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A method is proposed for summing the perturbation theory series which describe the probability for 
multiphoton ionization of atoms. The method is based on the utilization of the Green's function of an 
optical electron in a complex atom, this function being constructed within the framework of the approx­
imation of the method of the quantum defect. Numerical calculations are carried out for three-photon 
ionization by linearly- and circularly-polarized light of the ground and metastable levels in hydrogen 
and of the metastable singlet and triplet levels in helium. 

1. INTRODUCTION 

AT the present time multiphoton ionization of atoms 
is being intensively investigated both theoretically as 
well as experimentally (see the review article [11 ). In 
this connection it turns out that the probability of the 
process is essentially determined by the structure of 
the particular atom involved. [2• 31 This is easy to under­
stand physically since for external electromagnetic 
fields which are smaller than the intratomic field, 
quasi-stationary excited states exist in the atom, and 
therefore the cross section for multiphoton ionization 
has a characteristic resonance structure. The internal 
structure of the atom is taken into account naturally 
during the calculation of the probability for the process 
according to perturbation theory. 

Such calculations of the cross section for multipho­
ton ionization of the hydrogen atom, carried out in ar­
ticles c4• 51 , are widely known. In these articles the 
Schwartz-Tiemann method eel is used to calculate the 
amplitude for the process by means of numerical in­
tegration of a system of inhomogeneous differential 
equations of the first order. However, within the 
framework of this method the calculations turn out to 
be rather complicated, which may be one of the reasons 
for the substantial discrepancy between the results of 
article [51 and the results obtained by other authors. [?l 

A number of approximate methods have been pro­
posed for calculating the ionization of complex ions; in 
these methods an averaging of the energy denomina­
tors cal or of the numerators (of the oscillator strengths) 
col was carried out in the infinite repeated series of 
perturbation theory. Bebb c101 calculated the indicated 
series for alkali atoms by summing some of the "prin­
cipal" terms. In this connection the oscillator strengths 
were determined in the Coulomb approximation of Bates 
and Damgaard. 

We have previously proposed a method for calculat­
ing the two-photon ionization of hydrogen, which is based 
on the use of the Coulomb Green's function; our method 
gave the possibility to derive an analytic expression for 
the amplitude for this process. cuJ In the present article 
this method is generalized to the case of multiphoton 
ionization of complex atoms by using the Green's func­
tion of an optical electron in the quantum defect method 
(QDM), which is constructed in c121 , instead of the Cou-

lomb Green's function. Such an approach makes it pos­
sible to sum the infinite series of perturbation theory, 
including the continuous spectrum. Here the actual 
spectrum of the atom is taken into account exactly {the 
poles of the Green's function agree with the experimen­
tal spectrum), and the radial part of the Green's func­
tion is constructed out of regular and irregular Cou­
lomb functions since, as is well known, in electric di­
pole transitions the regions far away from the atomic 
core give the major contributions to the integrals, and 
far away from the core the single.-particle potential of 
the optical electron can be regarded as a Coulomb po­
tential. 

Thus, in the proposed work a consistent method of 
calculating multiphoton ionization is constructed within 
the framework of the QDM, which satisfactorily de­
scribes single-photon processes in atoms; the method 
is based on a single assumption about the weakness of 
the external electromagnetic field in comparison with 
the intratomic field. A systematic comparison of the 
predictions of the theory with the experimental data 
enables us to indicate the limits of applicability of the 
QDM for the calculation of multiphoton atomic pro­
cesses. In addition, this enables us to determine the 
critical fields at which perturbation theory ceases to 
work. The latter is especially important since the 
question of the applicability of perturbation theory to 
multiphoton ionization processes has been discussed 
in the literature for a long time. 

