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Magnetoelastic waves are considered in a magnetic material with a periodic plane-parallel domain 
structure. The wavelengths are much larger than the thickness of a domain wall, but small in com
parison with the dimensions of the specimen. The wave spectrum is of the band type; the width of the 
forbidden bands is proportional to the magnetoelastic coupling parameter far from resonance, and to 
the square root of this parameter in the neighborhood of the magnetoacoustic resonance. The effect 
of the domain structure on the resonance is investigated. It is predicted that there will be a "surface" 
magnetoacoustic resonance, which will arise when there is interaction of ultrasound with the surface 
magnetostatic oscillations that exist near the domain walls. 

1. THE interaction of elastic and magnetostatic oscilla
tions has been investigated repeatedly (see, for exam
ple, the review [ll). It is usually supposed that the 
crystal is placed in such a strong magnetic field that 
domain structure is absent and the specimen is magne
tized to saturation. Comparatively recently there have 
appeared the first experimental observations of magne
toelastic waves in the presence of domain struc
ture.[2•31 In [ 21 , in particular, natural magnetoelastic 
resonance in an effective anisotropy field was detected. 
Theoretical researches relating to the propagation of 
magnetoelastic waves in crystals with a domain struc
ture, as far as we know, are lacking. 

Our communication will treat the propagation of ul
trasound in a magnetic material with a plane-parallel 
periodic domain structure, in the absence of an external 
magnetic field. Spin (exchange) waves in such a domain 
configuration were investigated in [4 1, magnetostatic 
oscillations in u l. We assume that the wavelength ~ of 
the elastic and magnetostatic oscillations satisfies the 
condition L >> ~ >> 0 (L is a dimension of the speci
men, 0 is the thickness of a domain wall). Then, first, 
the dimensions and shape of the magnet are unimportant; 
and second, it is reasonable to neglect the exchange en
ergy and to treat the domain wall as a geometric bound
ary. The relation between the alternating components of 
the magnetic moment and the effective field that acts on 
the magnetic moment within a domain is given by the 
magnetic susceptibility tensor Kik(w ). At the domain 
boundaries the magnetic potential cp, the normal compo
nents of the magnetic induction and the stress tensor, 
and the tangential components of the elastic displace
ments must be continuous. Besides the boundary con
ditions, the magnetic and elastic variables must satisfy 
the conditions of translational invariance. 

According to [5 l, in a magnetic material with ape
riodic domain structure there are "volume" magneto
static oscillations, whose spectrum consists of permit
ted and forbidden bands, and two branches of "surface" 
oscillations. The spectrum of one of these (wrr) lies be
low the spectrum of the volume waves; the spectrum of 
the other (wi) overlaps the spectrum of the volume spin 
waves. The elastic waves interact both with the "vol
ume" and with the "surface" oscillations. But as was 
shown in Lal, in the frequency range in which short-

wave spin waves (~c ~ 0) can propagate, in the investi
gation of surface magnetostatic oscillations it may 
prove necessary to take account of the spatial disper
sion of the tensor Kik(w) (and therefore to take account 
of the structure of the domain wall). This nontrivial 
problem will be the subject of a special discussion; in 
the present communication, we shall restrict ourselves 
to an investigation of magnetoelastic waves with fre
quencies less than WI· 

We shall now proceed to the solution of the problem. 
2. We shall for definiteness suppose that the crystal 

has cubic symmetry and an anisotropy constant K1 > OY 
180-degree boundaries of plane-parallel domains are 
oriented in the XZ plane; the Y axis is perpendicular to 
the boundaries, whose coordinates are Yn = nd, n = 0, 
± 1, ±2, ..•• The static magnetization is M0 

= { 0, O, M~}; in adjacent domains M~ = ±M0 , where M0 

is the saturation magnetization. In the presence of a 
saturating magnetic field parallel to one of the principal 
axes of symmetry, it is possible, as is well known, to 
separate the two simplest types of magnetoelastic 
waves: [lJ transverse waves propagated along the mag
netic field, and transverse waves polarized along the 
field and propagated perpendicularly to it. It is easily 
seen that in the model under consideration, purely 
transverse waves of the first type cannot exist, since 
the components of the induction and of the stress tensor 
normal to the domain boundary differ. 

