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Nonlinear Alfv~n waves propagating along a magnetic field in an anisotropic plasma are studied under 
firehose instability conditions. 

IN a magnetic field a rarefied plasma is anisotropic, 
because energy exchange between degrees of freedom 
is hindered and the pressures parallel and perpendicu
lar to the magnetic field can consequently be unequal. 
Plasma motion in this case is often investigated on the 
basis of hydrodynamic equations-the model of Chew, 
Goldberger, and Low (CGL)[ 1 J or its extended form 
taking into account the finite Larmor radius of the 
ions.r 2 J The model of [lJhas been used to study, for 
example, simple waves rsJ and weak shock waves [41 in 
a stable plasma. When the pressures along and perpen
dicular to the magnetic field satisfy the inequality P 11 

> P 1 + ~I 41T, Alfv~n waves propagating along the field 
Ho are unstable-the so-called firehose instability 
arises. A linear analysis yields the following disper
sion law for these waves: 

where w H = ef ljic is the cyclotron frequency of the 
ions, R = wi:/ p 11 p is the Larmor radius of the ions, 
k is the wave number of small-amplitude waves, Yk is 
the growth increment of small perturbations, .:lp 
= p 11 - p 1- H~ I 41T is the degree of plasma anisotropy. 
The expression for the increment indicates that the de
velopment of a firehose instability depends on the con
ditions 

PH> P.L + H,'/4n, kR < 2fl!1p/pu, 'A> 'A'= nRfp 11 /!'J.p, 

i.e., sufficiently long Alfv~n waves are unstable, but 
short-wave harmonics with A < A* are stabilized. 

We have previouslyrs, 61 investigated a one-dimen
sional linear model of the firehose instability. The 
present paper continues the study of this model of an 
anisotropic plasma that is unstable with respect to the 
growth of Alfv~n waves. 

The initial system of equations has been given in 
r51 • We assume initially that motion along the magnetic 
field is absent and that the plasma density is uniform. 
Then if the square of the transverse field is independent 
of the z coordinate (H} =Hi + Hy), the gas-kinetic 
pressures p 11 and p 1 are also independent of z and 
longitudinal motion is not excited ( p = po = const, w = Uz 
= 0). We shall henceforth consider only transverse Alf
v~n waves, assuming now H} << H~. Then the pressures 
can be written as 

Pu ~ Pu'(1- H1'/H.'), PL ~ PJ.0 (1 + HL'/2H,'), 

where Pl1 and pl_ are the unperturbed pressures along 
and perpendicular to the magnetic field Ho. Inserting 
these expressions into the initial system, we obtain 

998 

where !'J.p,= Pu' _:__ P.1.0 - H.'/4n. 

By transforming to new variables: 

, WH!o..p (J)H -. -
t = --,- t, z' = -po-l' p0Llpz, 

1 
(u', v') =A-;;' l'Po(2p 11'- P.L'/2) (u, v), 

(2) 

(H.',H,')=l'(2p 11'-p-L'/2)/!1p(~:, ~:). 
we eliminate all coefficients in (1) and obtain the equa
tions (where primes have been omitted) 

~+~[(1-H.L')H -!..:!._] = 0 at az X az > 

av a [ au] at+~ (1-H.L')Hu+~ =0, 

aH, au 
(3) 

Thus the problem of firehose instability in an anisotro
pic rarefied plasma for different parameters will have 
similar solutions in the absence of longitudinal motion 
and in the case of small but finite degrees of plasma 
anisotropy ( .:lp). 

The system (3) is a convenient model for studying 
unstable transverse Alfv~n waves, because it is consid
erably simpler than the initial system and retains all 
features of the considered phenomenon-the growth of 
small perturbations, limitation of the amplitude as a re
sult of nonlinearity, and stabilization of short-wave per
turbations as a result of magnetic viscosity, which is 
described by the last terms in the first two equations. 

A linear analysis yields 

w~> = 'f,k', V• = kl'1- k'/4. 

The harmonics with k = .. ./2 and A = 1T ..f2 possess the 
maximum rate of growth; for these Yk = 1. Harmonics 
with wave numbers k < k* = 2 are unstable; those with 
k > k* are stable. 

As in rsJ, we shall seek a solution of (3) in the form 
of a monochromatic wave with circular polarization: 

H,(z, t) =B(t)sin(kz+ill(t)), Hu(z, t) =B(t)cos(kz+<p(t)). (4) 

Inserting these expressions into (3), we easily deter
mine that the rate of change of the phase (or _frequency) 
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of the wave is cp = -.l!/2, and that the wave amplitude 
B(t) is determined by the simple equation of a nonlinear 
oscillator: 

B- 'V•'B + k'B' = 0, 
or 

B' + U(B) = E = const, 

where the "potential energy" is U(B) = %k2 B2 

(5a) 

(5b) 

x (B2 + If/2- 2), and the "total energy" E depends on 
the amplitude Bo of the initial perturbation: E = k2 B~/2. 

The change of amplitude of a nonlinear monochro
matic wave can be represented qualitatively as follows. 
Let a wave of small amplitude Bo << 1 be given at ini
tial time. During a relatively small time interval the 
amplitude of this wave will grow exponentially because 
of instability, until the nonlinear terms become large. 
The amplitude then grows more slowly, reaches a max
imum, falls off to zero, grows again, etc., thus oscil
lating periodically in time. The maximum square of the 
transverse magnetic field in the wave, Hlj_ max = B~ax 
= 2(1- If/4), diminishes as the wavelength decreases 
and vanishes, of course, at the boundary of the insta
bility for k = k* = 2. 

