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The problem of the probability of appearance of discrete one- and two-electron levels in random force 
fields is considered. The conditions for which this probability is finite are indicated. It is concluded 
that there exists a sharp energy boundary between "current" and "non- conducting" electron states 
in random fields of a rather broad class. The total number of discrete levels in the forbidden band 
of a disordered semiconductor is estimated. 

1. INTRODUCTION AND FORMULATION OF THE 
PROBLEM 

The problem of the energy spectrum of a disordered 
semiconductor has been examined repeatedly and from 
different points of view. Of special interest here is the 
region of energies corresponding to the forbidden band. 
Experimentally, it has clearly been established ( cf., e. g., 
the surveyr1 J) that within the forbidden band of an 
amorphous substance there is a set of discrete levels, 
corresponding to localized states of the charge car
riers. This is in agreement with the theoretical conclu
sions(z-4J that sufficiently deep levels of this type neces
sarily arise in practically any (semiconducting) dis
ordered system. For shallower levels, however, the 
situation becomes less clear. It is also not clear to 
what extent the various model assumptions used in the 
different papers are essential. Finally, there is no 
theoretical estimate of the total concentration of dis
crete levels in various disordered systems. 

In the present paper, we make an attempt to treat the 
problem of localized states in a disordered system 
from a somewhat different point of view. Namely, we 
shall seek the probability that discrete levels appear in 
a given random field1 >. If this probability turns out to be 
finite, then in a large system such levels will necessar
ily arise and their concentration will be proportional to 
the above probability. As will be seen from the follow
ing, this formulation of the problem evidently enables us 
to distinguish clearly the assumptions on the model 
character (these turn out to be associated with the sta
tistical properties of the random field), and also to 
understand to what extent these assumptions are impor- · 
tant. 

We note that, generally speaking, these levels, if they 
exist, cannot be ascribed to any individual atoms or to 
any sharply defined aggregate of a small number of 
atoms: the levels can arise because of the finite proba
bility of formation of the corresponding fluctuation
potential wells, i.e., as a result of collective effects. 
Furthermore, the existence of such levels is, generally 
speaking, in no way due to the absence of overlap 
between the wave functions of the electrons localized in 
the different wells, but is due to the random character 
of the levels. Under these conditions, overlap of the 

!)It is obvious that such a formulation of the question has meaning 
only in the three-dimensional case. 
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wave functions does not necessarily lead to the trans
formation of states belonging to Lz into states of the 
continuous spectrum (here and below, the term "con
tinuous spectrum" is to be understood in its purely 
mathematical sense, and not simply as a set of very 
closely spaced levels): because of the random spacing 
and random characteristics of the wells, the levels are 
not obliged to "resonate." 

We shall consider the behavior of charge carriers in 
a macroscopically homogeneous and isotropic system. 
The possible periodic field is excluded by the standard 
effective-mass method, 2 > in which for the beginning the 
effective mass will be assumed to be isotropic. In fact, 
this assumption is not very important in the present 
case (cf. Sec. 3). 

2. STATISTICAL CHARACTERISTICS OF THE RANDOM 
FIELD 

In a macroscopically homogeneous system, the aver
age value of the potential energy V of a charge carrier 
in a random field is a constant. Consequently, it is 
sufficient to confine ourselves entirely to treating the 
fluctuations of a field with zero average value, putting 

V(x)=(V) + U(x), (U) =0, ( 1) 

where the angular brackets denote averaging over the 
random field. 

Denoting by .9' [ U] the functional defining the proba
bility of appearance of a given function U(x), we obtain 
the obvious relation 

J 6U .9'[U] = 1. (2) 

Physical considerations concerning regularity can lead 
to supplementary conditions to be imposed on the class 
of functions U(x); however, we shall not need them. 

The determination of the explicit form of .'7'[U] is a 
problem in its own right; to solve it, it is necessary to 
introduce some or other assumptions of a model charac
ter. For the following, however, a phenomenological ap
proach is convenient. Namely, all the average values of 

2>Expressions such as "effective mass," "dispersion law," etc., need 
not lead to misunderstandings: as always in such cases, we have in mind 
the corresponding characteristics of the auxiliary problem with a purely 
periodic field. As is well known [ 5 ] , in the case of a macroscopically 
homogeneous system, such a problem can be uniquely defined. 
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interest to us can be calculated if we know the charac
teristic function 

Here 

A(z) = (exp{-iz J dk~'(k)/(k) l>· 
1 

U(k) = --Jdxe-'kxU(x) 
(2:rt)' 

( 3) 

( 4) 

is the Fourier transform of the random function U(x), 
and J(k) = J*(-k) is a regular function. 