For this reason, we shall consider only propagation 
of elastic waves in the XY plane. The elastic displace
ment vector in the wave is u = {0, 0, u(x, y)}; all quan
tities are independent of z. 

The oscillations of magnetic quantities inside the 
domains are described by the equations of magneto
statics h = -vcp, div b = 0, b = h + 41fm; the relation 
connecting m, cp, and u is given by 

Ba 
<p' = 'P + M, u, (1) 

l)The results will be valid also for a magnetically uniaxial crystal, 
provided its elastic properties may be considered isotropic in the plane 
perpendicular to the axis. 
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where a = ± 1 when Mo is directed parallel and anti
parallel, respectively, to the Z axis, and B is the mag
netoelastic interaction constant introduced by Kittel [ 7 J 

(B = B2). The components of the tensor Kfio as is well 
known, are 

'X:a:=Xw=Xt= 

The remaining Kik vanish. We use the notation wa 
= YHa = 2yKliM0 , where y (> 0) is the gyromagnetic 
ratio. The equation for the elastic displacement in our 
case has the form 

Ba 
ro'u + s•t'\u +M-div m = 0; 

oP 

s = (c44 lp)112 is the speed of transverse elastic waves, 
p is the density of the body, and C44 is the appropriate 
elastic constant. The basic equations of the problem are 
conveniently presented in the following form: 

BrFK, 
(l)'u+s'(1-Tjx1)1\u---t'\cp = 0, 

pMo 
(2) 

where TJ = B2 ls2 pMo ( << 1) is a dimensionless param
eter of interaction between elastic and magnetostatic os
cillations. At the domain walls, cp, u, .and the normal 
components of the induction by and of the stress tensor 

, 8u Ba 
a.,= ps -ay+ Mom •. 

must be continuous. 
We note first of all that in the absence of magneto

elastic interaction (B = 0), there are purely periodic 
magnetostatic oscillations of the "wave-guide" type, 

cp ~ const·sin (q,.y)e'"', 

satisfying the boundary conditions for qz0 = l'ITid, l = 1, 
2, ..• ; d is the domain dimension. The frequency of the 
oscillations is determined by the condition J..L(W) = 0 and 
is equal to the frequency of transverse volume magneto
static waves in the effective anisotropy field, 

The analogous magnetoelastic oscillations, satisfying 
equations (2) and the boundary conditions, have the form 

u, =A sin(q .. y)e'•x, 

4nx, Ba . (3) 
cp, = -A~-Msin(q .. y.)e•••. 

fl. 0 

The frequencies of oscillation w l (p) are determined by 
the relation 

(4) 

The expression (4) agrees in form with the equation for 
the frequency of elastic waves in a saturating field Ha, 
but the values of the transverse wave number q are 
quantized. The character of the oscillations (3)-(4) de
pends on the relation between w3 and the "geometric" 

frequency w g = sq10 = s 'IT I d. If w 3 < w g• then the upper 
sign in (4) corresponds to a predominantly elastic wave, 
the lower to a predominantly magnetostatic. If, how
ever, w3 > wg, then the one or several oscillations with 
the lowest indices l ( l w g < w3 ) have the character of 
magnetoelastic waves. Resonance of elastic and magne
tostatic oscillations occurs near pz = (w:ls 2 - qi0 ) 112; 

for p < Pl the oscillation with frequency w + has magne
tostatic character, for p > pz elastic. For the oscilla
tion with frequency w _, the properties are reversed. 