The kinetic energy of particles in the wave is 

K = 1/2(u' + v') = 1/2H1.'(1- '/,HJ.'). 

When H~ max s 1, which occurs for waves with k?: v2, 
the behavior of K(t) duplicates that of Hi(t), with mono
tonic growth to K(Hi max) = Yk/4 followed by a decline 
to zero. When Hi max > 1 (for waves with k < -12) the 
time dependence of particle kinetic eneryy is changed: 
K(t) increases to its maximum Kmax = ~4 at the mo
ment when W~(t) = 1, then drops to an intermediate 
minimum K(H 1 max) = y k/4, increases to Kmax• and 
again drops to zero together with Hlj_. 

The period of the magnetic field oscillations and of 
the particle velocity in the wave is calculated from 

T. ~ {2/v.) In {8y.'/k'Bo'), 

which shows that the period increases as the initial am
plitude is reduced. Transforming to dimensional varia
bles, we obtain the following equations for the physical 
quantities in a circularly polarized nonlinear monochro
matic wave: 

(HJ.'/H,'), .. = {1- k'/4)1lp/{p 11'- PJ.'/4), 

K(t)= ~!lp)', ._!_B'(t) f.t-..!B'(t)), 
2p11 - PJ. /2 2 \ 2 lk'{1-k'/4){!lp)' f B < 1 

4(2Pu'- pj_'/2) or "'"" ' 
K, .. = (!lp)' 

, , for B, .. ;;;;;. 1, 
4(2Pu -Pl. /2) 

( llp B'(t)) Pu(t) = Pu' f- 2Pu' _ PJ.'/2 , 

PJ.{t)=PJ.'(1+ ~P , B'(t)), 
4pu -Pl. 

H.' ( Pu'+PJ.'/2 B' ) • /lp{t)=p 11 (t)-pJ.{t)-~4 = 1- 2 0 , 12 (t) op. 
n Pu -pl. 

As the amplitude of the nonlinear monochromatic 
wave grows the plasma becomes less anisotropic. With 
the transition from the initial state to the state where 
the magnetic field has reached its maximum the change 

in the anisotropy is 

ll = Pu'+P1.'/2 B' ll = ( '+ P1.') H~, •• 
2pu'- P1.'/2 "'"" p Pu 2 H.' . 

The quasilinear theory (QLT) of firehose instability 
was considered in £7 • 81 • When we compared the average 
plasma properties derived from the QLT and the CGL 
model for small anisotropy we obtained the following 
results. According to the QLT the relation between the 
changes of longitudinal and transverse pressure is given 
by 

dp 11/dPJ. ·~ -4(pu'- PJ.'/2)/pu', 

whereas from the CGL theory we obtain 

dpu/dpJ. ~ -2pu'/pj_'· 

Since applicability of the QLT requires fulfillment of 
the conditions 

P.u',pj_'~Ho'/4n, (Pu'-pj_)'/p 11'~1, 

both equations reduce to 

dp 11/dPJ. ~ -2. 

(6) 

A similar result is obtained for the temporal change in 
the degree of plasma anisotropy (the quantity determin
ing the increment of instability): 

,flp(t) = Pu(t) - PJ.(t)- Ho'/4n. 

The quasilinear theory gives 

llp(t) ~ llp- {5p11'- 2pj_')h(t), 

while the CGL model gives 

llp(t) ~ llp- (2p 11' + PJ.')h(t), 

where h(t) = 'fal:; Hik/~. Under the conditions (6) for 
k 

the QLT the two equations yield 

llp(t) ~ ,flp- 3pii'h(t). 

We shall now consider how the investigated nonlinear 
monochromatic wave is affected by other waves for 
which we assume k << ko (where ko is the wave num
ber of the "principal" wave). For these additional 
waves the increment is y k << y ko = y0 ; therefore dur
ing a time of the order of the period T0 of the principal 
wave these waves can be considered in a linear approx
imation: 

dh/dt = ~ 2y.h •. 

• 
In this equation the increment Yk will be a function of 
time, because the pressures p 11 , p 1 in the expression 
for the increment are related to the change of the mag
netic field in the principal wave: 

V• =v•(t) = kf1- k'/4- (4 + 3PJ.')HJ.'/(2H,'Ilp). 

Taking one additional wave, for simplicity, and as
suming ko =..f2 ( y0 = 1), we obtain the following: At the 
end of the period T 0 of the principal wave the square of 
the transverse magnetic field, due to the growth of the 
"small" wave, becomes 

HJ.'(To) ~ (f +ak)HJ.•'(O), 

where a is a numerical coefficient of the order 10. 
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Consequently, the changes of wave amplitude and plasma 
properties are irreversible, the degree of anisotropy is 
reduced, and the longitudinal and transverse pressures 
tend to be equalized, in qualitative agreement with the 
conclusion in c7 , 8 J regarding quasilinear stabilization 
of the firehose instability. A more exact comparison of 
the CGL model and the quasilinear theory will be possi
ble following a numerical solution of ( 3) for a set of ini
tial waves with different wave numbers. 

The author wishes to thank Academician R. Z. Sag
deev for advice and discussions. 
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