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A theory is presented of an ionization wave propagating in low-density noble gases as a result of diffu
sion of the resonance radiation. The wave is supplied with energy by microwave radiation. The theory 
is developed to explain phenomena in a waveguide when the plasma front, arising at the end of the wave
guide at an appreciable distance from the microwave radiation source, moves rapidly toward the source, 
covering the waveguide, and all this occurs at field strengths much smaller than the threshold values 
required for breakdown of the gas. The problem of the regime of a wave that is stationary in the refer
ence system in which it rests is formulated and solved approximately. The wave propagation velocity 
and electron density in the plasma are determined as functions of the microwave power. The existence 
threshold of the regime is estimated. Qualitative agreement with the experiments is obtained. 

1. INTRODUCTION 

As shown by Bethke and Ruess, [1 • 21 if a localized 
plasma is produced by means of a shock wave or a dis
charge at a waveguide end far from a microwave-radi
ation source, then the plasma front becomes detached 
from its initial place and moves rapidly towards the 
source. The experiments were performed in a cylin
drical waveguide of 2.5 em radius and length exceeding 
1 meter, at 8.35 GHz, in Xe, Kr, and Ar at pressures 
from 0.3 to 3 mm Hg. The effect was produced even at 
low microwave-radiation fluxes exceeding only 0.2-1 
W/cm2 • The flux necessary to break down the gases 
under the same conditions is 40-200 W/cm2 • When the 
flux was increased from 0.2 to 50 W/cm2, the front ve
locity increased from tens of meters to tens of kilom
eters per second. The maximum electron concentra
tions were (0.7-9) x 1012 cm-3 (the critical concentration 
is 0.86 x 1012 cm-3). The gas remained stationary and the 
propagation of the plasma front had the character of an 
ionization wave. Dielectric windows transparent to the 
microwave radiation were placed in the path of the wave. 
The ionization wave was stopped by a window made of 
plastic with a shortwave transparency boundary .\ 
~ 2000 A, but passed through a window of LiF, which 
transmits the ultraviolet down to approximately 1100 A. 
This means that the wave propagation mechanism is the 
diffusion of the resonant radiation of the atoms, the 
wavelengths of which lie precisely in the interval 
1ooo-15oo A. 

We present in this article a theory of such an ioni-
zation wave. The problem consists of determining the 
propagation velocity and the electron concentration be
hind the wave, and of estimating the minimal {threshold) 
power necessary to maintain the wave. The kinetic pro
cesses during the course of which the ionization devel
ops are complicated and varied, [2l and we shall describe 
them very schematically. Even in the simplest physical 
formulation, the problem of the regime of the ionization 
wave turns out to be so complicated that it is necessary 
to employ appreciable simplifications for its solution. 
For this reason we claim no more than elucidation of 

the main physical laws governing the phenomenon and 
an estimate of the orders of magnitude. 11 

2. FORMULATION OF PROBLEM AND EQUATIONS 

We assume a very simple scheme of the process: 
the electrons acquire energy in the microwave field and 
excite atoms to a single resonant level, after which the 
excited atoms are ionized by electron impact. (Their 
ionization potential I{ is one-third the excitation poten
tial I*.) Since the fields are much lower than the break
down thresholds, the electrons do not reach the ioniza
tion potential li of the nonexcited atoms at all. On the 
other hand, the excitation from the plasma is trans
ferred to the unperturbed layers by diffusion of the 
resonant radiation. The primary electrons result from 
photoionization of the excited atoms, the photoeffect 
from th\! walls, etc. We shall disregard excitation of 
metastable states, impact transitions between meta
stable and resonant levels, quenching of the excitation, 
successive increases of the degree of excitation, asso
ciative ionization, etc., since they do not play the prin
cipal role and can only influence numerically the total 
excitation and ionization rates. The recombination of 
the electrons and their diffusion towards the walls 
(mainly ambipolar) is estimated to be negligible; they 
lead only to a decay of the plasma behind the wave. 

