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The theoretical scheme previously developed for describing a many-electron and many-ion system is 
applied for the first time to the analysis of a large number of properties of diatomic metals, particu­
larly magnesium. The only unknown quantity required for the calculations, viz., the electron-ion 
interaction pseudopotential, is determined from the long-wave characteristics (two equilibrium con­
ditions, shear modulus, and optical frequency for q = 0). The remaining quantities can then be found 
without free parameters and can be employed to verify the theory. These quantities, viz., the four re­
maining elastic moduli, binding energy, phonon spectrum throughout the whole phase volume, and the 
equation of state, are very close to those found experimentally (with an accuracy to within 1-5%). 
The equation of state of a non-monatomic crystal is found theoretically for the first time. The role of 
terms of third order in the pseudopotential is analyzed in all cases and found to be considerable. The 
results obtained show that a large number of metal properties may be described quantitatively. 

1. INTRODUCTION 

WE have developed in earlier papers[1- 31 a many-par­
ticle theory of metals a characteristic feature of which 
was consistent description of the effective interaction 
between the ions via the conduction electrons, leading 
in particular to allowance for interionic forces of the 
unpaired type. The physical quantities, such as the 
energy of the metal, the pressure, the elastic moduli, 
etc., are presented in the form of a series in powers of 
the effective electron-ion interaction (pseudopotential), 
which actually reduces to expansion in powers of the 
small parameter VKIEF (VK is the Fourier component 
of the pseudopotential for a momentum equal to the 
reciprocal-lattice vector K). The electron-electron 
interaction is taken into account in each term of this 
series and enters the theory in the form of universal 
multipoles that depend only on the density of the elec­
tron fluid and do not depend on the concrete properties 
of the metal. 

The developed theoretical scheme is free, to a con­
siderable degree, of the principal difficulties encoun­
tered by both the traditional band theory of metals (see, 
for example, l4 J) and the modern theory of metals, which 
uses the pseudopotential method (see, for example, (SJ ). 

In the band scheme, the difficulty lies in the need for 
correct allowance for the interaction between the elec­
trons, as obtained in the single-electron approximation. 
The corresponding wave functions ("Bloch functions") 
vary concretely from metal to metal, and their use for 
the calculation of the interaction energy entails great 
difficulties. As a rule, the Bloch functions are replaced 
by plane waves in this case in the calculations, but the 
accuracy of this approximation cannot be estimated in 
practice, much less improved. At the same time, this 
interaction makes an appreciable contribution to the 
structure-dependent part of the energy, which is of pre­
cisely of greatest interest. 

In the standard pseudo-potential approach, the 
structure-dependent part of the energy is written in the 
form of the paired interaction energy of the ionsl 5l or 

"neutral pseudoatoms"l6 l. This approximation, which 
has maximum simplicity, was used for the analysis of 
the binding energy, the elastic moduli, and phonons (see, 
for example, (!HlJ) in the simplest metals. The confine­
ment to only paired forces of interion interaction, how­
ever, made it possible in most cases to claim only 
qualitative agreement with experiment. The only excep­
tions are alkali metals, in which the unpaired interac­
tion is anomalously weak (see the detailed discussion of 
alkali metals inl 121 ). 

We note that the usual methods in which pseudopoten­
tials are usedl 5 J are from the very outset single-parti­
cle methods, and therefore do not make it possible in 
principle to include consistently the unpaired indirect 
interion interaction via the conduction electrons. 

In the many-particle theory[l- 3 J , the Coulomb inter­
action between the electrons and the interaction between 
the ions are taken into account simultaneously. In par­
ticular, the unpaired interaction appears in natural 
fashion in the terms of third and higher orders in the 
electron-ion potential. (The paired interaction appears 
already in the second-order terms.) 

Allowance for the terms corresponding to the un­
paired interaction turns out to be quite important both 
from the point of view of the formal theory and for a 
quantitative analysis of the properties of a metal. Their 
fundamental role was demonstrated in[3 ' 131 , where it 
was shown that a number of quantities, for example 
longitudinal sound, are determined incorrectly in the 
paired approximation, causing an error even in the 
terms ~ (V:KIE F) 2• Explicit allowance for the terms of 
third and fourth order in the pseudopotential has made 
it possible to eliminate the fundamental contradictions 
existing in metal theory. 

As to a consistent quantitative analysis of the proper­
ties of the metal, it was precisely to this question that 
the present paper is devoted. 

We followed two purposes. First, within the frame­
work of the same scheme, using the same effective 
electron-ion potential and involving no additional param­
eters, we aimed at analyzing a wide class of properties 
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of static and oscillating metal lattices. We investigated 
the following properties: binding energy, elastic moduli, 
their dependence on the pressure, the equation of state, 
the binding energy and stability of different competing 
modifications, and also the phonon spectrum for a num­
ber of symmetrical directions of the wave vector. 

