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The dependence of the energy of an impurity virtual level in an antiferromagnetic with anisotropy of 
the easy plane type on the magnitude and orientation of the magnetic field is investigated. The inves
tigation is performed for cases when damping is weak. Dzyaloshinskir interaction is taken into ac
count. The temperature dependence of the spin- system parameters is calculated in the molecular 
field approximation. The calculations are extended to a complex consisting of two impurity atoms 
arid a linear defect. 

1. Investigations of the impurity problem began with 
the theoretical papers of I. M. Lifshitz(1J. The singu
larities in the results of a number of recent experiments 
on magnetically ordered crystals(2-4J are due to the 
presence of impurities in the crystals. Numerous later 
theoretical investigations of the impurity problemC 5- 10J 
are based on the Green's-function method, which was 
first used by Wolfram and Callawaf5J to determine im
purity spin states. This method calls for writing down 
the equation of motion for the Green's function in the 
node representation, reduction of these equations to the 
Dyson form by separating the perturbation, and repre
senting the solution explicitly in terms of Green's func
tions, determined by numerical integration, of the un
perturbed system and of the perturbation. It is custom
ary to change over here from arbitrary spin operators 
to Bose operatorsC6- 9J, a changeover shown by Oguchi 
and OnoC10 J to be incorrect when a system of localized 
magnons is considered. Nonetheless, numerical calcula
tions of the spectrum, performed in this manner for 
T = 0 and S » 1, do not reflect the fact that the solution 
is incorrect, and are worthy of attention. 

Investigations of ferromagnetic (FM) and antiferro
magnetic (AFM) impurities in antiferromagnets, with 
allowance for single-ion anisotropy in the absence of a 
magnetic field H, were performed by LoveseyC9J. His 
numerical calculations of the spectrum can serve as a 
basis for the investigation of the case of arbitrary mag-
netic fields. · 

We consider in this paper single- and two- atom 
substitution impurities and a linear impurity defect. 
The purpose of the paper is to determine the energy of 
the local and quasilocal spin oscillations realized on the 
impurity atoms (the so- called So oscillations) in the 
case when the influence of the impurity spin on the 
nearest non- impurity environment can be neglected, a 
case ensured by the condition 

IJ'IS.~ (z -1) IllS, (1) 

where the exchange integral J corresponds to an inter
action of the matrix spins with one another, J' corre
sponds to the interaction of the matrix spin with the 
impurity spin So, and z is the number of nearest neigh
bors. 

An analysis of the numerical results obtained by 
Izyumov and MedvedevC6 ' 11 ] for a point-like impurity in 
a ferromagnet at arbitrary Hand by LoveseyC9J for a 
point-like impurity in an antiferromagnet in the case 
H = 0 shows that to calculate the energy of the s0 oscilla
tions under condition (1) the impurity defects can be re
garded as an isolated system situated in a certain effec
tive field Heff• determined by the interaction of the im
purity spins with the nearest impurity surrounding and 
the external magnetic field H. In the simplest case of 
a point-like defect, in the absence of single-ion aniso
tropy, the energy of the So oscillations, or in other words 
the energy of a virtual impurity level of the s0 type, has 
the following form: 

(2) 

where f.J.B is the Bohr magneton and r;o the g-factor of 
the impurity. 

2. We consider first an antiferromagnet with a body
centered cubic structure and with a point-like AFM 
(J' < 0) substitution impurity at the site with R = 0 
(Fig. 1). We seek the ground state of the spin system in 
the case S, So » 1 by using the two- sublattice model of 
an antiferromagnet with exchange interaction between 
the nearest neighbors. 
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FIG. I. Body-centered cubic lattice. Impurity site. First and second 
coordination spheres. Coordinate system. 
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The Hamiltonian of the system under consideration 
is written in the form 

where 

J(lil(~)= 

/'{~). 
if R 1 = 0, 
J(~). if 
R1 +0+R1+~. 