In the case of a Gaussian field, 

.9-'[U]=Nexp{- ~ JakU(k)'If-l(k)U(-k)}, (5) 

where N is a normalization factor, and >l!(k) is the 
Fourier transform of the correlation function 

(U(x') U(x")) == 'Y(x'- x") = J dk 'f(k)e'<"· •'-•"l. 

In this case, 

A(z)=exp{- ~ Jakj/(k)j''Y(k) }· 

In a more general case, we put 

A(z) = exp {- z~J dkj/(k) j'<I>(k) }.E cnHn[F(z,l)], 
n;;;.o 

(6) 

(7) 

(8) 

where iP is a function of the same class as>¥, Hn are the 
Hermite polynomials, and Cn are certain coefficients, 
satisfying the conditions 

.E CnHn (0) = 1, Czm ERe, Czm+! E Im, 
n;;.o (9) 

' I I 

F(z,J) = ,E ~! J l\(k1 + ... + k1 )ll>,(k~, ... , kt) II /(k,)dk,, (10) 
l;;.z i=t 

and il>z are kernels subject only to the obvious regularity 
conditions. In particular, we shall assume that 

!I>, (0, ... '0) < oo, 

<1>,(0, ... 'O)ll>-'1'(0)1-' == ~~ < 00 

and for all finite values of z 

'\1 z' 
~IT~'.,. s < ""· 
'"'' 

(11) 

(12) 

( 13) 

It is possible to represent functions of a fairly broad 
class in the form of the expansion (8). From the follow
ing, it will be clear that for the proof of the theorems of 
interest to us, only the properties (9)-(13) are impor
tant, and not the explicit form of the coefficients cn. 

We note certain obvious properties of the function 
>l!(k). The condition of macroscopic isotropy and the 
normalization (2) give 

'Y(k)='¥(-k)ERe, 'Y(k)>O. (14) 

Furthermore, we shall suppose that the correlation 
function (6) goes to zero only for jx'- x" 1 - oo, Then 
k2>¥(k) < 00 fork- 0. We shall take a somewhat stron
ger condition: 

( 15) 

Finally, by definition, 

Jw(k)dk == IJJ, = <U'> < ""· ( 16) 

In the framework of our formulation of the problem, 
the function >l!(k) must be assumed known. Thus, in the 

case of a field created by randomly distributed atoms 
of a charged impurity, 

'Y(k) = 2~'e'.n, 
ne'(k' + r,-')' 

( 17) 

where Z, llt• t and ro are respectively the charge of an 
individual impurity atom in units of the electron charge, 
the impurity concentration, the dielectric constant of 
the substance and the screening radius. 

The Fourier transforms of the functions >¥, iP and <Pz 
are easily related. According to (8), 

'¥ (k) =<I> (k) - ll>,(k, -k) . 

Correspondingly, 

'ljJ, = <:p,- s <I>,(k, -k)dk, (18) 

where (/)1 = J dkii>(k); by convention, cp1 < oo, 

Condition (9) enables us to prove that the overwhelm
ing majority of potentials U(x) are bounded. Indeed, we 
shall calculate the probability Q that U(x) is greater 
than a certain given value Uo (of course, in a macro
scopically homogeneous system, Q will not depend on x). 
Obviously, 

Q = (8[U(x)- U,J>, (19) 

where () is the well-known step function. Using the stan
dard integral representation for it and bearing (8) and 
(9) in mincl., we easily find (for U0 - oo) 

(20) 

In an analogous way, we can also find the probability Q1 

that U(x) is less than t, where t - + 0: 
1 1 +~ ds s' 

Q, =2+ 2:ti f-;-exp {-2<:p'} .EcoHn[F]. (21) 
n;:.o 

In a Gaussian field, Ql = Y2. 

3. ONE- AND TWO-ELECTRON LEVELS 

In this and the following paragraphs we shall consider 
the case of a Gaussian field. 