In all the calculations we included terms of third 
order in the pseuctopotential, since it is these that are 
of particular importance and are singled out because of 
the appreciable cancellation of the contributions from 
the second-order terms and from tbe ion lattice[2l. 
(Terms of higher orders are much less important in 
most cases, and their relative magnitude varies from 
metal to metal.) A quantitative analysis of the role of 
the third-order terms in the pseudopotential and of their 
contribution to the entire aggregate of physical quanti­
ties was the second purpose of this investigation. (A 
preliminary analysis of the contribution of E< 3> to some 
quantities was carried out in[l4J for metallic tin.) 

The entire analysis is carried out with metallic mag­
nesium as an example. The presence of a complicated 
crystal structure (hexagonal with two atoms per unit 
cell) makes it possible to compare the theory with ex­
periment for a large number of quantities (five elastic 
moduli, six phonon branches, etc.). 

On the other hand, magnesium is also convenient be­
cause in it, effects of nonlocality in the scattering of an 
electron by an ion are apparently small [151 , making it 
possible to use a purely local model pseudopotential and 
to avoid complications that have no bearing on the pres­
ent problem. 

2. TOTAL ENERGY OF METAL SYSTEM 

The starting point for the determination of all the 
quantities in a metal is the expression for the energy of 
the ground state of the electron system in the field of 
the "fastened" ions (see[1' 2' 13 l): 

E=E,+E.,, 

E, = E<'l + El'l + E<'l + E<-'1 + ... 

(2.1) 

(2.2) 

Here Ei is the electrostatic energy of pointlike ions 
placed in a neutralizing homogeneous charge, and Ee is 
the electron energy, which is sought in the form of an 
expansion in powers of the pseudopotential of the elec­
tron-ion interaction v~ (all the quantities are referred 
to one atom). Here E < 1 is the energy of the interacting 
homogeneous electron gas, and was calculated by the 
Nozieres-Pines approximation[16 l. 

For the contributions to the energy from the first­
and second-order terms in the pseudopotential, we have 
the following expressions (for details see[13 ' 12 J ): 

E<'l = bZ I Q,; (2.3) 

E<'l =-~ ~ I VKI' n(K) IS(K) I'· (2.4) 
2 ~ e(K) 

K,oO 

Here Uo is the volume per atom, S(K) is a structure fac­
tor, and b is the non-Coulomb part of the Fourier com­
ponent of the pseudopotential as q- 0: 

4nZe' b 
v.~,=---+-q'Q, Q,. (2.5) 

The polarization operator ll (q) and the dielectric con­
stant E(q) = 1 + 47Te 2q-2ll(q) are approximated in the sense 
of Hubbard[17l, and to ensure a self-consistent scheme 
(see[ 131 ), we used the condition ll(O) = n6 K< 0>, where K <U> 
is the compressibility of the homogeneous electron gas 
(for details see [121). 

The expression for E <3> can be written in the 
form [1' 131 

E<'l = Q, ~, VKYK,VK, S(K,)S(K,)S(K,) 
..::..,; e(K,) e(K,) e(K,) 

K;,K2,K3*0 

X A<'>(K,K,,K,)~(K +K,+ K,), 

(2.6) 

where A is a delta function describing the momentum 
conservation law. 

Here A< 3>(q1, q2, q3) is an irreducible "three-pole" 
containing the sum of all the diagrams with three lines 
of the external field and an arbitrary number of lines 
of the electron-electron interaction. If one of the mo­
menta is equal to zero, the limiting values of this three­
pole can be obtained from the exact relation[3J, but to 
calculate the energy (2.6) it is necessary to know 
A< 31 (q1, q2, q3) in the entire momentum region. We have 
used for this purpose an approximation corresponding 
to inclusion of a simple loop diagram([1' 2l) and corre­
sponding to the self-consistent-field approximation for 
E<3>: 

(') _ 2m' qR' { ~ 12kF + qm I A (q,q,,q,)- 3M,- ~cos9mln 2k _ 
"Jt q,q,q, m F qm 

-~[lni(1-AA)/(1+AA)I for kF/qR<1]} 
2 arctg ~A for kF/qR > 1 . (2. 7) 

Here 

A= q,q,q,[i- 1 q,'+q,'+q,']-'= sin91 sin92 sin93 

(2kF)' 2 (2kF)' x'-x(1+cos9,cos92 cos9,) 
A= l'li- x'l, X= kF/ qR, cos lh = -q,qm I jq,llqm I. 

qR is the radius of the circle inscribed in the triangle 
with sides q1, q2, and q 3, while kF is the Fermi momen­
tum. Tbe branch 0:::: tan-1x :s 'II' was chosen in (2. 7). 