The ground state of the spin system can be obtained 
by minimizing the eigenvalue of the Hamiltonian (3). To 
determine the parameters of the spin system at T ;t! 0 
we use the molecular field approximation. In the case 
of an AFM impurity, introducing the proper coordinate 
systems for each spin and choosing the axis t; R along 
the direction of the spin SR, we obtain in the zeroth ap
proximation in SR- ( SR)C12J the following expression 
for the free energy 

(4) 

where 

(5) 

We introduce the indices i = 0, 1, 2, ... for the impur
ity, first coordination sphere, second coordination 
sphere, etc., respectively. Minimizing F<0 > with respect 
to <sF> and ei, we obtain 

(S,1) = b,(y,), (S,') = b,(y,), ... , 
z II' I (S,') sin (e, + e,) = IL•g,H cos e,, (6) 

I /'I (S,') sin (6, + 6,) + (z- 1) 111 (S,1) sin (e.+ e,) = fL•g,H cos e, 

etc., where 

b,(y,) =. (S, + 1/2) cth (S, + 1!2)y,- '/,cth 'f,y, 

is the Brillouin function. 

(7) 

Confining ourselves to a case amenable to an investi
gation, when the perturbation is localized in the first 
coordination sphere, we put ei ~ e for i > 2 and, using 
the condition ( 1), find the solution of the system (7): 

sine= H/2HE, 

(8) 

where 

H, = z1JI<S1) , H"' =zll'I<S,1). 

fL•g j.J..g, (9) 

Under the chosen condition, e 1 does not depend on the 

perturbation parameters and ranges from 0.98 to 1.09, 
whereas 90 can differ noticeably from e (Fig. 2). We 
shall show that for the perturbation to the localized in 
the first coordination sphere it is necessary to have 
8 1 ~ e, which is satisfied, in particular, under the con
dition (1). 

To this end, we introduce single-particle, say retar
ded, Green's functions in the node representation 

GV,(t- t') = -i9(t- t')([S;:'z (t), S;j(t')]), (10) 
G~~ (t - t') = - iB (t- t') < 1 8;1 (t), B;; (t')l ), 

where 

9(t-t')= { i, :,>t, S"==(S'±iS'){j2, 
0, t < t, 

~ , T/, and i; are the axes of the proper coordinate sys
tems of each spin. Transforming the Hamiltonian by 
changing over to the proper systems of the spins and 
recognizing that 

Grp(t-t')= 2~ S Grp(~)expJ-ie(t-t')Jde, (11) 
-oo 

we obtain ultimately the equations of motion 

Gn + .. ~ I/' ~ [ .1 - c.os (eo+ 6.,..&) 21 
B o,p = JSu , Sp I uop + I f 2 (Sol.) Go+li,p 

+ 1 + cos (eo+ eo+&) (S '> (;21 + (6 + e ) (Sr;, > att 2 0 O+li, p COS 0 0+/i O+li 0o 

- f'i (S~+&) (S0i.) sin (eo+ eo+&)] + f1Bg 0H sin e0G~~. 
G21 I J I~ [ 1 -cos (6o+li+6 + 6o+li) (Sr. >en 

B O+li, p = ~ 2 O+li 'O+Ii+6, p 

+ 1 + cos (eo+~>+a + eo+~>l sr:. Gn (e + e l < sr. > 2 ( 0+/i) O+!i+6, p + COS O+li+6 0+/i O+li + 6 

· G~!li,P- f'i (S~+Ii+a> <S5.&> sin (eo+li+6 +eo+&)]+ 

+ll'l[ 1-cos~0 +60+&) (S~+&)G~!+ 1+cos(~o+6o+&) (S~+Ii>G~ 

+cos (e0 +e ... &) (S0i.) G~~li.p + f'2 (So'-> (SJ+~>> sin (eo+ 6o+&) 1 
(12) 

where the summation over 0 denotes summation over the 
nearest neighbors of the site of the first coordination 
sphere belonging to the second coordination sphere. 