Let us consider the one-dimensional stationary re
gime of the ionization wave in a coordinate system 
where the wave is at rest (see the figure). In the labo
ratory system, the gas is stationary and the density of 
all the atoms Na is constant. A macroscopic gas par
ticle passes through the wave along the x axis with con
stant velocity u, equal in magnitude to the wave propa-

nit must be stated that at large microwave powers (kilowatts), a 
propagation of a discharge towards the source, having a similar charac· 
ter, was also observed at high (atmospheric) pressure in waveguides con
taining air [ 3]. The velocities in this case are of the order of several 
meters per second. A physical interpretation and theory of this process 
were given in [4 ]. 
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Schematic distributions of the 
quantities in a plane stationary ioni
zation wave: a-density of excited 
atoms N*, b-electron density N, c
square of microwave electric field 
E~ averaged over the period of the 
oscillations. The arrows indicate the 
directions of the influx of nonion
ized gas into the wave u and of the 
energy flux in the incident electro
magnetic wave S0 • 

gation velocity, and d/dt = ud/dx. The unknown func
tions of the coordinate x in the wave are the electron 
density N, the density N* of the excited atoms (N* « Na), 
and the microwave electric field E. The function N(x) 
satisfies the kinetics equation, which takes, without al
lowance for the electron losses, the form 

(1) 

where v is the electron velocity and a{ the ionization 
cross section of the excited atom, and the bar denotes 
averaging over the electron spectrum. 

In the presence of diffusion of the resonant radiation, 
the density N* of the excited atoms is described by a 
well known integrodifferential equation. £51 We shall dis
regard the radial distribution of N* and ·assume the tube 
to be infinite and its internal walls to absorb the reso
nant quanta. We assume a kernel such that all the quan
tum absorption points can be regarded as located on the 
tube axis. We then have 

dN' N' (x) 1 +~ 
u-= ---+-J N'(s)K(Is-xl)ds+a'NN.-aNN', 

dx 't 't_~ 

f CD arctgRf: 

K(z)=- JdvF(v)k. J e-•.•l•••'tg6d6. 
2 0 0 

Here r is the lifetime of the excited atom relative to 
emission of a quantum, R the tube radius, k11 the coef
ficient for absorption of a quantum of frequency v, F(v) 
th~ emission-line contour normalized to unity, B the 
angle between the direction of motion of the quantum 
and the x axis, and a* = va*(v), where a* is the cross 
section for the excitation of the atoms by electron im
pact (the excitation rate is determined by the micro
wave field via the electron spectrum). 

Let us simplify the integro-differential conversion 
by converting it into a differential equation of the diffu
sion type. We assume that the density of the excited 
atoms varies slowly along the x axis, expand N*(~) 
about the point x, and terminate the expansion with the 
term proportional to d2N*/dx2 • The coefficient of dN*/dx 
vanishes by virtue of the symmetry of the kernel. Com
bining the integral with the first term of the expansion 
and the term - N*(x)/r, we obtain the equation 

dN' d'N' N' 
u-=D--·- +a'NN.-aNN', 

dx dx' T 
(2) 

where 

1 ~ 
D =-J z'K(z)dz, 

't 0 

1 1 ~ y=-:r[ 1-2 JK(z)dz]. 

The constant D has the physical meaning of the diffu
sion coefficient and T has the meaning of the average 

time in which the excitation reaches the wall. The prin
cipal role in the transport is played by the wings of the 
line, since the mean free path l 0 of the quanta at the 
center of the line is exceedingly small. Therefore the 
line contour can be assumed to be of the dispersion 
type and the corresponding equations can be used for 
F(v) and k11 • An approximate calculation of the integrals 
yields 

'I 
l' 1 3D n'I•R'I•lo ' 'I 

D = 3,; • T = R'. l = 18'/•f('/,) = 0.7R''•l. •. (3) 

l has the meaning of the mean free path of the quanta 
effecting the diffusion. The expression for T is typical 
of the diffusion process. The diffusion approximation is 
valid if lldN*/dxl « N*, which is satisfied in our case, 
since l « R as a result of the extreme smallness of l 0 • 

The average rate at which the electron acquires en
ergy in the field is given by the well known formula [&l 

de e'EZ 2m 
dt= m(ro'+v .. ') -Mev,., (4) 

where w is the field frequency, vm the frequency of the 
elastic collisions of the electrons with the atoms and m 
and M the masses of the electron ::jlld of the atom, and 
the bar over E2 denotes averaging over the period of the 
field oscillations. It is seen from (4) that in an excess
ively weak field the elastic losses do not permit the 
electrons to reach the energy e: = I* needed for excita
tion of the atoms, and this imposes a limit on the exis
tence of this regime. An estimate of the threshold field 
from the condition de:/dt = 0 at e: = I* makes it possible 
to find the corresponding threshold energy fluxes: S 
= cE2/47T. For the conditions of the experiments in u,al 
we obtain 0.4 W/cm2 in Xe and 1.2 W/cm2 in Ar, which 
agrees with the experimental thresholds in order of 
magnitude. 