This expression was obtained by direct integration of 
the contribution from a ring diagram (see[1l), and the 
details of its calculation will be published separately. 
A similar expression was obtained in[1aJ in connection 
with an analysis of the effective one-electron Hamilton­
ian. 

3. ELASTIC MODULI 

Knowing the expression for the energy of the metal 
in the form (2.1)-(2: 7), we can deter~ine the olastic 
moduli Cik by using the method of homogeneous static 
deformation. In the case of a metal, this method has a 
significant advantage over the dynamic determination, 
which uses the so-called long-wave method, i.e., the 
determination of the elastic moduli from the sound ob­
tained within the 'framework of the vibrational problem. 
Indeed, as shown in[13 l, although both methods give the 
same final result, the determination of the elastic 
moduli with the same accuracy makes it necessary in 
the long-wave method to take into account terms of 
higher order in the expansion in powers of the pseudo­
potential (always two more terms of the expansion). 

The presence of the second atom in the unit cell of 
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magnesium and its noncubic symmetry give rise to 
specific difficulties in the homogeneous-deformation 
method. They are connected primarily with the need for 
taking into account, besides the "external" deformation, 
which accounts for the change in the shape of the unit 
cell also the "internal" deformation, which is connec­
ted ~ith the relative displacement of the sublattices (the 
latter makes a significant contribution to certain moduli). 

Another difficulty is the separation of the compres­
sive strain and of the pure shears, and among the latter 
the strains that conserve the symmetry of the unit cell. 
This problem was solved for crystals of arbitrary sym­
metry[19l. We present here only the results pertaining 
to hexagonal close-packed (HCP) lattices. 

When determining the elastic moduli, the external 
deformation is best characterized by six independent 
parameters ra-corresponding to the number of param­
eters describing the unit cell. These parameters can 
be determined in terms of their connection with the ele­
ments of the usual strain tensor (ua{3 = auafax{3; lia{3 
= Ua{3 + u{3a): 

1 + u" = (1 +Y•)'1•(1 +y,)-'1•(1 + y,)-l'o, 

1 + u., = (1 +v•l''•(1 +v·>-''•(1 +v•>"'. 

1 + u33 =(1 + y,)''•(1 +y,)"•, 

U2s = Y4t U.u = ys, Utz = Va, Us2 = Ust = Uzt = 0. (3.1) 

From this definition we see immediately that Y1 des­
cribes the relative change of the volume, whereas all 
the remaining Yi characterize the pure shear strains 
which leave the volume unchanged. What is singled out 
here is the parameter y 2 , characterizing in uniaxial 
crystals the change of cja without a change in the vol­
ume and in the symmetry of the unit cell: 

(cfa)' -(cfa) · (3.2) 
'Y• = (cfa) 

(the prime denotes the parameters after the deforma­
tion). 

The parameters of the "internal" deformation are 
best chosen to be the relative displacements of the sub­
lattices in the basis of the elementary lattice transla­
tions, namely the parameters i'7• Ya, and yg. 

The change ·of the metal's energy at arbitrary 
deformation can now be written in the following general 
form: 

f..E'- E) I Q = B<Y, + 1/2B•N•'YJ +... (3.3) 

The constants Bi and Bij are determined -directly with 
the aid of the expression for the energy (2.1)-(2. 7). To 
this end it is necessary to calculate the change in energy 
upon application of the elementary strains }'1, ••• , Ye, 
which are connected with the change in the shape of the 
unit cell of the reciprocal lattice, and upon application 
of the strains y 7, y 8 , and yg, which change the structure 
factor S(K). 

The obtained quantities can be used to determine the 
usual elastic moduli (see(lsJ ). The first derivatives de­
termine here the "isotropic" pressure B1 and the 
"anisotropic" pressure B2, corresponding to the change 
of cja: 

1 fJE fJE 
B,=--=-=-P 

Q fJy, {)Q • (3.4) 

1 fJE 1 (c) fJE 
B, = Q {)y, = Q -;;: fJ(c/a) • 

(3.5) 

(The remaining Bi> as can readily be seen from symme­
try considerations, vanish.) The second derivatives 
serve to determine the elastic moduli of second order 
(p is the density of the metal): 

B 11 = B = '/,(2C11 + 2C., + C, + 4C.,), 

B, = '/,(2Cu + 2C., + 4C,- 8C.,), 

B.,= '/,(2C., + 2C,- 2C"- 2C.,), 

B,- (B.,)' i B,. = 1/2(C"- C.,), 

B .. = c .. , B, = B,. = 1/4a'pw.'(O), 

B,. = 1/ 4c'pwo'(O). (3.6) 

The obtained relations are given for the case B1 = B2 
= 0, and the general expressions are given in[191 . 