The perturbation in the first coordination sphere can 
~e separated if the coefficients of Go\Jl + 0 , P and 
ag +A +O, P in (12) do not contain the parameters of the 
perturbation, i.e., 

[1±cos(e,+e,)](S, 1)~ [1±cos28](S1). (13) 

Investigation of the system (6) and condition (13) lead 
to a condition for the localizability of the perturbation 

. t.5" 
FIG. 2. Dependence of the angles 

8 1 on the magnetic field for a body
centered cubic lattice. 
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in the first coordination sphere at arbitrary H: 

(14) 

Allowance for the perturbation in the second coordin
ation sphere leads to exceedingly cumbersome calcula
tions (the number of atoms in the second coordination 
sphere is 18 at z = 8). 

The limitation imposed on the perturbation param
eters, with allowance for the fact that in the case of an 
AFM impurity the width OEo of the impurity level[ 9J be
comes comparable with the energy Eo when J'So ~ JS 
(the impurity level then loses its distinguishing features), 
gives grounds for assuming that condition (1) determines 
the most interesting region of the values of the pertur
bation parameters J' and So. 

The impurity-level energy is determined by the rela
tion Eo R< y0 /(3, from which we get when J' < 0, taking 
(5) into account, 

e, ~ f.'•g• [H.' cos (8, + 8,) + H sin 8,], ( 15) 

where 80 and 81 are determined from (8). 
In the case of an FM impurity we obtain for the en

ergy of the impurity level (2) in place of (15) 

eo~ jt.g,[H.' cos (So -8,) +If sinS,], (16) 

where 8o and 81 are given by (8) with the sign of HE re
versed. 

When H « HE, formulas (15) and (16) can be repre
sented, when account is taken of (8), in the form 

[ , 1 ( 1 z+1 1) ] e, ~ ~t.g, H8 +- -, =!=--- H' , 
2 H. z- 1 l/8 

(17) 

where the upper sign corresponds to an AFM impurity. 
When HE ::;> H ::;>HE; we obtain Eo R< 11 ~oH. 
To calculate the temperature dependence of the 

impurity-level energy we note that the definitions of the 
exchange fields HE and HE[ 9J contain the magnetizations 
of the matrix and impurity atoms. The temperature de
pendence of the magnetizations of all the atoms except 
the impurity atom is determined in the molecular-field 
approximation from the equation ( S {,) R< b(y), with 
allowance for y = YR> ~· The temperature dependence 
of the magnetization of the impurity atom, in view of the 
fact that Yo does not depend on ( S0/;), is determined by 
the formula ( S/;) = bo(Yo). We note that Jaccarino, 
Walker, and We0rtheim[ 13J obtained for an impurity in a 
ferromagnet, in ·the molecular-field approximation, a 
similar relation which has been experimentally con
firmed in measurements performed by the nuclear mag
netic resonance method on Mn nuclei dissolved in Fe[14 J. 

3. The Hamiltonian of an antiferromagnet with an 
anisotropy of the "easy plane" type with an AFM impur
ity is given by 

::;e = L: i J ( <1) I SR,SR,+-' + 2 L: D (..1) (Sh,Sl't,+"- Sl't,Sh,M) 

+ L: P (S'R)' + L: Q (R- r) S~S'R + L: I/' (..1) I S0So+<1 
R r, R#or ~ 

+ 2 L: D' (..1) (So'S~+" -S~ s,:+") + P0 (S,x)' 

" 
+2 L: Q' (R) S.XS'R - f.IBII ( L:gSR + g0S0 )· (18) 

R~o R::f:O 

We introduce the angles ei between the spin Si and the 
XY plane, cpi between the projection of Si on the XY 

plane and the Y axis, and lJi between H and the basal 
plane ZY. 

From the minimum of the free energy in the mole
cular-field approximation, in analogy to the case of a 
body- centered cubic structure, we obtain the tempera
ture dependence of the average spins in the form of 
Brillouin functions of the respectively more complicated 
arguments yi and angles ei and cpi under condition (1) 
and (/!1 R< cp, e 1 R< e. 