Periodic solutions of the type (3) are a special type 
of magnetoelastic waves in the model of a magnetic ma
terial under consideration. In the general case, the so
lutions are not purely periodic in the transverse coordi
nate, but have the character of Bloch waves. In order to 
find these solutions, we proceed as follows. Inside the 
domain with index r we seek u and cp in the form 

Ur = {Areiqy + Bre-iqy}eiPX, 

4nx, Ba • 
:p,=----M u,+cpsurf 

fl. 0 

cp:Urr = {C, exp(- IPIY)+D,exp( jpjy)_}_~•. (5) 

Such a form of solution implies that in the propagation 
of ultrasound there are excited not only "volume" but 
also "surface" magnetostatic oscillations, [sJ satisfy
ing the equation acpsurf = 0. On substituting (5) in (2), 
we find the relation among w, q, and p: 

fLW' 1 w' w,'- w' (6) 
q'+p'=----== 0 

s' 11- TJX1 s' w,'- w'- Tjw.yMo 

The solution (5) must satisfy the condition of trans
lational invariance 

cp(y -1- 2d) = cp(y)e2i'', u(y + 2d) = u(y)e"""; 

2d is the period of the magnetic structure, and K is the 
transverse wave number, analogous to the quasimomen
tum in quantum-mechanical problems with a periodic 
potential. On using this condition and the boundary con
ditions on the two domain walls, we get a system of ho
mogeneous equations for the appropriate coefficients A, 
B, C, and D. Then the requirement that the determinant 
of the system must vanish gives the relation among w, 
q, p, and K: 

q'(w,'- w'- TJW.iYMo)'(cos' qd- cos' xd)IT(w, p, x) 
+ 2TJwa'w"yM0pq sin qd sh pd(w.'- w') (w,'- ro'- TJW.yMo) . 

X (cos' xd - ch pd cos qd) 
+ TJ'p'y'M,' sin' qd{( w.'- w') sh' pd[ ro' + wa'wM'- w'( ro.' + 2w.wM)] 

- w' sin'xd(w.' + 2w.wM -{I)')'}= 0, 
IT(w, p, x) = (w,'- ~•')' sin' xd ~ (w.'- w') ((1)2 - wa') sh' pd. 

(7) 

In (7) the notation W4 = wa + wM is used. Since (7) de
pends on K periodically with period 'IT I d, K may be 
considered to vary within the limits of the "elementary 
cell" - 'ITI2d s K s 'ITI2d. Since (6) and (7) do not 
change with change of sign of q, p, and K, we shall re
strict ourselves to values q, p, K > 0. Equations (6) 
and (7) determine implicitly the dispersion of magneto
static waves, w(p, K). 

3. First let TJ = 0. Then (7) splits into several equa
tions, describing different, noninteracting waves. The 
equation cos qd = ± cos Kd together with (6) determines 
the spectrum of elastic waves: 
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Wn = s(q.' + p')'b, liln = s({j.' + p2)V•, •Wo = s(x' + p')'!.; 
q,.=nrt(d+x, q,.=nrr(d-x, q,=x, n=1, 2, ... 

The infinite set of branches wn, Wn which merge when 
K = 0 and when K = 1T /2d, forms a continuous spectrum 
w = s(q2 + p2) 1/ 2 • The equation w = w3 gives the volume 
magnetostatic oscillations described above. 

Finally, from the condition II(w, p, K) = 0 is found 
the spectrum of surface magnetostatic oscillations. 2> In 
particular, the low-frequency branch wrr is determined 
by the equation 

( w,' - w') (sh' pd +sin' xd)"' - wwM sh pd = 0 

and is contained within the limits was w s w3 • 

Allowance for magnetoelastic interaction leads to a 
change of the spectra of elastic and of magnetostatic os
cillations. The interaction is manifested most strongly 
on the lines of intersection of the unperturbed spectra. 

We now suppose that TJ * 0. It is not difficult to see 
that the spectrum of elastic waves in the presence of a 
domain structure has a band character, with discontinu
ities on the band edges; that is, at K = 0 and at K = 1T/2d. 
In fact, far from resonance and from the band edges we 
can set q = qn- oqn in (7), where I oq I << q, and neg
lect terms of order 'f/ 2 in (6) and (7). Then to terms of 
order TJ we find 

6 I'JG(w,p,x) 11G 11G 
q, = "'d ' {Jq,. =- 6ij,. = --

h q.d' ij,.d ' 

G(w,p, x) = <iJa'wMyM,(w.'- w')p shpd[chpd +cos x d] 
(w,'-w')Il(w,p,x) ' 

(l)<•J"" w _ s'q.oq. ( w.) yM,w.w. 
w,. 11 2(w,'-w.')' 