We recall that the modulus Bu is the compression 
modulus, B12 is mixed, and the remainder are pure 
shear moduli. It is interesting that the second deriva­
tives with respect to the internal deformations give the 
squares of the limiting optical frequencies as q -- 0 
(w 2 for the polarization of the oscillations along the c 
axfs, and w~ for the polarization in the basal plane). The 
mixed derivatives of the energy with respect to the ex­
ternal and internal strains make a direct contribution 
to the modulus Cu- C12 and correspond by the same 
token to the relative rigidity of the sublattices in the 
diatomic crystal. 

4. DETERMINATION OF THE PARAMETERS OF THE 
MODEL PSEUDOPOTENTIAL 

The entire preceding exposition pertained to an arbi­
trary local pseudopotential which, in particular, can be 
taken from direct calculations using the quantum-mech­
anical problem for an isolated ion[5l. Another possibil­
ity is to use the energy levels of the ion, as was done in 
the Heine-Abarenkov paper(20 J or in Shaw's "optimized" 
variant(21J. Such methods have certain attractive fea­
tures, since they make use of a calculation at the . 
"atomic level" for the determination of the properties 
of matter in the metallic state. At the same time, the 
corresponding potentials are not yet sufficiently accur­
ate when it comes to the behavior in a wide interval of 
momentum transfers. For realistic description of the 
metal, a particularly important shortcoming of these 
methods is that they do not ensure the fundamental 
equilibrium condition P = 0 in the metal. At the same 
time, even slight deviations from this condition res~lt 
in very large errors in the calculation of most phys1cal 
quantities. 

For the reasons indicated, at the present stage of the 
research we deemed it most advantageous to use model 
pseudopotentials whose parameters are determined with 
the aid of certain static quantities characterizing the 
entire metal as a whole. In particular, it is necessary 
to satisfy the equilibrium conditions of the static lattice, 
of which there are two in the case of a hexagonal lattice 
(see (3.4) and (3.5)): 

B,=O, 

B,=O. 

(4.1) 

(4.2) 
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In other words, the model potential must ensure a mini­
mum for the total energy of the metal at those values of 
the unit-cell volume Oo and of the anisotropy ratio c/a 
which are observed in experiment. 

As to the concrete choice of the model pseudopoten­
tial, an analysis of the properties of alkali metals[12 l 
has shown that it is perfectly satisfactory to use a two­
parameter expression corresponding, for a potential in 
coordinate space, to a well at r < r 0 and to Coulomb 
interaction at r > ro. (Such a potential was also used in 
qualitative estimates by Heine; see, for example, [TJ.) 
In rough form, this potential apparently accounts for the 
main features of the interaction, but on going to compli­
cated metals, where the structure-dependent part of the 
energy plays a much more important role, it is impor­
tant to provide for a more subtle description of the 
interaction, particularly in the region of the "tail" at 
large q and in the intermediate region from q = 0 to qo 
(V(qo) = 0). 

In this connection, we have used the following form 
of the pseudopotential in the momentum representation; 
this form is close to the described two-parameter po­
tential [l2 J : 

4:n:Ze' {~ V(q)= ---,- 1.<1+ U)cosqr, 
q Q, 

U sin qr, ]e-(•'>'- p,q'f(q)}. 
qr, 

(4.3) 

We have introduced cutoffs here at large q, correspond­
ing to "smoothing" of the well, and a new parameter l 
associated with it. In addition, we have also introduced 
the parameter {32 for the function f(q), which makes it 
possible to specify independently the behavior at q = 0. 

The function f(q) is chosen such that f(O) = 1 at q = 0 
and decreases rapidly in a narrow interval of q. There­
fore its form is immaterial in the static problem, where 
summation is carried out over the reciprocal-lattice 
vectors (only its value at K = 0 is involved), while for 
the dynamic problem the entire second term operates 
only for small q, so that the potential (4.3) is in general 
of the three-parameter type for description of the 
phonons in the overwhelming region of the phase space. 
The parameter {32 is connected in simple fashion with 
the non-Coulomb part of scattering through zero angle 
(see (2.5)): 

b = 4:n:Ze'fl, fl =,fl, + :fl,, 
fl• = •j,r,'[3 + 2Uq,r,]. (4.4) 

We have introduced here the characteristic momentum 
qo, at which the pseudopotential vanishes: V(q0) = 0. It is 

connected with the depth of the well U by the following 
relation: 

U = q,r, cos q,r, · 
sin q,r,- ( q,r,) cos q,r, ' 

(4.5) 

To determine the parameters of the pseudopotential 
(4.3), we used, in addition to the two equilibrium condi­
tions, also the pure shear modulus B22, which is deter­
mined by the behavior of the pseudopotential in the 
reciprocal-lattice sites, and the limiting optical fre­
quency at q = 0, wc(q = 0). This frequency is exceedingly 
sensitive to the behavior of the potential at a wave vec­
tor equal to the reciprocal-lattice vector [001], which, 
owing to the vanishing of the structure factor, makes no 
contribution to the static properties, including the char­
acteristics of the electron spectrum (see the discussion 
in[22 l ). We note that the quantity wc(O) is also deter­
mined in the method of homogeneous deformation (see 
(3.6)). 