At fluxes greatly exceeding the threshold values, the 
elastic losses can be neglected. In addition, as shown 
by estimates, the energy lost by the electrons to ioniza
tion of the excited atoms is in general no larger than the 
loss to excitation of the nonexcited atoms. Further, an 
electron possessing an energy barely exceeding I*, ex
cites an atom with a high degree of probability. Under 
these conditions, the average time necessary for the 
electron to complete the excitation act is approximately 
equal to the time it needs to acquire the energy I* (dis
regarding elastic losses, i.e., at M = co). Consequently, 
the frequency of the excitations a*Na is equal to 
(de:/dt)M=co/I*. We can state this differently: the dissi
pated field energy goes mainly into excitation of the 
atoms and aE2 = I*a*NNa, where a= e2Nvm/m(w2 +v~) 
is the conductivity; the two statements are equivalent. 

Thus, owing to the assumptions made, we express 
the rate of excitation of the atoms aNNa directly in 
terms of the Joule heating. Neglecting also, in accord 
with the same assumptions, the loss of excited atoms 
due to their ionization, we obtain in place of (2) the 
equation 

dN' . d'N' aE' N• 
u--=D--+----. 

dx dx' I* T 
(5) 

The microwave electric field is described by a wave 
equation that follows from 14axwell's equations. For a 
monochromatic field E ~ e-Iwt we have 
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d'E w' ( 4na) -+- e'+i- E=O, 
dx2 c2 w 

(6) 

where E' = 1 - 47Te2N/m(w2 + v~) is the dielectric con
stant. 

If the electron energy distributionfunction f(E) is 
assumed to be quasistationary, the elastic losses and 
the influence of the inelastic collisions with the excited 
atoms are neglected, and it is also assumed that at 
E = I* there is a powerful "sink," i.e., f(I*) = 0, then 
we obtain from the kinetic equation[7l f(E) = (3N/I*) 
x[1- (E/I*)112 ]. Under these assumptions f(E), and 
consequently also a, does not depend on the field (the 
excitation-rate constant a* is determined by the "flux" 
along the energy axis and is given in this case by the 
formula presented above). In a weak field, such that 
E2 < E~, where E~ is determined from the condition 
dE/dt = 0 at E = If• ionization due to elastic losses 
stops. Thus, we put a = const at W > Er and a = 0 
at E2 > E~. 

Let us establish the boundary conditions for the for
mulated system (1), (5), (6). Ahead of the ionization 
wave at x = - oo we are given the field amplitude E0 or 
the energy flux S0 in the incident electromagnetic wave, 
N* = 0, and we must specify some small electron den
sity N0, without which the ionization cannot start. The 
results depend little on the value of N0 • Formally at 
N0 t- 0 the electromagnetic wave is completely absorbed 
even before its approach to the ionization wave. This 
unphysical difficulty can readily be eliminated by as
suming, for example, that the conductivity is propor
tional not to N but to N - N0 • Behind the ionization 
wave, at x = + oo, we have E = 0 (since N t- 0), and N* 
= 0 as a result of the drift of the excitations towards 
the walls. It is easily seen that one of the conditions 
imposed on N* is "superfluous" for the system (1), 
(5), (6). This indeed enables us to determine the un
known propagation velocity u. 

