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The change in the viscosity of oxygen in strong magnetic fields is studied in the case when the level 
splitting in the magnetic field is comparable with the distance between the levels of the fine struc
ture of the rotational levels. A detailed comparison is carried out between the theory and experi
ments on the angular dependence of the Senftleben effect in oxygen. In passing, a general form has 
been found for the change of kinetic coefficients in external fields without the use of any assumption 
on "weak non-sphericity" of the interaction. 

1. In the research of I. K. Kikoin et al.,[1l the change 
in the viscosity in a magnetic field was studied in de
tail for nitrogen and oxygen. The most astonishing re
sult for the latter was the violation of the "B/ P law." 
According to this law, all the kinetic coefficients are 
functions of the ratio B/P (B =magnetic field, 
P = pressure). The B/P law is a reflection of the fact 
that a dependence on the magnetic field B enters into 
the kinetic coefficients only through the ratio of the 
frequency of precession of the molecule in the magnetic 
field 

(1.1) 

to the frequency of collisions between the molecules, 
Sl, which is proportional to the pressure P.[2 - 41 

The departure from the B/P law observed in oxygen 
is due principally to the complicated nature of the ef
fective magnetic moment of oxygen J..l.eff· The direct 
carrier of the magnetic moment of the molecule is the 
electron spin of the molecule and the latter is con
nected with the rotational moment of the molecule as a 
result of the "spin-axis" interaction. In a strong mag
netic field, this coupling is weakened, which leads in 
turn to a reduction of jJ. eff. 

In Sec. 2, we obtain an expression for J..l.eff by 
means of elementary quantum mechanics. In Sec. 3, 
we give a more rigorous consideration, based on the 
quantum kinetic equation (see also[5 • 61 ). In Sec. 4, we 
construct a formal solution of the quasiclassical 
kinetic equation in a magnetic field. In Sec. 5, a model 
is formulated, within the framework of which expres
sions are obtained for the five independent viscosity 
coefficients, and a comparison is made with experi
ment. The end of the paper is devoted to the Senftleben 
effect in superhigh fields. 

Along with the departure from the B/P law at low 
pressures, we also have an anomalous dependence of the 
the collision frequency on the pressure when the free 
path length is comparable with the minimal character
istic dimension of the apparatus. For systematic cal
culation of this effect it is necessary to solve the 
kinetic equation with boundary conditions. In the pres
ent research, the role of the apparatus factors is taken 
into account by the introduction of a simple empirical 
factor (see Sec. 5 ). 

Taking as the rotational quantum number its mean 
value at room temperature, K = 10, we write out the 
order of magnitude of the quantities entering into the 
problem: 
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a) the di~tance between the rotational levels: 
nK/I Rj 10 deg; 

b) the distance between the levels of the fine struc
ture of the rotational levels: Eo- E±1 ""' 1 deg, E-1 
- E1 Rl 10-1 deg; 

c) the distance between the levels of the magnetic 
structure for B = 103 G: 

JJ..,BK-' ~ 10-• deg for a = ±1; JJ..BK-' ~ 10-' deg fort a= 0; 

d) the collision frequency Sl in energy units for 
normal temperature and pressures (NTP): nGli 
Rl 10-2 deg. 

2. As is known, [71 the fine structure Ea of the ro
tational levels of oxygen with a large value of the 
rotational moment K is determined by the expressions 

A.= liro,= f.985cm- 1= .4·10' JJ.oG. 
(2.1) 

If the magnetic field is not too large, then the opera
tor of the energy of the electron spin moment in the 
magnetic field 

(2.2) 

J..l. 0 is the Bohr magneton) can be considered as the ex
citation of the states I a) = I K, j, jz ) with definite 
values of the rotational angular momentum K, the total 
angular momentum j = K + a and the projection of the 
total angular momentum in the direction of the mag
netic field jz. Strictly speaking, it is not possible to 
use perturbation theory in the narrow range close to 
the intersection of levels with the same jz and differ
ent a = ± 1. But the kinetic phenomena are determined 
by characteristics averaged over both the magnitude 
and the direction of the rotational angular momentum. 
Therefore, the behavior of the levels in the vicinity of 
the intersection points is of little importance, and the 
effective magnetic moment of the oxygen can be ob
tained by differentiating the Zeeman splitting of the 
levels, computed with accuracy (wB/w~l with respect 
to the magnetic field: 

Jl.eff = -iJI'J.E/iJB = yM, 
(2.3) 

Here the transition to the quasiclassical limit 
nj - I M I' hjz - Mz has been carried out. The expres
sion (2.3) should be substituted in the mafnetic terms 
of the quasiclassical kinetic equation:[2 • 3 
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ih + f.!Bx + N = o, 
N = {;t + (vV) }rnj<'>, (2.4)* 

where f(O) is the equilibrium distribution function, and 
f10>s1x is the linearized collision integral. . . 