Thus, to determine the parameters we used the fol­
lowing static and long-wave experimental characteris­
tics: Oo, (c/a)o, B22, and w~(O). The potential parameters 
determined within the framework of the inverse problem 
are given below: 

r, = 0,5500 A, q, I 2k,. = o. 7600, 

l(2k,.)'=0.2050, p,fa,'=0.1054. 
(4.6) 

We used here the following experimental data (they were 
obtained by extrapolation to T = 0): 

a= 3,1945 A ["]. cIa= 1.6231 ["]. 

B,, = 3.01 · 10" dyn/cm2 ["], 1l.pc'ro.' = 26 · 1011dyn/cm2 ["]. 

Figure 1 shows the pseudopotential itself and the experi­
mental points obtained from measurements of the Fermi 
surface with the aid of the van Alphen-deHaas 
effect(lSJ. 

5. PROPERTIES CORRESPONDING TO THE STATIC 
LATTICE OF MAGNESIUM 

1. Using the obtained pseudopotential, we were able 
in accordance with the formulas of Sec. 2 to determine 
the energy of the ideal and deformed metal, and, by dif­
ferentiating the latter with respect to the deformation 
parameters, we were able to find the values of the elas­
tic moduli. The results of the calculations, with indica­
tion of the contributions made from the individual terms 
in the initial representation for the energy, are given in 
Table I (the connection between Ba(3 and the usual elas­
tic moduli Cik is in accordance with (3.6)). 

Table I 

E1 
E(o) 

E 
E 
E 

(1) 

(B) 

(3) 

Sum 
Experiment 

I E 

-2.1524 
-0.2304 

0.6705 
-0.0906 

0.0323 
-1.7705 

-1 .. 7787± 
±0.0060 

-B,=PI B, 

-6.82 -0.0438 
1.62 0 
6.38 0 

-U!4 0.0407 
0.77 0.0031 
0.00 0.0000 
0.00 0.0000 

I B,-B I B., 
I 

Bu 
I B" 

-9,10 5.66 o.ols 1.70 
3.56 0 0 0 

12.76 0 0 0 
-5.79 -1.19 -0.057 0.90 

1.95 -1.46 o;oo7 -0,79 
3,38 3.01 -0.035 1.81 
3.69 3.01 -0.023t-l 

±0.015-
1,84 

Note. The energy is given in Rylatom and the elastic moduli in 1011 dyn/cm2 • 

I 
B.,- B,.- I B,.-B,. I B,.-(B..l'/Ba -· pcled: Ba =--" -6 -,-
2.65 134.5 2.98 2.26 -
() 0 0 0 -
o· 0 0 0 -
1..06 -97.7 0.19 -0.93 -

-0.93 -10,9 -1.04 -0.55 - . 
2.78 26.0 2.13 0.78 1,91 
2.57 26.0 - - 1.88 
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0.1 

~0.1 

~ 
~0,2 
:;-

-0.3 

FIG. 1. Pseudopotential of electron-ion interaction in magnesium 
(the reciprocal-lattice sites and the experimental points from [ 15] are 
marked). 

Out of the ten quantities given in the table, four 
(P, B2, B22, B99) were used in the determination of the 
pseudopotential. The remaining six (four elastic moduli, 
energy, second optical frequency) were determined with 
the aid of the obtained pseudopotential and serve as a 
check on the theory. We see that for these quantities the 
agreement with the experimental data[24 ' 25l is very 
good-as a rule within the limits of measurement error. 
In particular, there is good agreement between experi­
ment and the total energy, the experimental value of 
which is made up of the cohesion energy[26 J and the en­
ergy of double ionization of the magnesium atom [271 (see 
the corresponding discussion in['21. 

2. By varying the volume and using this time a new 
value of c/a, obtained in accordance with the condition 
(4.2) (at the same pseudo-potential parameters as be­
fore), we can find the equation of state for metallic 
magnesium (3.4). Figure 2 shows the obtained~ = ~(P) 
dependence corresponding to the isotherm T = 0. The 
same figure shows the experimental points obtained 
in[28l. We see that there is very good agreement be­
tween theory and experiment in a wide interval of pres­
sures. It must be emphasized that this agreement, bear­
ing in mind the complicated character of the structure 
of magnesium, is far from trivial. We note that the 
theoretical equation of state for a complicated metal has 
in fact been obtained here for the first time. The good 
agreement with experiment, attained both in the case of 
magnesium and for alkali metals['2l, shows that the 
scheme is effective for a wide range of pressures. 