2. THE PROBABILITY FOR MULTIPHOTON 
IONIZATION 

To the first nonvanishing order in perturbation the­
ory, the probability for N-photon ionization has the fol­
lowing form in the nonrelativistic dipole approxima­
tion:u 

(1) 

where 

K:!" (oo) = <II (erN) GE,+(N-t)o(rN, rN-t) (erN_,) ... G,.,+.(r,, r,) (er,) I i), 

I i) = R.,, (r) Y,,m, (r), 

1lThe atomic system of units is used in this article. 
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LM 

w and £denote the frequency and polarization of the 
incident photons; F denotes the photon flux in units of 
cm-2 sec; F0 = cj211a3 = 3.22 x 1034 cm-2 sec; a is the 
Bohr radius; n, li, mi are the quantum numbers of the 
electron in the initial state; RL{k; r), 7JL, k are the 
radial function, phase, and wave vector of the outgoing 
electron; GE(r, r') is the Green's function of the opti­
cal electron, which is determined as the following 
summation over the complete set of single-particle 
intermediate states: 

G ( ') = \"1 (rp.) (P,I r') . 
e r,r ./...; E,-E 

' 
The function GE(r, r') was constructed in the approxi­
mation of the QDM in [121 , and for E > 0 it has the form 

Ge(r,r')= L:g,(E; r,r')Y,m(r)Y1m'(r'), (2) 

lm 

where 

T)1 =a,+ /l,, a,= arg f(l + 1- v), 

oz denotes the phase of the Z-th partial wave associated 
with the non-Coulomb part of the potential, 11 = (- 2Er1/2, 
W is the Whittaker function, and r >(r <) denotes the 
larger (smaller) of the quantities r and r '. 

Let us use the relation between the complex functions 
Wand the Coulomb wave functions Fz(k; r) and Gz(k; r):[131 

W ±v.l+'i> ( ± ~) = (± i)'+t e""•,+•i"[F1(k; r) + iG1(k; r) ], 

k = i/v = 12E. 

This makes it possible to derive explicit expressions for 
the real and imaginary parts of the function gz: 

Img1(E; r,r') = -.-k2 , {F,(k; r)cos/l1(E)+ G,(k; r)sin/l,(E)} · 
rr 

· {F,(k; r') cos /l1(E) + G,(k; r')sin ME)}, (3) 

-2 
Reg,(E; r,r')=-{F,(k; r<)G1(k; r>)-sin2 /l1(E) [F1(k; r)G,(k; r') 

krr' 

+ G1(k; r)F1(k; r')]+ 1/ 2 sin2/l1(E) [G1(k; r)G,(k; r') 

-F,(k; r)F,(k; r')Jt. (4) 

Expression (3) can be rewritten in the form 

Im g1 (E; r, r') = -nR,(k; r)R,(k; r'), 

where 

(5) 

is the radial wave function of the continuous .spectrum 
in the QDM, normalized on the energy scale, and having 
the asymptotic form 

1/2' ( ln2kr Ln) RL(k; r)-+ v-sin kr+--+llL+aL-- . 
,~00 nk k 2 

With the aid of the derived formulas one can easily 
verify that the optical theorem is satisfied in the pro­
posed approach. In fact, the amplitude for the scatter­
ing of light at zero angle is given by 

/(0) = (aw)'a.(w), 

where 

denotes the polarizability of the n-th atomic level and 
a = ?'137 • Since the Green's function GE is real for E 
< 0, then for the case under consideration w > lEn I 
and by using Eq. (5) we obtain the optical theorem: 

n(aw)' \"1 I Joo I' aw Im/(0)= 3 (2l+t) .~...;1m-. r'R.1(r)RL(k;r)dr =4;"a.1(E.+w), 
.... =,±1 ll 

where anz(En + w) denotes the cross section for one­
photon ionization, lmax = max (L, l). In the QDM ap­
proximation the Green's function gz(E; r, r') has the 
following form [121 for E < 0: 

, v [ f(l+1-v) M (2rL)w ( 2r>) 
g1(E; r, r) =-;:;;- 1'( 21 + 2) '·'+'/, -v- •.1+ ~v-

+1'(1+1-v) sinn(J.t,(E)+l) W,,,+'/,(~)w .. ,+ (~)]. 
1'(1+1+v) sinrt(J.t,(E)+v) v v 

where JJ.z(E) is the quantum defect, interpolated from 
the actual spectrum of the atom: 