3. APPROXIMATE SOLUTION 

As shown by calculations, the excitation diffuses 
from the sources to distances greatly exceeding the 
width of the zone in which the sources are located. We 
can therefore put in (5) in the zeroth approximation 
aE2 = S1o(x). This yields, with allowance for the bound
ary conditions 

N'(x)= ' · , ...._, , 
S { e•t•• x:;;::: 0 

J•yu' + u'' e-•t•, x;;,. 0 
(7) 

/1~., = 2~[ l'1 +(u*/u)'± 1], 1L* =''/4D/T. (8) 

The quantity 
$ 

S, = J aE'dx 

is the dissipating part of the incident electromagnetic 
energy flux: S1 = S0(1 - p), where pis the reflection co
efficient. Integrating (1) with the aid of (7 ), we obtain 
the first approximation for the electron distribution: 

N(x) = N,e*l, "=~s· N·ax u ' 
(9) 

xsO 

x;;,.O 
(10) 

The second formula in (10) is valid only up to a cer
tain point Xf > O, at which the field, which attenuates as 
it penetrates into the ionization wave, drops to the value 
Ef· At x > Xf we have E2 < E~, a = 0, and N(x) =canst. 
This final (largest) value of the electron density in the 
plasma is equal to Nf = N0 exp (Yf), where Yf = y(xc). 

In principle, knowing N(x), we could solve the wave 
equation (6) and determine Xf, i.e., Nf, as well as p. 
This cannot be done in practice, and we proceed in a 
highly approximate manner (just as in [4 l). We separate 
approximately the effects of wave dissipation and crea
tion of the reflected wave, and assume that the dissipa
tion is determined by the absorption of only the trans
mitted electromagnetic wave, in which the energy flux 
S attenuates in the same manner as when the wave prop
agates in a homogeneous medium. The absorption coef
ficient J.l is then calculated in accordance with the well 
known formulas [al in terms of the local values of 
E'[N(x)], a[N(x)], and pis calculated as the reflection 
of a wave incident normally from vacuum on the sharp 
boundary of a medium with E' (Nf) and a (Nf ). In this 
approximation we have 

dS 
dx = - flS, aF:' = 118, (11) 

S = S,e-'(\ r(x) = J (fl- flo)dx, (12) 

where we subtracted llo = J.J.(N0 ) from J.l in order to ex
clude the nonphysical divergent part of the optical-thick
ness integral. The coordinate Xf is determined from the 
condition 

Sr= nrcEr' 
4n ' 

(13) 

where nf is the refractive index corresponding to Nc· 
To calculate the integral (13 ), we note that usually 

the J.J.(N) dependence ranges from J.l ~ N to J.l ~ IN. 
We put for simplicity J.l = bN1/ f3, where b and f3 are 
constants (1 5 f3 5 2). Using (9) and (10) and noting that 
y1 = y(O) is a large number, since N1 = N(O) » N0, we 
obtain the optical thickness ofthe pre-ionization zone 
(prior to the start of intense dissipation): 

0 
'' e'1~- 1 P 

-r(O) =J(fl- J.Lo)dx = J.LoJ--1-dv ~ -11,11., 
dy dx y, 

-"" ' 0 

(14) 

where J.J. 1 = J.J.(N1) (.:l1 is the effective width of the zone). 
In the region of developed ionization (strong dissipation), 
we neglect approximately the change of N*, putting 
dy/dx = y1 /.:ll' We obtain 

(15) 

where J.lf = J.J.(Nf). Adding (14) and (15) we get T(Xf) 
= f3J.J.c.:l 1 /y11 after which we obtain on the basis of (13), 
(8), and (10) an expression that relates the final electron 
density directly with the wave propagation velocity u: 
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_ [ aS,ln(S,/S,J ] ' 
Nr- ' 

~ bul'yu' + u'' 
S, = S,[i- p (Nr) ]. (16) 

Actually this equation defines Nf and not u. 
To derive an equation for the unknown parameter u, 

which is the eigenvalue of the system (1 ), (5) and (11 ), 
we turn to the initial assumption that the dissipative 
term aE2 be replaced by a o function. This replace
ment is equivalent to replacing the energy flux S(x) sat
isfying Eq. (11) by a step function: 

s = s, for < o, S = o for x > 0. (17) 