3. Considerable interest attaches also to an investi­
gation of other crystalline modifications of magnesium, 
making it possible to determine whether the obtained 
pseudopotential corresponds to the absolute minhnum 
precisely in a HCP lattice. 

The results of calculations for HCP, BCC, and FCC 
lattices are gathered in Table II. We note first that un­
like the existing estimates, in the present paper we have 
determined for each structure a separate stationary 
state corresponding to BE/8~ = 0, i.e., we obtained the 
equilibrium volume ~o at which Mg would crystallize in 

P, kbar 
MD 600 600 

10 

FIG. 2. Equation of state (the experimental points were taken from 
[28)). 

a given type of lattice were it to have the chosen pseudo­
potential. (It is interesting that the density (~o) changes 
insignificantly in this case.) 

It turned out that a HCP lattice actually has the 
smallest value of the total energy. It is seen from Table 
II that BCC and FCC lattices are, in addition, dynam­
ically unstable with respect to pure shear. Thus, the 
chosen pseudopotential has the required property-it 
corresponds to preferred crystallization of magnesium 
in an HCP structure, which is really observed. 

4. The good agreement obtained with the experi­
mental results for a wide range of static characteristics 
of the metal using the same pseudopotential without em­
ploying any additional parameters makes it possible to 
estimate reliably the role of the terms of third order in 
the electron-ion interaction. This can be done by start­
ing from the data presented in Table I. It is seen from 
these results that the contribution of E<3 > to the energy 
is small, but is much larger than the energy difference 
between the different structure modifications of Mg 
(Tables I and II). This contribution increases rapidly on 
going over to the pressure and to the com-pression 
modulus. In the latter case, owing to the strong cancel­
lation of the contributions from the remaining terms of 
the expansion in terms of the pseudopotential, the con­
tribution of E< 3> is already of the order of the final re­
sult. An analogous situation is observed for the contri­
bution of E<3 > to other quantities where, as a rule, it is 
of the same order as E< 3 > and is the total answer. The 
only exception is the optical frequency w~ which, as 
already indicated, is determined principally by E <2>, 
owing to the large value of the pseudopotential at the 
nearest site [001]. 

Summarizing, we can state that the contribution of 
E <3> is quite significant for the determination of the 
structure-dependent properties of metallic Mg. 

5. Let us see now how the equilibrium parameters of 
the unit cell arise in this metal. The equilibrium vol­
ume (density) is specified by the condition aE;a~ = 0. 
It is easy to see from Table I that a decisive role in the 
location of this minimum is played by the competition of 

Table II. Properties of different modifications 

Type of I 
structure Oo. As I E, Ry/atom I B l•f,(Cu- C.,) I c .. Bn Bu 

BCC 

I 
23.2281 -1.768281 3.137 

I 
-0.551 

I 
3,030 '-~0353 FCC 23.1728 -1.76942 3.241 -2.376 2.344 

HCP 22.9116 -1.77055 3.382 1.915 1.810 3.005 

Note. The elastic moduli are given in I 0 11 dyn/cm2 • 
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the terms Ei and E <ll. The situation is in general out­
line the same as in alkali metals[12l. Although the rela­
tive role of the structure-dependent terms increases, the 
characteristic density arises as before principally be­
cause of the volume-dependent isotropic terms (Ei de­
pends little on the concrete configuration of the ion 
lattice). 

The quantity c/a, to the contrary, is the result of 
competition of only structurally-dependent terms. Fig­
ure 3 shows the function E(Y2) for Mg and the contribu­
tions from different terms. The parameter Y2 is defined 
in (3.2). All the energies are reckoned from their values 
at Y2 = 0. 

As seen from the figure, magnesium owes its stabil­
ity against changes of c/a to the ion energy, which has 
a minimum at c;a = 1.6360, a value very close to the 
ideal c/a = ..f873 = 1.6330. It is interesting that E <2l and 
E <3,, to the contrary, have nearby maxima. However, 
the curvature corresponding to these contributions (it is 
determined by the value of B22) is much smaller than the 
curvature of Ei (y2) and a minimum close to the minimum 
of Ei(y2) is produced. The figure shows also the para­
bola (dotted curve) corresponding to the curvature at the 
point y2 = 0, from which we see that E(cja) retains a 
parabolic character within a 10-20% variation of c;a. 

Another interesting characteristic for an anisotropic 
metal is the average pressure produced at a constant 
volume as a result of the change of c;a. It is connected 
with the fact that its individual components depend in 
different manners on c/a and cancel each other exactly 
only at Y2 = 0. This dependence is also shown in Fig. 3. 
In principle, it follows from the expansion (3.3) that 

1 OE 
P(y,)= ---0 = -B,-Buvz+ ... = -BuY•+··· 

Q y, 

However, as seen from Table II, the value of B12 for Mg 

1.5 1.6 1.7 1.6 1.9 c, 

-o,t 0 0.1 l'z 

FIG. 3. Dependence of the energy on the deformation -y2 (on the 
change of c/a). 

is anomalously small and, accordingly, linear behavior 
is realized in a very narrow interval. 