E.,= - 1!2[n- J.t,(E.,)]-', 

where M11 ,z.t is the Whittaker function. 
Now for simplicity we shall consider the case of 

ionization of the electron from an s-state. For com­
pletely polarized radiation 

(8) 

er = r1'/,nY,m (r), (9) 

where m = 0 corresponds to linear polarization (along 
the z axis) and m = +1 (-1) corresponds to right-hand 
(left-hand) circular polarization. Having substituted 
expressions (2) and (9) into the expression for K1r>(w ), 
one can perform the integration over the angular vari­
ables. Substituting the result into (1) and then integrat­
ing over the angles of the outgoing electron, we obtain 
the following formulas: 

a) for linearly-polarized light 

w<N; 1> (w) - 2n (w F )N "" 1 Lo , 1N-•' .1,o • 
n - Fo .<::! , '2-L + 1 (C,N-•"o C 'N-ao1o ... C1010) 

Llt···lN-?.l1 ' ••• lN_2 

LJ ~~-20 l '0 
x(C,~-•o"c,N. 010 ... C1o10l' TLIN-•· ,,,r· . , 

-3 LIN-z.lo' (10) 

b) for circularly-polarized light 

(N;<) = ( _!__) N Nl I T -1 I' w. (w) 2n w F, (2N+ 1)!! NN ·', 
(11) 

where 

Tu ,v_, .. ,,, = (RLjrNg, .v-z (E, + (N- 1) w; rN, rN_,) ... 

... g,, (E, + 2w; r,, r2) r,g, (E, + w; r,, r,) r,j n). (12) 

Only one matrix element T, corresponding to a step-by­
step increase of the orbital angular momentum of the 
electron by unity associated with the absorption of each 
quantum, appears in formula (11). One can easily under-
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stand this if it is taken into consideration that during the 
absorption of each circularly-polarized photon the mag­
netic quantum number of the electron must change by 
+ 1 for right-hand polarized light and by - 1 for left-hand 
polarized light. 

In what follows it is convenient to represent w in the 
form 

(13) 

where the factor B determines the order of magnitude 
of the ionization probability, and the quantity rJ depends 
on the structure of the excited states of the atom, and 
In denotes the ionization potential of the n-th level in 
atomic units. The possibility of separating out the fac­
tor B from the general expression for w is based on a 
rough estimate of the matrix elements K£fl(w ). 

3. THREE-PHOTON IONIZATION OF HYDROGEN 
AND HELIUM 

Now let us apply the formulas derived above in order 
to calculate the three-photon ionization of hydrogen and 
helium. In the case of the absorption of three photons, 
expressions (10) and (11) take the form 

w~> = 2n( wF)'{~ [r" +i.r,]' + ~ T,'} 
F, 27 5 175 ' 

<'> ( wF) 3 2 2 
Wn = 2n F, 35 T32 • 

1. Hydrogen. For the pure Coulomb potential (oz 
= 0, J.ll = 0) gz(E; r, r') goes over into the exact Green's 
function for the hydrogen atom. Using this Green's func­
tion one can obtain an analytic expression for the cross 
section for three-photon ionization, in the same way that 
this is done in article [UJ in the case of two-photon ioni­
zation. However, the obtained expressions turn out to 
be rather cumbersome and inconvenient for numerical 
analysis. Therefore we use an algorithm, common for 
all atoms, for calculating the matrix elements of T on 
an electronic computer, where the details of this algo­
rithm are described in [141 . 

The curves of YJ as a function of w for the ground 
state of hydrogen are shown in Fig. 1; here B1s = 0.833 
x 10-82 F3 sec -1. Our results are in satisfactory agree­
ment with the results[sJ in the range of frequencies up 
to the first resonance; however, at larger frequencies 
the results differ by a factor of several times. 

The cross section for three-photon ionization of the 
metastable 2s-state of hydrogen is shown in Fig. 2; 
B2s = 1.30 x 10-8° F 3 sec -1. It is interesting to note that 
the 2s-state of hydrogen can be ionized by two quanta 
of a ruby laser (w = 14402.2 em -1) or by three quanta 
of a neodymium laser (w = 9433 cm-1). The cross sec­
tions of these processes turn out to be equal when the 
flux F ~ 1031 em -2 sec -1. 

