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It is well known[ll that the natural-oscillation spectrum of a plasma located in the field of a mono
chromatic wave depends on the amplitude of the applied microwave field. It is shown that by em
ploying amplitude modulation of an external microwave field, to which the plasma is transparent, 
oscillations can be excited parametrically whose frequency spectrum is determined by the field 
strength at the carrier frequency. Cases of weak and strong modulation are considered. The fre
quencies and field strengths are found for which either high-frequency, low-frequency, or coupled 
potential high- and low-frequency oscillations are excited. Since the carrier frequency of the 
modulated field exceeds the Langmuir frequency, the field can easily penetrate deep into the 
plasma. Consequently, modulated microwave signals can be employed for volume heating and 
plasma diagnostics. 

1. It was shown in[ 1l that a plasma placed in a homo
geneous monochromatic electric field of high frequency 
has natural-oscillation spectra that depend on the am
plitude of the applied field. A stabilizing effect of such 
a field on the plasma was also observed there. On the 
other hand, it is well known that if one of the parame
ters that determine the period of the oscillations of a 
linear system varies with a frequency that is an inte
ger multiple of the Langmuir-oscillation frequency, 
then parametric resonance is produced and the oscilla
tions in the system increase exponentiallyr2l. Thus, by 
amplitude-modulating a microwave field it is possible 
to excite parametrically natural plasma oscillations 
whose dispersion law is determined by the microwave 
field intensity at the carrier frequency. As shown in[ll, 
the greatest change takes place in the spectrum of the 
low-frequency ion oscillations. The latter circum
stance makes it possible to control the spectra of the 
excited oscillations by varying the intensity of the 
applied microwave field. 

It is shown below that by a suitable choice of the 
frequencies and intensities of the microwave fields it 
is possible to excite either high-frequency Langmuir 
oscillations or low-frequency ion oscillations, or else 
both. The values of the threshold field at which excita
tion of the oscillations begins are determined together 
with the maximum values of the growth increments of 
the perturbations. Since the carrier frequency of the 
modulated microwave field greatly exceeds the Lang
muir frequency WLe = ( 4rrne2 /m )112 , such a field is 
not limited by the skin effect and can readily penetrate 
deep into the interior of the plasma. The latter cir
cumstance makes it possible to use a modulated micro
wave field for volume heating of a plasma. On the other 
hand, the questions considered below can be of interest 
also for the diagnostics of a plasma situated in a 
strong high-frequency field. 

2. Let us consider a fully ionized plasma interacting 
with a homogeneous electric field 

p 

E(t) = 1: E1sin ro;t. 
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To find the spectrum of the natural oscillations of the 
plasma we can use a method developed inr 2 •3l. It is 
easily shown that such a spectrum is obtained from the 
condition for the existence of solutions of the following 
system of equations for the Fourier components of the 
electron and ion charge-density perturbations: 

00 p p 

p, (ro, k) =- R,(ro, k) L II 1-m, (a,) p, ( ro + 1: m,ro., k), 
m 0,m 1, ... ,mu=-oo s=O s=O 

(1) 

p,(ro, k) =- R,(ro, k) 1: IT lm, (a.) p,( ro + .t m,ro, k). 
m0,tn 1, . . ,mp=-oo s=O s=O 

Here Ra(w, k) = o~a(w, k)/l1 + o~a(w, k)], o~a(w, k) 
is the contribution of the particles of sort a to the 
linear dielectric constant of the plasma in the absence 
of a microwave field, Jzj is a Bessel function with 

index lj and argument 

a,= eE1k/ mro/ = kr.i, 

and e and m are the charge and mass of the electron. 
We note that the presence of collisions leads to heating 
of the plasma in the microwave field. We shall assume, 
however, that the processes considered by us evolve 
within times much shorter than the plasma-heating 
time in the unperturbed stateC4 l. 

We consider below the case when the microwave 
field is given by 

E ( t) = E, sin root +.E, sin ro+t + E, sin ro_t, 
(2) 

The carrier frequency w0 will be assumed to exceed 
greatly all the natural frequencies of the plasma oscil
lations (wo » WLe). 