Although the inverse problem has not been solved 
for other hexagonal metals, qualitative conclusions with 
respect to c;a can be drawn on the basis of calculations 
with the Abarenkov-Heine potential (details will be pub­
lished). In Be, the curvature of E 12, + E<3l as a function 
of y2 is positive and is smaller by an approximate factor 
of 20 than the curvature corresponding to the ion con­
tribution, so that the minimum is determined by the 
latter and c/a is close to ideal. In Zn, the curvature of 
the electron contribution is negative and is of the same 
order as the curvature of the ion contribution. In this 
situation, the position of the minimum of the total energy 
depends strongly on the position of the minimum of Ei 
and of the maximum of Ee· Accordingly, the experimen­
tal value of c/a is shifted by 12% in comparison with 
the ideal value. 

6. In concluding this section, we also present curious 
results of the calculation of the elastic properties of 
magnesium under pressure. They are given in Table III 
in the form of the derivative of the elastic moduli with 
respect to the average distance, and correspond already 
to the third derivative with respect to the energy. The 
calculation was carried out within the framework of the 

! same scheme and was compared with the experimental 
·data borrowed from [29 1 • The agreement between theory 
and experiment should be regarded as good. (The ex­
periment pertains to room temperature and the calcula­
tion to T = 0°K.) 

6. PHONONS IN MAGNESIUM 

1. A quantitative analysis of the phonon spectrum in 
Mg and its comparison with experiment are of particu­
lar interest. 

The point is that the static properties of the metal, 
which were referred to above, are determined by the 
value of the pseudopotential only at discrete points 
corresponding to the reciprocal lattice points (see (2.4) 
and (2.6)). At the same time, for an analysis of the 
phonon spectrum in the entire momentum interval it is 
necessary to have a pseudopotential in the entire region 
of q. Therefore a comparison of theory with experiment 
is a most serious verification of the entire scheme. 
Furthermore, the pseudopotential was determined using 
experimental information corresponding only to long­
wave properties of the metal, and an analysis of the re­
sults should answer the question as to whether it is 
possible in this case, i.e., without introducing any addi­
tional parameters, to describe the behavior of a compli­
cated phonon spectrum at arbitrary momenta. 

2. A detailed theoretical description of the phonon 
spectrum of Mg was obtained in[221 on the basis of the 
scheme employed by us earlier for phonons in metallic 
tin[l•2l. This scheme was based on the same physical 
premises as the .scheme employed in the present paper, 

Theory 
Experiment ["] 1 -13.1 1 

-10.6 

Table m 
din C/d lnr 

-13.8 ~12.0 I -ti.O I -12.9 
-12.1 -9.9 -8.4 -11.1! 
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but it was not fully microscopic, since it considered 
terms corresponding to E <3> (and higher orders) 
phenomenologically, with the aid of parametrization of 
the unpaired interaction in "direct" space. In a number 
of later papers[ 30- 33 ' 251 an attempt was made to describe 
the phonon spectrum of Mg on the basis of only second­
order terms E <2> using pseudopotentials of different 
forms (local and nonlocal). In some of them, the 
"adjustment" parameters were the effective mass and 
the charge of the electron. (In[2sJ they duplicated exactly 
the scheme of our paper[221 .) Therefore the present 
paper, in which the contribution of E <3> to the dynamic 
matrix of the oscillations is calculated in explicit form, 
is in this sense of fundamental significance. 

3. The dynamic matrix of the oscillations can be 
represented in the following form [1-3J : 

v;:.(q) = D,~:·(q) + v;: •• (q) + v~: .. (q) (6.1) 

(a and f3 are Cartesian indices, while s and s' number 
the atoms in the unit cell). 

The first term yields the contribution made to the 
dynamic matrix by the ion lattice, and is calculated in 
the usual manner with the aid of the Ewald transforma­
tion. The remaining two describe the electron contribu­
tions of the second and third orders in the pseudopoten­
tial, respectively ([1- 31 ). It is convenient to introduce 
the following symbols for each of the terms in (6.1): 

(6.2) 

Then 

. • n(q+K) 
X exp {1K(p,- p •• )} e(q + K), (6.3) 

rr'·< l = 3Q, \"1 ( + K )"( .+ K l~ v.+K,v-<•+K,)vK, 
'" q M .i...l q 1 q 2 e(q+K,)e(q+K,)e(K,) 

KLK2K3 

X A<'l(q + K,;- q- K,; K,)S(K,)exp {i(K,p,-K,p,)}L'! (K,- K, + K,). 