(8) 

The signs 'f in the expression for G correspond to 
even (upper sign) and odd (lower sign) n. The last term 
in the formulas for w<n> and c;;<m gives the shift of fre
quency caused by the magnetoelastic interaction within 
the domains. To a small change of the frequency of 
elastic waves inside the band there corresponds, as can 
be seen without difficulty, also a weak scattering of the 
elastic waves by the magnetic inhomogeneities: the ra
tio of the amplitudes of the scattered and incident waves 
is IBn I An I ~ TJ • 

The expansion ( 8) is valid as long as the distance to 
the zone extremum K = 0 or to the zone edge K = 1T/2d 
is sufficiently large: OK >> TJ /d. We shall now consider 
the dispersion at the singular points. We shall first set 
K = 0. Then (7) breaks up into two equations: 

sin qd = 0; 

. d 2!']Wa2<iJM'\'Mo(w.'-<iJ')pshpdt·' icosqd-1) 
Sill q ::::; - . --,;-.,----___:::...__:..._ 

q(w,'- w')I,\w,p, 0) 
(9) 

The first of equations (9) determines the periodic vol
ume magnetoelastic waves already investigated earlier, 
(3) and (4). Such solutions, as was to be expected from 
general considerations, correspond to singular points of 
the permitted bands. The second of equations (9) to
gether with (6) gives the frequency at the bottom (for 

2> q = 0 corresponds to the trivial solution¢ = u = 0. 

W3 > w > wa) or at the maximum (w < wa, w > w3 ) of 
the nearest neighbors of the band: 

q<•>::::; q,.,- 26q,.(w,p, x = 0), bq.(x = 0) = 6ij.(x = 0), 

("> 2s'q,.,6q,.(x = 0) w.yM,w,., 
()) :::::::: rono - 1}·-:-:-::.:.,-...:_::::.....,.-

(i),., 2 ( w,' - w,.,') ' 

z 2!']<iJa'ro,.yM,pshpdthpd(2 
. q<<i>::::; (ro,'- w') (ro'- wa') 

+ q(o)1 ro.ro .. yM,sp 
roco\::::; sp ---11 -::-.,....--'c__:....-,__ 

2p 2 ( w,'- s'p') 
(10) 

Thus the distance ow between the bottom of the higher 
band and the top of the lower, far from resonance, is 

6ro=2lbq,.(x=O)Is'q,.,/ro,.,, n=t=O. 

We note that the solution u, <fJ corresponding to the 
dispersion (10) for n * 0, like (3), is purely periodic in 
y but contains an admixture of surface magnetostatic 
oscillations and is neither even nor odd with respect to 
y = 0. The amplitude of the reflected wave in each do
main is equal in modulus to the amplitude of the inci
dent sound; that is, the solution can be chosen real. The 
value of Wto> determines the frequency of sound waves 
propagateq parallel to the domain boundaries along the 
X axis and weakly modulated with respect to the trans
verse coordinate. 

Now let Kd =IT/ 2. Equation (7) again splits into the 
product of two independent equations: 

q ( ro,'- w' ± roroM th pd) ( w,'- w'- 11'\'Mow.) cos qd 
= !'jyM,p sin qd{wM(·w.'- w') th pd ± w(w.'- ·w'- wM') }. (11) 

On setting q = qn- oq~, qn = (2n + 1)IT/2d, n = o, 1, 
2, ... and using (6), we find 

(12) 

Wn =Wn(K =1T/2d) =Wn+ 1(K =1T/2d). 
Schematic graphs of wn(K) and 'Wn(K) are given in 

Fig. 1. The solutions u, <fJ at the edges of the bands are 
periodic in y; their period is equal to the doubled period 
of the magnetic structure, 4d. 