Of course, we are free to choose the spatial point at 
which we place the "step," since this is essentially the 
question of the choice of the origin. But the electron 
density N1 at this point, which effectively separates the 
region where the field dissipation is negligible from that 
where it is intense, is far from arbitrary. It is clear 
that the optical thickness of the entire layer of "weak" 
dissipation r(O) should be of the order of unity. Indeed, 
if r(O) greatly exceeds unity, then the electromagnetic 
wave will become too strongly absorbed even when N 
< N11 prior to the arrival at the zone of the "main" 
dissipation. On the other hand, if r(O) is much smaller 
than unity, the wave will propagate in some section of 
the "dissipation" zone without significant absorption. 
Either assumption contradicts the definition of the con
cept of "main dissipation." This reasoning leaves a 
certain leeway in the choice of the concrete number to 
which we must equate r(O). It is easily seen, however, 
that the approximation (17) corresponds to r(O) = 1. In 
fact, (11) leads to the exact integral relation2 > 

(18) 

Substituting the approximating step function (17) in (18), 
we indeed obtain r(O) = 1. Subtracting further Jlo from 
Jl, as before, we obtain the equation 

• 
T(O)== J {Jl[N(x)]- Jlo}dx = 1, (19) 

which enables us to determine u. It is physically clear 
that the condition (19) should regulate the velocity of the 
ionization wave, for in accordance with (1) it is precisely 
the velocity u which determines the rate of spatial growth 
of the ionization, and consequently also of the optical 
thickness, up to the point where a considerable electron 
density N1 is reached. 

Substituting JJ. 1 = Jlo exp (y1 /f3) in expression (14) for 
r(O) and taking the logarithm of (19), we obtain 

y, ai'.,St 
y, = flln--, Yt = , (20) 

BJlol'.t l'uyu' + u'' 

where the second expression determines y 1 in terms of 
u in accordance with formula (10). Equation (20) de
scribes the velocity of the ionization wave u with a dis
sipating energy flux Sl' All the remaining quantities in 

2l A relation having a similar meaning was obtained also in the case 
of a high-frequency discharge [ 8 ) , which constitutes another limit with 
respect to field description. A similar "step" approximation was used 
in [8 ). 

(20) are known. Having defined u(S1), we can calculate 
Nf(S1) from (16) and then obtain p and then S0 = S1 /(1- p), 
i.e., obtain as a result u(S0 ) and Nf(S0 ), which is indeed 
the final purpose of this solution. The electron densities 
on the boundaries of the main dissipation zone are con
nected by the relation r(xf)/r(O) = Jlr/Jl 1 = ln (S1 /Sf), 
whence NfiN1 = (ln (S1 /Sf))i3. 

As shown by the calculations, the characteristic ve
locity u* is a rather large quantity, and this makes it 
possible, in a broad range of not too high microwave 
powers, when u < u*, to obtain explicit expressions for 
the propagation velocity and the other parameters of the 
wave. In this case, in accordance with (18) and (13), 
~1 ~ ~2 ~ v'DT = R/ .f3, and in accordance with the 
first equation of (20) y 1 = const = Yc· The second for
mula of (20) yields 

(21) 

Also proportional to sl is the maximum density of the 
excited atoms Nriiax = S1 /I*u* (see (7)). The electron 
density at the start of the dissipation zone N1 is con
stant, and the final density depends on S1 only logarith
mically: 

4. NUMERICAL CALCULATIONS AND DISCUSSION 

By way of an example, let us consider xenon at p = 3 
mm Hg. Xenon has two strong resonant lines, which we 
combine, taking N* to be the summary population, and 
D and 1/T to be mean values. According to Wilkinson's 
data,[9J for A= 1470A we haver= 3.74 x10-g sec and 
the oscillator strength is f = 0.26. When account is taken 
of the excitation exchange in the collisions of atoms of 
one gas, [loJ we get l 0 = 2.6 x 10-a em. For A = 1296 A we 
have r = 2.8 x 10-g sec, f = 0.27, and Z0 = 2.5 x 10-a em. 
At a tube radius R = 2.5 em, we get D = 3.2 x105 cm2jsec, 
T = 6.5 x 10-a sec and u* = 4.5 km/sec (these quantities 
are almost independent of the pressure): I* = 9.0 eV. 