In the formulation of the problem of interest to us, 
many-electron effects can be important only when sev
eral charge carriers fall into the same fluctuation well. 
In fact, in systems of the type under consideration, the 
concentration of free charge carriers is usually not 
great, so that effects such as the dependence of the 
effective mass on the concentration do not play a role. 
On the other hand, it makes sense (and is necessary) to 
take into account the screening of the potential only in 
the calculation of the correlation function >l!(k) ( cf. (17)). 

Thus, being interested in the one-electron levels, we 
arrive at the standard problem of determining the possi
ble energy values W of an electron in a random field 
V(x): 

Here 
T¢+U¢ =A.¢. (22) 

A.=W-<V), 

and T is the kinetic energy operator of the charge car
rier, the effective mass of which ism; the energy zero 
coincides with the edge of the corresponding band. 

The localized states correspond to discrete energy 
levels, if they exist. Obviously, there is degeneracy 
with respect to the coordinates of the center of localiza-
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tion. For definiteness, we shall henceforth place this at 
the coordinate origin; expressions "at infinity" thereby 
also acquire meaning. 

We denote by a-1 the characteristic dimension of the 
region of localization (this is independent of the volume 
of the system, provided that the latter is sufficiently 
great). Then the condition for the existence of discrete 
levels can be written in the form 

'A<v.+0(1/ar). (23) 

Here v0 is the smallest eigenvalue of the matrix 

U,m;l•m• = <j}dQ(O,q>)Y,,m•y,mU(r, O,q>), (24) 

where Yf is a normalized spherical harmonic, and r, e 
and (/! are polar coordinates, with the value of r fixed 
and chosen in accordance with the condition ar » 1. 

It is obvious that condition (23) will certainly be ful
filled if we replace the quantity v0 by its minimum value 
!Jm on a sphere of radius r. Since it has been stipulated 
that the radius of the sphere is large only in comparison 
with a-\ but is not macroscopically large, ZJm is by no 
means certain to coincide with the absolute minimum of 
the potential in the volume. Furthermore, by virtue of 
(20), lvml < oo with overwhelming probability. Below, 
we shall shift r to infinity. 31 

The probability ~that a discrete level with energy 
A appears is the probability that the inequality (23) is 
realized: 

Q. = (B[vo- J.]). (25) 

Since A = A[U], the calculation of this average value 
in the general case is difficult. We note, however, that 

'A.;:;; (.Pa,(T + U)1Jla). 

Here lJI a is an arbitrary function of the class L2 (also 
normalized to unity), which depends on a parameter or 
on an aggregate of parameters a. Replacing !Jo by ZJm 
also, we only lower the required probability. Thus, 

Q. ;;;.lim(O[vm -(ljla,(T+ U).Pa)])ss Q.. (26) 

In contrast to (25), the form of the function lJI a here is 
determined a priori and, consequently, the random 
quantity U appears only explicitly in (26). This makes 
it possible to calculate Qb easily; it is convenient to 
make use of the momentum representation (we put here 
1i = 2m= 1). Proceeding as in the calculation of (19), 
we obtain 

Q• = '1,{1- Erf 11,}, 

where Erf TJ 1 is the error function 

1)1 =(a+ lvm Ill 2b, 

b'=-f Jdk'l'(k)B(k)B(-k), 

(27) 

(28) 

(29) 

3lTaken literally, the limit of U(x) as x tends to some well-defined 
value may not exist: at any point in space the random potential may 
have an essential singularity (while remaining finite, by virtue of (20), 
with overwhelming probability). From the following, however, it will 
be clear that the expression of interest to us for the probability (26) 
that a discrete level exists always has meaning. We remark also that we 
are performing, in essence, two limiting processes: the first is expressi
ble by the condition 00' > I, and the second is the thermodynamic pas
sage to the limit. 

a= S J.PaJ'T(k)dk, B(k)= Jdk'ljla'(k')ljla(k'-k), (30) 

For obvious reasons, it is natural to take as the trial 
function lJI a(k) the expression41 

'ljla(k) =(Sa') 'k I :rt(a' + k')'. (31) 

In this case, obviously, 

'A -v, =-a', a= a', B =(1 + k' I 4a')-'. (32) 

Correspondingly, formula (28) gives 

11,=(a''•+JvmJa-''•l/4 [Jdq'l'(2aq)(1+q')-•]"'. (33) 

By virtue of (15), the denominator of (33) at sufficiently 
small (but finite) a is proportional to >Ji(k) 112 lk=O· We 
see that the quantity TJ 1 is finite. 