(6.4) 

The three-pole A< 3>(ql, q2, q3) is determined by (2. 7), 
and for the pseudopotential V(q), as above, we used ex­
pression (4.3) with the parameters (4.6). 

The phonon frequencies were determined in the usual 
manner by diagonalizing the dynamic matrix (6.1). The 
calculations were carried out for three symmetrical 
directions of the wave vector in the Brillouin zone (for 
the notation see[221 ). We used the lattice parameters 
corresponding to room temperature, at which the ex­
periment was performed (a= 3.2094 A, c/a = 1.6235). 

The obtained dispersion curves are shown in Fig. 4, 
together with the experimental data obtained from neu­
tron scattering[34-36 1. (They were taken from [25 1, where 
a summary of all the measurements is contained.) The 
upper figure corresponds to polarization of the oscilla­
tions along the c axis, and the lower figure corresponds 
to polarization in the hexagonal plane. The agreement 
with the experiment should be regarded as exceedingly 
good. Indeed, the choice of the pseudopotential param­
eters (see Sec. 4) ensured directly the correct value 
only for the limiting optical frequency wc(q = 0) and for 

one combination of the transverse sound velocities 
(B22). A description of the complicated behavior of the 
six branches of the oscillations in the entire phase 
space did not require introduction of additional param­
eters. 

4. As already indicated, it is of considerable interest 
to analyze the role of the terms of third order in the 
pseudopotential. Figure 5 shows, together with the final 
curves (solid lines), also the phonon dispersion curves 
calculated without inclusion of the term D3 (dashed). The 
contribution of the third-order terms can be seen to be 
quite appreciable, and its absence would violate the ex­
cellent agreement with experiment. This is shown more 
clearly in Table IV, which lists the values of the squares 

6 

z 

.........._ __ 
........ 

T • 
z 

K 11 
r'~ -"E 

FIG. 4. Phonon dispersion curves (the experimental points were 
taken from [ 25 ]). 

r- r'- ~r: 

A 

FIG. 5. Individual contributions to the phonon frequencies (solid 
curve-summary frequencies, dashed-without allowance for the third· 
order terms). 
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Table IV. Squares of the frequencies in units of the 
plasma frequency Wo 

I (W/"o)' 

D; I 0.90611 0.046910.953610.0232,0.314010.1188,0.8368,0.5237,0.162210.0443 
D; + D, 0.2366 0.0641 0.1356 0.0375 0.1679 0.0704 0.2131 0.2056 0.1378 0.0642 
D;+D•+Da 0.1686 0.0480 0.0920 0.0268 0.10850.<14770.14660.13440.09580.0462 

Note. w0 = 111.1938 X 1012 rad/sec. 

of the frequencies for several characteristic wave vec­
tors on the boundary of the Brillouin zone (the additive 
contributions are those made to the dynamic matrix 
(6.1), which is proportional precisely to the squares of 
the frequencies). (It is easily seen that the contribution 
made to the phonons by D3 is, as a rule, several times 
smaller than the contribution of D2, but owing to the 
strong mutual cancellation of Di and D2, the contribution 
from D3 becomes already of the order of the final 
answer. This situation was already discussed qualita­
tively in[2' 22l. We note also that the scale of the third­
order terms obtained in the present paper coincides 
with that determined phenomenologically in[22 l within 
the framework of the inverse problem. 

CONCLUSION 

1. The detailed quantitative analysis of a large group 
of metallic properties, presented in this paper with 
magnesium as an example, has demonstrated the effec­
tiveness of the previously developed theoretical scheme. 

It is important that the pseudopotential of the elec­
tron-ion interaction (which is the only unknown quantity) 
was determined from very simple and experimentally 
easily observed properties of the metal, namely the 
unit-cell parameters and two long-wave characteristics. 
The subsequent calculation was carried out without 
additional parameters and has made it possible to des­
cribe such subtle properties of the metal as the equa­
tion of state, the derivatives of the elastic moduli with 
respect to the pressure, and the phonon spectrum in the 
entire region of phase space. In most cases, the agree­
ment with experiment lies within the limits of the ex­
perimental error. We also deem it important that the 
employed potential satisfies the fundamental conditions 
of equilibrium of the static lattice. This, in particular, 
corresponds to the absence of stresses in the metal and 
to an automatic satisfaction of the conditions of Born 
and Huang (see the discussion in[22 1). 

2. As shown by direct calculation, the contribution 
of the terms of third order in the pseudopotential to the 
considered metallic properties is quite appreciable. 
This demonstrates the inadequacy of the customarily 
employed approximation, corresponding to the inclusion 
of only second-order terms in the consistent perturba­
tion theory. Allowance for nonlocality of the individual 
interaction of the electron with the ion (which in prin­
ciple is easy in our scheme, if necessary), cannot, of 
course, change th.is conclusion. 
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