2. Helium. The wave functions I i) and I f), con­
structed according to the quantum defect method, were 
used to calculate YJ for the ionization of He. In the cal­
culation of the wave function Rz(k; r) of the continuous 
spectrum according to formula (6), the nonregular func­
tion Gz(k; r) was multiplied by the cutoff factor 

(1- e-10rjl(l +1))21 +1, this choice being proposed 

l\ I 
I I 

0, 

J 1\ i /,I I I _j v !--\ tJ I 
I -- //' ------ ' I J 

, n·2 n·J~~r !n·~ 

I 
I 

O,O J7000 J§OOO ~fOUO 4JOOO muu noo muu JftJOO 
w,cm· 1 

FIG. I. The dimensionless parameter 17 determining the probability 
for three-photon ionization of the ground state of hydrogen (see Eq. 
(13)). The solid curve is for the case of linearly-polarized light, and the 
dashed curve is for the case of circularly-polarized light. The dot-dashed 
lines indicate the positions of the two-photon resonances. 

FIG. 2. Three-photon ionization of the 2s-level of hydrogen. The 
notation is the same as in Fig. I. 

by Seaton [151 in order to obtain the best agreement of 
the QDM wave functions with the Hartree-Fock orbitals. 
The phases oz of the final state wave functions were 
calculated according to the well-known formula oz(E) 
= 11 J.Lz(E) (see u 51 ), where J.Lz(E) is the quantum defect, 
extrapolated into the region E > 0 according to the 
actual spectrum of the helium atom. [161 A graph show­
ing the dependence YJ (w) for the triplet metastable state 
of He is shown on Fig. 3; B23S1 = 0.927 x 10-8° F3sec-1. 

The dependence YJ ( w) for the singlet metastable state 
of He is shown on Fig. 4; B21s0 = 1.11 x 10-8° F3 sec -1. 
As already mentioned, for circularly-polarized light 
the probability of ionization is determined by the single 
matrix element T 32, which does not contain the pole 
terms corresponding to intermediate two-photon reso­
nances in the s-states, which is clear from the behav­
ior of the curves rJ (Cl(w) shown in Figs. 3 and 4. 

In the case of the hydrogen atom, the spectrum of 
the s-states coincides with the spectrum of the d­
states; therefore the resonances TJ <c l and TJ <ll also 
coincide, with the exception of the resonance associ­
ated with n = 2 for the ionization of the ground state 
of hydrogen (see Fig. 1). 

It is not difficult to verify that in each interval be­
tween the poles, the matrix element T 32 has different 
signs at the ends of the interval; therefore a point w0 

exists inside the interval, at which T32(w0 ) = 0. Thus, 
for circularly-polarized light there are frequencies 
for which w<Cl(w) = 0. However, in the case of linearly-



518 Z ON, MAN AKOV, and RAPOPORT 

11:r I 
fo{j rJ; -- IPS 

! 
I I 

10 ~~ I Iii 0 i 

: 
\ 

I /jj I~ 

l \; 
I ---- Ji~ vi\\ 

10 

I "' v v I I\ t/i I 

' I I l l 17 I I I 
I u,o 

IJ400 IJ!DD 14200 14§00 IJODP IJWJD IJ!DD 182DD IPIDP 

FIG. 3. Three-photon ionization of the 23 S1-level of helium. The 
notation is the same as in Fig. I. 
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FIG. 4. Three-photon ionization of the 21S0 -level of helium. The 
notation is the same as in Fig. I. 

polarized light the probability is represented by the 
sum of the squares of two terms, which vanish at dif­
ferent frequencies; therefore w<l> does not vanish. 

At the frequency of a ruby laser 

w~~1. =3.09·10-''F' sec-\ w~!.t=3.30·10-"F' sec-1. 

The increase of w~iSo by three orders of magnitude 

in comparison with w~1Js1 is associated with the fact 

that the energy of two quanta from a ruby laser is 
close to the 61S0-21S0 transition energy in the He atom 
(the frequency difference is :S 30 em -1). For the reduc­
tion of this difference it is necessary to take into ac­
count the shift and broadening of the 21S0 and 61S0 lev­
els in the presence of the field. 

The shift of the 21S0 level has been calculated by the 
method described in [l4J: a 21S

0 
= 270 atomic units. The 

shift and broadening of the 61S0 level are determined by 
the real and imaginary parts of the polarizability a 61s0 : 

Re (!J.E) = - 1/,IS' Rea, Im (!J.E) = - 1/ 41S' Im a. 