Thus, in the system under consideration, discrete 
levels are certainly formed in the forbidden band. 51 It is 
not difficult to see that this result is not connected with 
the very simple form taken above for the iso- energetic 
surfaces close to the extremum. 

As can be seen from (23), the eigenvalues of Eq. (22) 
are reckoned from the "random zero" v0 • Naturally, 
in all phenomena in which only the differences between 
electron levels in the crystal are important, this cir
cumstance plays no role, provided that the random field 
acting on the electrons and on the holes is one and the 
same. 61 Accordingly, it makes sense to talk of sharp 
boundaries between the states of the discrete and con
tinuous spectra. 

On the other hand, in the macroscopic system that 
we are considering, the inequality ar » 1 may refer to 
only a part of the sample. In this case, in the other 
parts the same energy value will correspond also to the 
continuous spectrum (in the thermodynamic limit, all 
these parts of the sample will be infinite). An example 
of such a force- field configuration is shown in the 
Figure. 

It is clear that in this sense we can speak of the co
existence of a continuous and a discrete spectrum, 
corresponding (in different parts of the sample) to the 
same charge-carrier energy. We note, however, that 
in this case also, the density of states is not continuous 
in the range of energies considered. Accordingly, these 
levels are non- conducting: if at absolute zero tempera
ture the Fermi level falls in the given region, then the 
static electrical conductivity of the substance will be 
equal to zero[6 ' 7 l. 

Our conclusion on the existence of a sharp energy 
boundary between the conducting and non- conducting 
states is in agreement with the assumptions of a num
ber of authors (cf., e.g.,[8- 10l), which were, however, 

4lThe function (31) may not be orthogonal to the eigenfunctions of 
the lower-lying discrete levels. To prove the existence theorem, this is 
of course, unimportant; however, it is not possible to calculate the 
density of states and the total number of states by this method. Below 
(Sec. 4), we shall estimate the total number of discrete levels by another 
method; this latter, however, has meaning only if we already know that 
the states under consideration exist. 

5lThe origin of the factor Yz in (27) is perfectly clear: in a Gaussian 
field, fluctuations with decrease and increase of potential energy are 
equally probable. 

6lThis condition, generally speaking, is not fulfilled when the field 
under consideration is caused by a deformation potential. 
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U(:r) 

L---------------------:r 
One of the possible configurations of a random field in which there 

is coexistence of a discrete and a continuous spectrum (obtained by ro
tation of the graph about the vertical axis indicated by the dashed line). 
The lengths L~> L2 and L3 must be made to tend to infinity. 

obtained by a different route. The approach taken above 
seems to be less bound up with hypotheses that are 
difficult to verify. 

We turn now to the question of the probability of 
localization of two electrons in one fluctuation well. We 
shall confine ourselves to the Hartree approximation, 
bearing in mind that the role of inter-electronic repul
sion is somewhat overestimated in this approximation; 
consequently, our conclusion on the possibility of forma
tion of the corresponding levels will also be valid in a 
more exact solution of the problem of the interaction of 
the electrons. In place of Eq. (22), we now have the 
Schrodinger equation with the Hamiltonian 

d& = 1: {T,+ U(x,)} + Vc(x, -x,). (34) 
t=1,2 

Here the index i labels the electrons, and the potential 
energy of the Coulomb interaction between them is de
noted by V c· Since the dimensions of the region of 
localization can be rather large, it is better to write the 
expression for V C with allowance for the screening: 

e' { I x, - x, I } Vc(x,-x,)= exp - ' , 
elx,- x,l r, 

where r 0 is the screening radius. The explicit expres
sion for r 0 depends on the mechanism and conditions of 
the screening and is not important for the following. 

We must now take the trial function 1/J in the form 
of a product of the functions (31). Then fgr the probabil
ity that a bound two-electron state arises, we again ob
tain formula (27), in which, however, we must replace 
1] 1 by 

rJ,={(uv'+ ::>-'''f(ur,J+Ivmlu-'1') [f dq'¥(2aq)(1+q')-'rv'. 

(35) 

Here 
= 1 - 1 [ 1 __!!!!____ 32y' 32y' ] 

j(y) 2(1+2y) + 1+2y + 5(1+2y) 2 + 5(1+2y)' . 
(36) 

For finite values of a and lvml, the quantity1] 2 is finite. 
We arrive at the same conclusions as in the case of the 
one-electron levels. Allowance for the Coulomb inter
action between the electrons weakens the effect of the 
random field, but does not eliminate it. 