4. We shall consider the peculiarities of magneto
acoustic resonance (MAR) in the presence of domain 

-o/z 

FIG. I. Spectrum of elastic waves wn(K) and wn(K) for constant p. 
The neighborhoods of the frequencies of volume and surface magneto
acoustic resonance are shown dotted. 
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structure. Near volume MAR we can set w F::J w3 in all 
terms of (7) that do not contain the difference w~- w2 

-TJWa yM0 • Then (6) breaks up into the product of two 
equations, 

q(<»32 - cu 2 -rjw;yM,) (cos qd± cos?<d) shpd 
+ r]w.yM,p sin qd (ch pd ±cos "Xd) = 0. (13) 

The pair of equations (13) has solutions corresponding 
to even (-) and odd ( +) band indices n. On setting 

-{qn-(Jqn 
q- qn-(Jqn 

we find 

~ _ 0_ -r]pyM,w.(chpd +cos xd) 
q,.uq, = q,. q,.;:::;; 2 • 

d( w, - w2 - rjw,yM,) sh pd 
(14) 

For investigating resonance far from the band edge, 
it is natural to introduce the wave number and the angle 
of propagation of the magnetoelastic wave by the rela
tions 

p=k,.cosOn, q,.= k,.sinO,., q,.=knsin9,. (15) 

The relations (15) actually signify a transition to the 
scheme of broadened bands usual for the case of weak 
coupling in quantum mechanics. From (6), (14), and 
(15) we obtain an equation that determines the frequency 
w(k, 8) near resonance: 

k' w 2 , 2rjkw.yM, cos 0 [ ch (kd cos 0)- cos (kd sin 0)] 
( 3 -w -rjyM,w.)+~ dsh(kdcosO) 

w' 
=-;;-(w,'-w'). (16) 

On setting k = k3 + ok, where I ok I << k3 = w3 /s, we 
find 

w- w,;:::;; '/2{s6k ± [s'6k' + rjw.yM,(1- ,;) ]'1>}, 

<= 2scos0ch(w,dcos8/s)-cos(w,dsin0/s). ( 17) 
w,d sh ( w,d cos 0/s) 

The expression obtained for the dispersion of magne
toelastic waves near resonance is completely analogous 
to the well-known results for MAR in an external satu
rating field Heff = Ha. The branches w± describe a 
transition from magnetostatic oscillations to elastic 
(w +) and from elastic to magnetostatic (w _) upon transi
tion of ok from negative to positive values. The effect 
of the domain structure manifests itself formally in the 
substitution 1- 1- T under the root in (17) and be
comes vanishingly small when w3ds- 1 cos e >> 1. The 
minimum distance between branches (ok = O) is 

w+- W- = f rjw.yM, (1 - -r)) 'h 

and depends on the angle e and the parameter w3ds-\ 
As is seen from (17), the domain structure always de
creases the distance between w + and w _ and, thereby, 
the width of the resonance at small attenuation. 

Formula (14) and those following it are inapplicable 
in the vicinity of the extremes of the band, K = 0. Near 
the resonance "Bragg" angles sin eB =k3d/nrr, 18- 8BI 
.S .fii, the dependence w (e) becomes more complicated. 
This fact is easy to understand if one takes into ac
count that for e F::J eB the reflection of magnetoelastic 
waves from the domain boundaries rises sharply (the 
amplitude of the reflected wave inside a domain is 

I Br I ex: TJI Ar I far from the Bragg angle, IBr I = I Ar I 
when e = eB)· Omitting the corresponding investigation, 
we present the result. At the band edge K = 0 we have 

Ok sin e8' + k, cos 08 60 = 0, .SO = 0- 08 . 

If we fix ok and change the angle oe' then the values 
of the resonance frequencies of each branch w± are dif
ferent, depending on the sign of oe- o8cr• o8cr = -k;1 

X ok tg 8J3. If 08- 08cr- + 0, then 

cu_ -+ w, + ( s6k - ow,) 1 2, w+-+ w, + ( s6k + .Sm,) I 2, 

/i(u 1 = [s2 ( Ok) 2 + rjw.yM, ( 1 - 2-r) J''', l),w, = [s' ( ok) 2 + r]W,yM,J"'. 

But if 08- o8cr- -0, then 

"'--+ m, + '/,(sOk - 6cu,), "'+-+ m, + '/2 (sbk + 6w,). 

Formula ( 17) is valid only sufficiently far from the band 
edge, that is when 

k,dcos Ocri.SO- .SOcrllw,- ml '>r]Co>,yM,/ w,. 