There are no experimental data on the cross sections 
for ionization of the excited atoms by electron impact, 
and we shall estimate a by using the universal Gryzinski 
formula for ai(E), derived on the basis of classical me
chanics. The formula describes well the measured cross 
sections for ionization from the ground state of many 
atoms, including cesium, Ull to which the excited xenon 
atom should be similar. The Gryzinski curve is given 
in [uJ, as is also the experimental curve for cesium. 
Calculation yields an ionization rate constant a ~ 4 
x 10-8 cm 3jsec. 

The frequency of the elastic collisions of the elec
trons is vm ~ 2.4 x 1010 sec-\ and the field frequency 
in the experiments of [l,zJ is w = 5.3 x 1010 sec -1 • The 
microwave absorption coefficients calculated with these 
data in the main dissipation zone can be approximated 
by the formula Jl = 3.5 x 10-6 N 112 em-\ and this deter
mines b and J3. The experiments of [l,zJ offer evidence 
that the initial electron density is N0 < 1010 em -3 , but at 
the same time it is smaller by not many orders of mag
nitude than the final density 1012-1013 cm-3 • We assume 
for the calculations N0 = 5 x 108 cm-3, corresponding to 
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0,5 1.8 0.8 

I 
0.56 

1 2.6 1..6 0.48 
3 4.7 4.7 0.35 
5 6,0 9.3 0.31 
10 8.1 15 I 0.27 
15 9.0 23 0.25 

an extrapolated value 3> J.to = 0.08 cm-1 • The first equa
tion of (20) then yields Yc = 7. At the same time, J.t 1 

= 2.4 cm-1 and N1 = 0.45 x 1012 cm-3 • The ionization of 
excited xenon ceases at Sf~ 0.1 W/cm2 • We emphasize 
that the results depend weakly (logarithmically) on either 
Sf or Mo· 

The results of the calculation of the wave velocity u 
and of the final electron density Nf are listed in the 
table. The fluxes S0 in the incident microwave were 
calculated from s1 in terms of the reflection coefficients 
p. The latter were made more precise, just as in [4 1, in 
comparison with the values of p0 for a sharp plasma 
boundary; the smearing of the boundary was taken into 
account. The last column of the table gives the experi
me!)tal velocities uexp from [2J, corresponding to the 
same values of S0 • 

The calculation gives true values of the electron 
densities in the plasma, which are in fair agreement 
with [2 J. The calculated velocities u increase with in
creasing microwave power, just as in the experiment, 
but turn out to be lower by a factor 4-7. It must be as
sumed that this is due to underestimation of the as
sumed constant a (Nf does not depend on a, and there
fore the calculation gave the correct figures). Stepwise 
ionization proceeds rapidly via successive increases of 
the degree of excitation by electron impact. The strongly 
excited atom, combining with the usual gas atom, then 
produces with high probability a molecular ion and an 
electron. [2J This, according to the estimates, is fully 
capable of increasing the ionization rate by a total of 
several times. The equation for electron production 
can be written as before in the form (1 ), but now this 
equation will describe the summary kinetics, and a will 
represent a certain effective constant of the resultant 
ionization rate, and can be several times larger than 
the value assumed in the calculation. Partial reflect~on 
of the resonant quanta from the tube walls can increase 
somewhat the time T of the drift of the excitation to the 
walls as well as the velocity u, since u ~ T. We note 
that in Xe at 3 mm Hg the breakdown field corresponds 

3> As follows from the derivation of the fundamental formulas, !lo 

should be taken to mean not the true coefficient of N0 , but a value ex
trapolated to N0 by means of the formula used in the main dissipation 
zone. 
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to a flux of 43 W/cm2 in the traveling wave, but in this 
case there is also the field of the reflected wave, which 
may become superimposed on the field of the incident 
wave, i.e., the flux threshold in the incident wave can 
be lower. An additional ionization mechanism, not taken 
into account at all, comes into play at fields close to 
breakdown. 

As to the threshold for the existence of the ioniza
tion-wave regime, it is determined mainly by the elas
tic electron energy losses, and according to the esti
mate made in Sec. 2 it amounts to several tenths of a 
W/cm2 in agreement with the experimental resultsYJ 

We assume that the theory developed above describes 
correctly the most essential features of the phenomenon 
in question; its results are in reasonable agreement with 
experiment, but, of course, not all the problems have 
been solved here. In particular, the velocity jumps ob
served under certain conditions [3J remain unexplained. 
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