r'f/ the dielectric mechanism 
leads to the frequency dependences (10)-(12). 

If the layer thickness l is such that w0 » r'f/, then 
there exists a frequency range rff < w < w0 in which 
the dielectric mechanism for the formation of the banded 
structure leads to a behavior of the threshold character
istics which differs from (10)-(12). For w < w0 the pa
rameters A and IJ. are much larger than unity and in this 
case the solution of Eq. (8) is written in the form f(O 
= exp (Ag(0), where g(~) is represented by the series 
g = g0 + (1/A) g1 + ... in powers of (1/A). In the approx
imation which is analogous to the quasiclassical approx
imation, the dependence v(IJ., A) corresponding to the os
cillatory regime with frequency 2w is found from the 
"quantization'' condition 

~{[ v sin'(n~)- -+A- 6 + li6(A + 6)] 
(13) 

X [+A+ 6 -y6(A + 6)- v sin'(n~)] + nv sin(2n~)} 'k d£ ~ n, 

where 1i = IJ. - A, and the integral is taken over one com
plete period of the "classical motion." Since this inte
gral is small for Ac » 1, lie « Ac, and vc ~ (Ac /2), 
then by rewriting sin (1r~) in the form 1- Y2 1T2 (Y2 - ~)2 
from Eq. (13) we find that 

v ~ _!:_-04'16A+ (~)··~ 
2 ' r h 1\ ' (14) 

where 

'- ~~(p'+2k'), 
pw 

;n;~ k' 
6~-

pw p' , 

From here we obtain 
it ~p' ( ~p') ''• v,~--+0.5n-
2 pw pw k'~06 ·(~)"' ' , p ~p' 

or 
[ ( pw )'''l Vm<n(w<w,)~2n~(n/pje,j)'/, 1+0.5 --:9'' , 

( ~p' )''• d,(w < w,) ~ 1.31 p;- . 

(15) 

(16) 

According to expression (16) the threshold voltages and 
the period of the structure vary substantially more 
slowly in the frequency range w < w0 than they do in the 

range w > w0 , and also the difference of the potentials 
Vmin here weakly depends on the layer thickness l, and 
the period d is a quantity of the order of l. 

Formulas (15) and (16) are valid in the absence of 
volume charge for frequencies which are larger than the 
inverse relaxation time of the structure, r-J ~ (Kp2 /f3), 
which is due to the influence of the walls. The electric 
field can be regarded as constant in the frequency range 
w « r"f/. However, Eqs. (1)-(4) do not have a stationary 
solution except for the trivial solution, since there is no 
volume electric charge in the liquid according to the 
conditions of the problem (for re1 « r"f/). In actual fact 
the oscillatory regime under consideration becomes 
energetically unfavorable at a certain frequency w = w*. 
For w < w* the smallest value of v corresponds to ar
bitrarily small values of the wave vector k. 

In order to calculate the critical frequency w*, in 
Eqs. (7) and (8) it is necessary to keep the term (- K11p2) 

of the series with the quantity (EaE2(t)/41T). Consequently 
Eq. (14) is written in the form 

A ( n )' 1 v~2-0.4l"'-(6+;)+ 4 6+s' (17) 

where A and 1i are the same as in (14) and ?; = (1TK11p2/f3w). 
From (17) we find that the critical frequency is given by 

w* ~ 5(W/vKu)'i•(Kup2 /~). 

According to (16), for w = w* the threshold values of the 
voltage and the period of the structure are given by 

.v· ~ 2nB ( P ~e. I )"'[ 1 + 1.6 ( P;" )"'] , a• ~ 0.8 ( P~:. )"' l. 
The values k = 0 or d = oo give the same value for the 
threshold difference of the potentials for w = w*, but 
they correspond to an undistorted structure of the liquid 
crystal, which must also be realized for frequencies of 
the electric field smaller than the critical frequency. 

4. The obtained results qualitatively agree with the 
experimental data. In order to make a quantitative com
parison it is necessary to have more complete informa
tion about the parameters of specific substances. The 
form of the boundary conditions at frequencies w much 
larger than the inverse relaxation time of the volume 
charge is not important, since in this case the solid 
surface influences the behavior of the anisotropic liquid 
only in the thin boundary layer. 

In conclusion I thank A. I. Larkin for fruitful discus
sions and L. K. Vistin' for acquainting me with the ex
perimental data prior to its publication. 

1 S. A. Pikin, Zh. Eksp. Teor. Fiz. 60, 1185 (1971) 
[Sov. Phys.-JETP 33,641 (1971)). 

2 L. K. Vistin' and A. P. Kapustin, Optika i spektro
skopiya 24, 650 (1968) [Optics and Spectroscopy 24, 348 
(1968)]. 

3 G. H. Heilmeier and W. Helfrich, Appl. Phys. Let
ters 16, 155 (1970). 

4 0rsay Liquid Crystal Group, Phys. Rev. Lett. 25, 
1642 (1970). 

5 0. Paradi, Journal de Physique 31, 581 (1970). 
6 Giovanni Sansone, Ordinary Differential Equations 

(Russ. trans!.), IlL, Vol. 1, 1953. 

Translated by H. H. Nickle 
223 