The value of Re a 61s0 was calculated according to for­

mulas (7) and (4), and the 1m a 61So is expressed in 
terms of the cross section for one-photon ionization, 
given by Eq. (8). For the frequency corresponding to 
a ruby laser 

Re a,•s, = 300 a.u., Im ao's, = 35 a.u. 

Therefore, for field intensities :S 106 V /em the shift and 
broadening of the levels cannot substantially change the 
probability for the process. 

The experimental value of the upper limit for the 
probability of three-photon ionization of metastable 
helium for a field intensity 0 = 2 x 105 V /em, which 
was obtained in article [l7 J, is equal to 4. 7 x 10-71 
F3 sec -1. In this work the total flux of ions produced 
by ionization of singlet and triplet atoms was measured. 
In order to make a quantitative comparison of theory 
with experiment, further experimental investigation of 
the three-photon ionization of metastable helium is of 
interest. 

In conclusion we note that a calculation of the four­
photon ionization of the ground state of the potassium 
atom has been carried out by the method proposed by 
one of the authors of the present article. The results 
of the calculation together with the experimental find­
ings are discussed in detail in article [laJ; here we 
only note that the theoretical value for the probability 
of the process is within the limits of the experimental 
error. 

The authors thank I. Bakos, G. A. Delone, and N. B. 
Delone for helpful discussions. 

1N. B. Delone and L. V. Keldysh, Preprint No. 11, 
FIAN, 1970. 

2 N. B. Delone and G. A. Delone, Zh. Eksp. Teor. 
Fiz. 54, 1067 (1968) (Sov. Phys.-JETP 27, 570 (1968)]. 

3 G. Baravian, R. Benattar, J. Bretagne, J. L. Godart, 
and G. Sultan, Appl. Phys. Letters 16, 162 (1970). 

4Wolfgang Zernik, Phys. Rev. 135, A51 (1964). 
5Y. Gontier and M. Trahin, Phys. Rev.172, 83 (1968). 
6 Charles Schwartz and J. J. Tiemann, Ann. Phys. 

(N.Y.) 6, 178 (1959). 
7 Wolfgang Zernik, Phys. Rev. 176, 420 (1968); F. T. 

Chan and C. L. Tang, Phys. Rev. 185, 42 (1969). 
8 H. Barry Bebb and Albert Gold, Phys. Rev. 143, 1 

(1966). 
9 V. M. Morton, Proc. Phys. Soc. (London) 92, 301 

(1967). 
10 H. Barry Bebb, Phys. Rev. 149, 25 (1966); 153, 23 

(1967). 
11 L. P. Rapoport, B. A. Zon, and N. L. Manakov, 

Zh. Eksp. Teor. Fiz. 56, 400 (1969) (Sov. Phys.-JETP 
29, 220 (1969)]. 

12 B. A. Zon, N. L. Manakov, and L. P. Rapoport, 
Dokl. Akad. Nauk SSSR 188, 560 (1969) (Sov. Phys.­
Doklady 14, 904 (1970)]. 

13 L. Curtiss, Coulomb Wave Functions, (Russ. 
transl.) VTs Akad. Nauk SSSR, 1969. 

14 V. A. Davydkin, B. A. Zon, N. L. Manakov, and 
L. P. Rapoport, Zh. Eksp. Teor. Fiz. 60, 124 (1971) 
(Sov. Phys.-JETP 33, 70 (1971)]. 

15 M. Seaton, Monthly Not. Roy. Astr. Soc. 118, 117 
(1958); A. Burgess and M. Seaton, Monthly Not. Roy. 
Astr. Soc. 120, 191 (1960). 



PERTURBATION THEORY FOR THE MULTIPHOTON IONIZATION OF ATOMS 519 

16 Atomic Energy Levels, edited by C. E. Moore, Nat. 
Bur. std. (U.S.) Circ. No. 467 (U.S. Government Print­
ing Office, Washington, D. C., 1949). 

17 I. Bakos, I. Kantor, and A. Kish, ZhETF Pis. Red. 
12, 371 (1970) [JETP Lett. 12, 255 (1970)]. 

18 G. A. Delone, N. B. Delone, N. L. Manakov, and 
G. A. Piskova, Zh. Eksp. Teor. Fiz., in press. 

Translated by H. H. Nickle 
98 