In this case the system (1) takes the simpler form 

p,(ro, k) =- R,(ro, k) LA_,p,(ro + sro,, k), 

(3) 

p,(ro, k) =- R,(ro, k) 1: A,p,(ro + sro,, k) 



PARAMETRIC EXCITATION OF OSCILLATIONS 565 

A similar system of equations was investigated in 
detail in[2' 3 ' 5 ' 6l, Unlike in the cited papers, the Bessel 
functions are replaced here by the quantities An, which 
are even functions of the index 

A.= A-.= 1: J_._,.(a,)J.+,(a,)J,(a,). (4) 
k=-oo 

We confine ourselves henceforth to an analysis of the 
two most interesting cases of the time dependence of 
the field (2). In the first case a strong field Eo sin Wot 
combines with two weaker signals with frequencies w+ 
and w_ and with amplitudes E1 = E2 = aEo/2, forming 
an amplitude-modulated microwave field 

E(t) =E,(1 + acosw,t) sinw,t. (5) 

The coefficients An are calculated in this case with the 
aid of formula (4), in which we must put a 1 = a2 =a ao/ 2: 

A,,::::: J,(a,) + o(a'), A,= A_,= - 1haa,J,(a,) + o(a'), 

A,=A_,=o(a'), 
(6) 

etc. We consider also an example of strong modulation, 
when the time dependence of the microwave field is 
given by 

E(t) = E,sinw,t + E, sin (w, + w,)t, w, < Ctlo, (7) 

and the amplitudes of the fields Eo and E 1 can be 
comparable in magnitude. The coefficients An for 
such a time dependence of the field are given by 

A,=L.(a,)J.(a,). (8) 

3. Let us consider the excitation of high-frequency 
(I w I ;::; WLe) oscillations. It is seen from the system 
(3) that in the frequency region w 1 ;::; 2w Le / p, where 
pis an odd integer, only the Fourier components of the 
electron charge density Pe( w) and Pe( w- pw 1) corre
sponding to excitation of high-frequency Langmuir 
oscillations are not small. The condition for the 
solvability of the homogeneous system of equations for 
p e ( w) and p e ( w - pw 1 ) leads to the following dis per
sion equation (~ee[ 7J ): 

[ ~ , <ml] [ ) ~ A' R''"1] 1- R,(w) "-.J A.., R, 1- R..(w- pw, "-.J m+v , 

(9) 

where 

The right-hand side of (9) characterizes the coupling of 
two high-frequency fields in the field of the pump 
wave. It is easy to see that for a monochromatic wave 
having a frequency 2WLeiP, the right-hand side of (9) 
vanishes. In this case, as shown in [21, we obtain from 
(9) a spectrum of non-growing Langmuir plasma oscil
lations in an external monochromatic field. In our case, 
the right-hand side of (9) differs from zero. This fact 
is formally connected with the properties of the func
tions An, which, unlike Bessel functions, are even 
functions of the index. This property of Eq. (9) ensures 
the possibility of parametric excitation of high-fre
quency oscillations. 

We consider first the case of weak amplitude modu
lation of the microwave field (5). We confine ourselves 
to the first resonant region w 1;::; 2wLe ( p = 1 ). Under 
these conditions, the excitation of the oscillations be
gins at the smallest modulation depth, and furthermore 
the maximum possible value of the increment is 
reached. 

The threshold value of the depth of modulation a is 
determined by minimizing, with respect to the wave 
vectors, the right-hand side of the equation (see [7J) 

. [ m,lle/'(w'") ] 
Uthr = rmn 

m,a,J,(a,)l,(a,) 

where 

is the contribution of the electrons to the imaginary 
part of the linear dielectric constant, 

4"jf2n e'e/n, 1 rn, 
'Veff = n~-

3"jfm, T~.' r,.,, 

is the frequency of the electron-ion collisions 11 , 

(10) 

is the spectrum of the natural high-frequency oscilla
tions of the plasma in the microwave fieldfll. 

The threshold value of the depth of modulation is 
1 m, Veff 

athr=------, 
fmnx nl,, (t)L,• 

(11) 

fmax is the maximum value of the function 
a 0 J 0(a0)J 1(ao), which occurs at a= ao,max. The first 
and largest maximum, equal to 0.43, is attained by 
this function at a 0 ,max = 1.43. The oscillations excited 
thereby have a wavelength of the order of 

2n I ko ;? 2rrrn,V2ln <•lu I Veff 

and the cosine of the angle between the propagation 
direction and Eo is close to 

cos e, = 1.43 I k,r£. 