As is seen from (13), for Kd = rr/2, in the lowest
order approximation with respect to the small parame
ter 11, there are no gaps in the spectrum. In connection 
with this, the role of period of the structure, in the for
mula sin eB = 2d/nA. for the "Bragg" angle, is played 
by the domain dimension, and not by the period 2d of 
the magnetic structure. From a physical point of view, 
this fact is not difficult to understand. Volume MAR is 
caused by magnetoelastic interaction within the domains, 
which is even with respect to the sign of the magnetiza
tion M0 • The presence of the structure leads to a 
change of the interaction but does not remove the de
generacy with respect to M~. Far from the frequency 
of the volume MAR, the degeneracy is removed, and 
the period of the "lattice" is the period 2d of the mag
netic structure. 

We turn now to investigation of the surface MAR. We 
shall use the variables k and e introduced in (15). The 
resonance frequencies are determined from the equa
tion II(w, k, 8) = 0, if in it one sets w = ks. On going 
over to the dimensionless variables x = kd sine and 
Wi = swid- 1 sine, we have 

( w.'- x') (x'- w.') 
sin2 x= ----· sh'(xctgO)=f(x,O). (18) 

(w,2 -x')' 

A g;caphic solution of this equation is shown in Fig. 2. 
. 2 

The right member of (18) has the value -ctg e for 
x = 0, then increases monotonically together with its 
derivative, vanishing for x = Wa and becoming infinite 
for X- w3. Thus for rr/2- e ~ 1, the equation has a 
single root, whose value depends on wa, w3 , w4 , and 8 
(curve 1 in Fig. 2). For propagation angles 8 close to 
rr /2, that is for waves propagated almost perpendicu
larly to the domain boundaries, (18) can have three so
lutions, and there are three resonance frequencies. In 
principle, for ~e = rr/2- e << 1, wa >> 1, and Wa,M .S 1 
the number of resonances may be even larger. 

An interesting case is that of "double" resonance 
(curve 2 in Fig. 2), when at the point of intersection of 
the spectra of elastic and surface magnetostatic oscil
lations the group velocities also coincide: 

s = dwn l dk, 

mn = '/z{[ (w, + m,) 2 sh2 (kd cos 0) + 4w,' sin' (kd sin 0) p 
- Cohr sh (kd cos'()) }[sh' (kd cos 0) + sin' ( kd sin 0) ]-'ir. 
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FIG. 2. Determination of the frequencies of surface MAR as points 
of intersection of the curves y = sin2 x andy= f(x, IJ). The graphs of 
f(x, IJ) are given for two different values of the angle IJ. 

Then the dispersion curves near resonance have the 
form ' 

&ro = s6k- '/,a,(6k)' ± 'f,.[ao'(6k)' + 161']~m"vM,p, 
llro = .ro - Wp, Ilk = k -- kp, a, = d'ron I dk', 

where {3 ( > 0) is a constant determined from ( 8). 

(19) 

For "double" resonance, in a comparatively broad 
range of wave numbers, ok ~ (7JWayM0 /a~) 11\ there 
are two magnetoelastic branches with v gr ~ s. It is not 
difficult to obtain a necessary condition for existence of 
"double" resonance. Since the derivative of the left 
member of (18) does not exceed unity in modulus, the 
same must be valid for 150 = f '(wa). The dispersion of 
magnetoelastic waves with allowance for volume and 
surface resonances is given schematically in Fig. 3. 

In conclusion, we note that in experiments( 2 J with 
yttrium ferrite-garnet, the condition swa/d >> 1 was 
fulfilled. Under this condition, the frequency of surface 
MAR Wres ~ wa, while the character of the volume res
onance, as is seen from (17), is practically unaffected 
by the periodicity of the magnetic structure. The volume 
MAR for swa/d >> 1 is determined solely by the mag
netoelastie interaction within the individual domains. 
Precisely for this reason, explanation of the resultsC 2 J 

FIG. 3. Spectrum of magneto
elastic waves w(k) for constant IJ. 

did not require information about the nature of the do
main structure. 

k 
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