Under condition (1), the interaction of the impurity 
spin with the nearest neighbors is taken into account by 
introducing an effective field. The energy of the impur
ity level is determined by the real part of the pole of 
the Green's function G0R( E) for the impurity spin, the 

system of equations for which at lJi = 0 and P0 > 0 is of 
the form 

(e- z Jl'l (S,')cos(So + 8,)- 2zD'(S,')sin(80 + 8,)- !l•g,H sin Oo] c:~a 

= const +Po [ ((So')-+) G,a" + +(So')Goa"], 

[ ,- + z II' I (S,')cos(S, + 8,) + 2zD'(S,')sin (8, + 8,) + !l•g,ll sin 8,]c:.'a 

= const-Po[ ( (S,'>-~) Goa" ++(So')Goa 11 ]. (19) 

A. Case H = 0 

We investigate the dependence of the angles cpo and (/!1 

on the magnitude and sign of the anisotropy. From the 
conditions that the free energy F<0 > be minimal we get 

1 -1- D'D ( Jl'l + 2Q')'(S0') 2P0(S0') ]-' 

COS(jlo~( . n)[ (z-1)/J'(S') zll'I(S,') ' 
(II' I+ 2Q')(S,') . 

<p,~- (z-1),1/I(S') sm<po; (20) 

(1-sin(jlo)-<1 for Po<O n 

z (I!' I+ 2Q') '(S,')(S,') 
2IP,J(S,')d:3zll'I(S,')- (z- 1) llJ(S') (21) 

Cf!o = 0 at Po > 0 or 

2IP I (S ') < z II' I (S ') -. z( Jl'l + 2Q')'(S,')(S,') 
o o ' (z-1Jili(S') ' (22) 

in contrast to the usual 

£ f 

!'~~~! 
Z,,71 

FIG. 3. Dependence of the energy of a virtual impurity level on the 
magnetic field for a body-centered cubic lattice in the case g0 = g: I
FM impurity at H~ = 0.2HE, II-AFM impurity at HE= 0.2HE, III
AFM impurity at HE= O.SHE. The accuracy with which e is determined 
corresponds approximately to the accuracy with which the condition 
(I) is satisfied. The dashed curve is the upper limit of the spin-wave 
band. Under condition (I), local and quasilocal s0 levels always exist 
for an FM impurity, but only a quasilocallevel exists for an AFM im
purity. 
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cp,;=(-1);; forP- EQ(R-r)<O, i=1,2, 
a,., 

cp,=O for P- EQ(R-r)>O. 
a,., 

B. Case (1- sin ({Jo) « 1, H .,. 0 

We shall investigate the dependence of the impurity
level energy on the field orientation for values of H such 
that all angles with the exception of rpo are small. No 
matter how the angle rp0 varies, the expressions for fl, 
fl1, rp, and rp 1 remain the same: 

where 

H+Ho Ho z+1 H 
e~~, e,~2HE +~2HE' 

H¢ z+1 H¢ 
cp ~ 2HE' cp, ~ ~2HE' 

2zD'(S ') H I_ I 
D- ' 

fLsCo 
H .. = 2P,(S,') ' 

fLsCo 

and flo< 0 in view of the smallness of H0. 
We obtain the impurity-level energy in the form 

Eo~ fLsCo v H:rr- H .. '/16, 

where 

C. Case jqJo- sin ({Jol « 1, H .,. 0 

(23) 

(26) 

(27) 

In this case, for H «HE; and sin 1/J RJ ¢,we obtain the 
following expressions for the angles flo and rpo: 

(28) 

(29) 

The impurity level energy is determined by formula 
(26), where 

(30) 

When HE ~ H ~HE and H2 1/J « HEHE, the depen
dence of the energy Eo on the field H is given by the 
following approximate formula 

Eo ~ f'•C• (+H .. + H) ( 1 - ¢; ) . (31) 

4. It is of interest to investigate impurity complexes 
consisting of several impurity atoms. For a complex of 
two identical impurity atoms we set the constants J", 
D", and Q" in correspondence with the interactions of the 
impurity spins with one another. In the case J' < 0, 
J" < 0, under condition (1), when the influence of the 
impurity spins on the spins of the first coordinations 
sphere can be neglected, we consider an isolated system 
of impurity spins, each of which is determined in the 
effective field by its interaction with the nearest en
vironment and the external magnetic field. The validity 
of such an approach is based on the assumption that J" So 
::; (z- 2)J'S. In the opposite case, it is necessary to 
assume the possibility of formation of a two- spin im
purity molecule. 