It is necessary here to satisfy the condition21 

(12) 

(13) 

(14) 

If the depth of modulation greatly exceeds (11) but 
remains less than unity, then the dissipative effects 
become negligible and the oscillation growth increment 
reaches the maximum possible value 

y,.,, = 0,7 awLil' m, I m,. (15) 

If the time dependence of the field is of the form (7), 
then the threshold value of the amplitude is Er 
= athrEo, where athr is given by (11 ). The oscillations 

Dwe neglect the influence of the microwave field on the particle
collision act. In a strong field (vE ll> vT0 ), however, such an influence 
may turn out to be appreciable [4 ]. 

2lThe results remain valid in the geometrical-optics approximation 
if the characteristic dimension of the plasma inhomogeneity greatly 
exceeds the wavelength of the excited oscillations. In this case relation 
( 14) defines the region of plasma density where buildup of oscillations 
takes place. 



566 Yu. M. ALIEV and D. ZYUNDER 

excited in this case in the region of the density values 
defined by (14) have a wavelength of the order of (12) 
and propagate at angles 6 0 to the direction of Eo (13 ). 
The maximum value of the increment is in this case 

= Wu 1/ m, ~ lm(a.)lm(a,)lm+t(ao)l,.+t(a,) 

y,.,. 2 f m, .. ~~ (2m+ 1)' 

4. Let us consider the excitation of low-frequency 
(I w I :5 WLi) oscillations. The analysis of the excita
tion of low-frequency oscillations is analogous in many 
respects to that given above. Thus, for weak amplitude 
modulation of the microwave field, the equation for the 
low-frequency oscillations is ( p = 1) 

x(ro)x(w- ro,) =(a~)', 

where 

x(ro) = 1 + lie,(w) + 1\e,(w) + [1- J.'(ao)]be,(ro)lle,(ro), 
~ = aolo(a.)J,(ao) [lle,(w) lle,(w- ro,)lie,(ro)lle,(ro- ro,)] Y•. 

(16) 

In this case the ion oscillations whose spectrum was 
investigated in[ll are excited. For oscillations having 
a phase velocity higher than the thermal velocity of the 
electrons we have 

w,,' = WL<'[i- Jo'(ao)] + 3k'[vT,' + v,'J.'], v,' = T, I m,. (17) 

For oscillations with a phase velocity exceeding VTi 
but smaller than VTe we have 

ro,.' = WL<2[1- Jo'(a,) I (1 + k'rv.')] + 3k'vT,'· (18) 

The threshold depth of modulation athr is obtained by 
minimizing with respect to the wave vectors, the right
hand side of the following equation 

(19) 

. 'lie.'' (w) [1 + (1- Jo')lie,'] + lie/'(w) [1 + (1- Jo') lie.''(ro)] I 
=mm • 

aolo (ao) J, (a,) lie,' (ro) lie.' (w) .... ,, 

For oscillations with a phase velocity larger than VTe, 
the threshold value of the modulation is in this case 

• {( •. )_1 [ 8vertwli(1+j~) 
<Xthr = mm aoJoh " 

(J)l 

1t WLeOh (1)1 r- 2 { 2 }] } + ----exp ----v 8 (kovu)a 8k~v~, . 

It is necessary to satisfy here the condition w 1 

= 2Wri(X, ko). 

(20) 

With increasing depth of modulation, the increment 
of the growing oscillations increases, reaching in the 
limit its maximum value 

a 
'Ymax = 2<pmaxW1• 

The first maximum of the function <Pmax = 0.54 is 
reached at aomax = 1.19. 