It would also be possible to treat the problem of the 
formation of many-electron clusters in an analogous 
way: the corresponding probability turns out to be finite. 

4. THE CONCENTRATION OF DISCRETE ONE
ELECTRON LEVELS 

The exact calculation of the density of states and of 
the total number of discrete levels clearly requires 
rather far- reaching model assumptions. It is possible, 
however, to evaluate a lower bound for the total number 
of levels, by noting that among them there are also 
quasi- classical levels. The number v of the latter is 
given by the known expressionr11 J (here we use the usual 
units): 

(2m')'f, 
v = 3n'li' fdx[-U(x)]'''8[-U(x)]. (37) 

We need only average expression (37). That is easily 
done by means of formula (7). As we should expect, 
< v) turns out to be proportional to the volume n of the 
system; for the average concentration of levels, we 
obtain 

(38) 

It is convenient to rewrite the right- hand side of ( 38) in 
the form 

Nc(T') = 2(2nmkT')'1, / (2nll)', (39) 

where T* is the effective temperature, defined by this 
relation, and k is Boltzmann's constant. Comparing 
(38) and (39), we obtain 

T' = 0.231Jl,'''/k. 

The value of 1/!1 is determined by the properties of the 
given specific system. In particular, for a strongly 
alloyed semiconductor, it follows from formula (17) 
that 1/! 1 = 21Tnroe4 Z2 c-2 , For 1)!~ 12 = 0.05 eV, we obtain 
T* = 1.3 x 102 oK and 

where m0 is the free-electron mass. The total concen
tration of discrete levels exceeds (38), but is probably 
of the same order. We see that in" suL .ciently dis
ordered" substances, this concentration can be ex
tremely high. It is not excluded that precisely this 
circumstance fixes the position of the Fermi level in 
the sample, making it comparatively insensitive to fur
ther alloying. 7 l 

5. ONE-ELECTRON LEVELS IN A NON-GAUSSIAN 
FIELD 

In the case of a non- Gaussian field, we must start as 
before from formula ( 26). Instead of ( 27), however, 
formula (8) now gives 

(40) 

where 

c' = + [ <p, + f dk!ll(k)B(k)B( -k)], (41) 

F = E :if dk, ... dk,o(k, + ... +k,)!ll,(k,, ... , k,)B(k,) ... B(k,). (42) 
/;;-,;;.2 

7lThis idea is not new. The estimate given above only substantiates 
the ideas that have been stated in qualitative form by various authors. 
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The quantities a and Bare given as before by the formu
las (30). 

Choosing 1/!a{k) in the form (31) and proceeding as 
in Sec. 3, we can rewrite (40) in the form 

_ 1 1 +~ ds 
Q, = --- C_e-'"-'''' ~ c H [F] (43) 

2 2ni J S ~ n 2n 1 ' 
n;;..o 

where 

We see that the probability of the formation of localized 
states in the forbidden band turns out, generally speak
ing, to be finite, provided that 

1 +f~ dy _ ,~ [ 1 ~ (2'1•na'l,y)' ] 
I= --2 . -e • c,'+,H"+'' - ~~ < oo. 

m y 2a' l! 
-oo A;.O '""' (45) 

In fact, in the conditions indicated, the second term in 
the right- hand side of ( 43) is transformed to the integral 
I. (In the case when it diverges, it would not be per
missible to neglect the term as in the exponent in (43).) 
Generally speaking, I "'Y2, since the right- hand side of 
(45) contains the parameters ?;z.8 > 

In particular, the condition (45) is certainly fulfilled 
when the coefficients Cn and il>z are cut off at any finite 
values nand l, i.e., the series in formulas (8) and (10) 
become polynomials. 

It is obvious, a priori, that in random fields with a 
diverging value of lj; 1 , when the representation (8)-(12) 
is inapplicable, the probability of formation of discrete 
levels will also be non- zero. This, for example, is the 
situation in a random field of the "Lorentz" type. 

The author is extremely grateful to Academician 
I. M. Lifshits and Professor M. A. Krivoglaz for de
tailed discussion of the results and to Professor 
G. Lyuders for useful remarks on the problem treated 
in this article. 

8lof course, by definition of the coefficients cn, the integral I.;;; Y2. 
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