For the Green's functions of the system of impurity 
spins we obtain for Po - Q" > 0 and 1/J = 0 the following 
equations: 

(e- e9~~)G~k = const + 1 J" 1 (S0t) [sin• e,G~!A.R + cos•e,G~~A.Rl 
+ D" < s,t) sin ze. [ G~~A. R - G~!A. Rl + Q" (S,t) [ G~!A, R + G~!A, R I 

+ P,[(<S.'> -i-)G~k + i-<S0t)G~k 1 (32) 

~nd analogously for G21 with the substitution G11 +!: G21 , 

G11 = G21 ; for G11 with the substitution E -- e, 
G11 :;=: G11 , G21 = G2\ and for 021), where the angle fl 1 is 
determined for small values of fli from the formulas 
(23) and 

[ z - 1 ' 1 H " 2e E,~0 =J.lsgo --HE cos(eo+B,)+- E cos o 
z z 

+ z - 1 Ho' sin(8, + 8.) +~Ho" sin2e, + Hsin e, ]. 
z z 

(z -1)Ho'+2Hv"-(z -i)H/(Ho/21/E) +[z- (z + 1) (HE'/2HE) ]H 
e,~· (z -1)HE' + 4H/' 

where 

H,.'' = zii"I(S,'), 
J.lsCo 

(33) 

2zD"(S ') 
H "- 0 

D - ' 
J.lsgo 

An analysis of the solution is made difficult by the 
abundance of constants, the choice of which is quite 
arbitrary. We therefore note the most significant prop-

FIG. 4. Qualitative form of the 
spin-~ave spectrum of a linear de
fect, tJ. is determined approximately 
by formula (36). 
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1120 V. A. KOLGANOV 

erties of the two impurity levels that make up the solu
tion of the system (32). 

For H = 0, in the case when anisotropy can be neglec
ted, the level energies are described by the expression 

(34) 

The distance between the levels, neglecting the 
Dzyaloshinski1 interaction, was determined by the 
anisotropy, and when H = 0 and Po- Q" > 0 it takes the 
form 

H/' (H,.-2H,"/z) -2(z-1)HE' H," 
11, ~ f.l•go , (35) 

(z- 1)"~/H/' + 2HE' H/'/(z- 1) 

where 

5. A natural generalization of the case of a two- atom 
impurity is, in particular, a linear defect whose axis 
coincides with the highest- order axis of the crystal, so 
that the impurity atoms are nearest neighbors. Unlike 
the two-atom impurity, a strong exchange coupling be
tween the atoms with the defect is apparently permissi
ble. 

Use of translational symmetry along the defect axis 
makes it possible to solve the equations for the Green's 
function of the system of impurity spins in the case 
J' < 0, J" < 0 under condition (1), when the influence of 
the impurity spins on the nearest non- impurity surround
ing is negligibly small. Neglecting anisotropy we obtain 
at H = 0 

[( z-2)' z-2 
''"""flugo -z- (lf/)'+4-z-,-11/1!/' 

(36) 

where k is the wave vector of the spin wave propagating 
along the defect and a is the distance between the neigh
boring impurity atoms of the defect. 

The distance between the impurity branches is de
termined by the anisotropy and has the following form 
at H = 0 and Po - 2Q" > 0 in the absence of a Dzyalo
shinski1 interaction: 

[He'' (fl 10 - 8H," /z)- 2flE' H," (z- 2) fz J cos ka 
~e ~ pngo 

[ (z- 2)'(HE')' + 4(z- 2)1/e'H•" + 4(H/')' sin' ka]'l> 

(37) 

For the width of the impurity spin-wave band we obtain 

- z-2 [(n' 2 H") V H')' 4 JCI'""] ~'::::; f.IBg,-- E +-- E - ( E +-- l,;HE 
z z-2 z-2 . 

(38) 

The dependence on H agrees qualitatively with the case 
of a point-like defect. 

In conclusion, the author is grateful to A. S. Borovik
Romanov and M. I. Kaganov for useful discussions and 
to M. A. Savchenko for suggesting the topic. 
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