(21) 

Proceeding to consider the excitations of an oscilla
tion with a phase velocity smaller than the thermal 
velocity of the electrons but larger than the thermal 
velocity of the ions, we confine ourselves to an analysis 
of the case when the amplitude of the oscillations of the 
electron in the pump-wave field rE does not exceed 
the wavelength of the excited oscillations. Under these 
conditions [ 11 

2 = w ·' a.'l2 + k'rv,' 3k'v 2 

(!)" L• (1 + k'rv.') + "· (22) 

We confine ourselves further to the case of a noniso
thermal plasma (Te » Ti) and sufficiently weak 
microwave fields (a0 :$ krne>, when the frequency of 
the excited low-frequency oscillations does not exceed 
greatly the ion-acoustic frequency. Assuming, in addi
tion, that the condition 

(23) 

is satisfied and neglecting the contribution made to the 
damping of the low-frequency waves by the Cerenkov 
effect on the ions, we obtain the following expression 
for the threshold modulation upon excitation of long
wave (krnt < 1) low-frequency oscillations: 

rv.' [,;;> ( m, )''• + 16 T, V;; 1 Gthr = -, , .. n - --- . 
Tg mi 5 Te Cth 

a ( r., ) ' '\'max=- -.- Wt• 
8 rDe 

(24) 

The wavelength of the oscillations that grow with this 
increment is determined from the condition 

w1 =2w,,(k,). (26) 

With increasing depth of modulation, the picture of the 
oscillation excitation becomes more complicated. In 
the limit of weak pump fields (rE « rne), the analysis 
of parametric resonance at a large modulation depth is 
similar to that given above for excitation of high-fre
quency oscillations. 

5. We consider, finally, the excitation of coupled 
low-frequency and high-frequency oscillations. In the 
case of a weakly-modulated microwave field, the 
parametric buildup of coupled oscillations of high and 
low frequency takes place at the modulation frequencies 
w1 >::::~ WLe· Just as in the case of a monochromatic pump 
waver 81 , a periodic as well as an aperiodic instability 
can set in here. To excite periodic long-wave oscilla
tions in a nonisothermal plasma (23) with not too high 
a collision frequency 

(27) 

the threshold depth of modulation athr is 

z _ 16 ( 1 +rv.')'-.J-2 (m,)''''Yeff l WL, 
athr- - -, r n- -- n-. 

2 rE mi WL11 Veff 

(28) 

The wavelengths of the oscillations excited thereby are 
of the order of 2u/ko = 2urne ..J 2 ln (wLel"eff). To 
find the maximum values of the increment we can use 
the following equation, which can readily be obtained 
from the system (3 i 2 ' 31 : 

1 = R,(w) L An'R,(w + nro,). 

At a low depth of modulation we find with the aid of 
(29) that the maximum increment 

(29) 

(30) 
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is possessed by periodic oscillations with wave vector 
kmax[ 6J 

propagating at an angle 8 0 to the direction of Eo: 

(32) 

For pump fields in the form (7), the maximum incre
ment is 

(33) 

In the particular case of equal amplitudes of the fields 
Eo and E 1, we obtain from (33) 

( m l'27) 'I• 
'\'mox = (0.58)'hwu n:, 3z · 

(34) 

Here, as in the derivation of (32), we took into the 
account the fact that the maximum of the Bessel func
tion J 1(x) :::l 0.58 is attained at an argument equal to 
X :::l 1.8. 

From a comparison of (30) and (34) we can conclude 
that the maximum increment increases with increasing 
depth of modulation, reaching the highest value (34). 
Finally, we note that the maximum increments for the 

development of aperiodic instabilityr2l are close to the 
values (24) and (28). 
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1 Yu. M. Aliev and V. P. Silin, Zh. Eksp. Teor. Fiz. 
48, 901 (1965) [Sov. Phys.-JETP 21, 601 (1965)]. 

2 V. P. Silin, ibid. 48, 1679 (1965) L21, 1127 (1965)]. 
3 Yu. M. Aliev, V. P. SHin, and H. Watson, ibid. 50, 

943 (1966) [23, 626 (1966)]. 
4 V. P. Silin, ibid. 47, 2254 (1964) [20, 1510 (1965)]. 
5 V. P. SHin, A survey of phenomena in ionized 

gases, IAEA, Vienna, 1968, p. 205-237. 
6 N. E. Andreev, A. Yu. Kiri'i, and V. P. Silin, Izv. 

Vuzov, Radiofizika 13, 1321 (1970). 
7 Yu. M. Aliev and D. Zyunder, Zh. Eksp. Teor. Fiz. 

57, 1324 (1969) [Sov. Phys.-JETP 30, 718 (1970)]. 
8 N. E. Andreev, A. Yu. Kiril, and V. P. Silin, ibid. 

57, 1024 (1969) [30, 559 (1970)]. 

Translated by J. G. Adashko 
106 