The last term in y of (2.3) leads to the vwlatwn of 
the B/P law. For two thirds of the gas (a= ±1), this 
term is small in comparison with the first term. For 
one third of the gas (a= 0) the first term of (2.3) 
disappears and the second and third terms of this 
expression are comparable for fields of the order of 
10 3 G. Inasmuch as the effective precession (1.1) for 
the component a = 0 is an order of magnitude smaller 
than for the components a = ±1, we can sketch the 
following picture of the Senftleben effect in oxygen with 
increase in B/P. For comparatively small values of 
B/P (wB s::>OK) with maintenance of the B/P law, the 
odd effect appears, which is due to the dependence of 
the collision probability on the number a and the 
principal part of the even effect reaches saturation. [2 ' 31 

In the next interval of B/P ( WB "' OK2 ), the principal 
part of the odd effect develops r BJ and the even effect ap
proaches its asymptotic value. These processes take 
place with violation of the B/P law: in the transition 
from one fixed value of the pressure to another, the 
curves of the effects (as functions of B/P) approach 
the ordinate axis. This is connected with the fact that 
the degree of violation of the spin-axis coupling depends 
only on the value of the magnetic field, but not on the 
pressure, and the point on the B/P axis for given B is 
shifted to the left with increase in P. 

3. We shall now show that Eqs. (2.3) and (2.4) can 
be obtained more rigorously, directly from the quantum 
kinetic equation 

o.p'l ot + (vV)p + (i I n)[H, p] = -lcott" (3.1) 

Here p is the single particle density matrix, so 
normalized that its local equilibrium part is identical 
in form with the local equilibrium Maxwell function f< o> ; 
Icoll is the collision integral, H the internal energy of 
the molecule: 

11 = n'K' 121 + v:s + vB. (3.2) 

The first term describes the rotational energy of the 
molecule (h2/2I = 2 deg), the second, the spin-axis 
interaction energy, which is responsible for the fine 
structure (2.1), the third, the magnetic energy (2.2). 

We shall consider a range of problems in which the 
density matrix is close to its local equilibrium value, 
and rewrite (3.1) in the form 

Nf'> + (il n) [fl, p<'>] + lcou= 0, 'r<'> ='r- f'l. (3.3) 

The ratio of the value of the nondiagonal elements of 
the density matrix to the diagonal elements is deter
mined by the ratio of the transition frequency to the 
transition energy. Therefore, the density matrix of 
oxygen is known beforehand to be diagonal relative to 
the rotational quantum numbers K, while the terms 
that are nondiagonal in a are small in comparison with 
the terms that are diagonal in a, which we shall denote 

*[MB] =Mx B. 

by f( a). Expressing the nondiagonal elements of the 
density matrix in terms of the diagonal in the usual 
fashion, we get 

Nf'> + itJ>B[S; flo)]+!"= 0, 

(3.4) 

= (j,IK) [ o + ( 1- 1/ 2o2) /K]- ( wBj,'/2w,K') (2- 3o'). 

Equation (3.4) is the matrix equation in the space of the 
projection jz of the total angular momentum. The 
transition to the quasiclassicallimit is given by the 
relations 

i[i, !]-+ [bM]of/oM, h=B/ jBj, 

i[j,', /]-+(2/ h)bM[bM]o/ I oM, 
(3.5) 

which transform Eq. (3.4) to Eq. (2.4), which was re
quired. The excitation of the states of the fine struc
ture through the magnetic field has the order of magni
tude WB / WA_ while the excitation by collisions is much 
less: O/ wA,. But the magnetic transitions are com
pletely taken into account in the elementary considera
tion of Sec. 2. The almost complete coincidence of 
Eqs. (3.4) and (2.4) is explained in this way (strictly 
speaking, the collision integral Icon in (3.4) contains 
a small term which depends explicitly on the magnetic 
field). 

4. We now formulate the formal solution of the 
kinetic Eq. (2.4) in the presence of an external field. 

The space of states { IJ!n} in which the nonequilibrium 
part of the distribution function x is expanded can be 
divided into two subspaces ~~ and ~11 .• We refer to the 
subspace .!•1 those states which do not depend on the 
direction of the rotational moment. Introducing the 
projection operators on these subspaces Pm and P<>.J1 , 

we can show that the change in the kinetic coefficient 

c = -<N.x>=- "dff'lN'x 

in the magnetic field is determined by the formula 1> 

/1c =- (N, (Qll!IJlt1 Q!!'JJI (Q'UI'lll + QBt1QB (4,1) 

(Q'lliiJJ1t1 Q'llllll (Qunll)-' N). 

Here we have introduced notation of the type 

{!IJl'lJI = Pmr2 P'lll, Q'l11'111 = Q'UI"ll- r29JI!Jl (rJmiJlt'rJ!/1'111· (4.2) 

For actual computation of Eq. (4.1), we need to solve 
three integra!., equations which determine the functions 
X!P., X!:i1 and N: 

Q011Jlx!l! =- N, r2'1119Jix'll1 =- !2!D11Jlx!J1, 

FJ =- [(Qillmt'Q 01 '111l+ N 
(4.3) 

and one integro-differential equation which yields the 
function Y 9.'1 : 

(4.4) 

If the solutions of Eqs. (4.3) and (4.4) are known, then 

!1c = -(lv, Y!D1>· (4.5) 

Ortis easy to obtain this formula by representing the solution of 
Eq. (2.4) in the form x = X!l+ L~1 + Y ~~ +X,~, . where X is the solution 
for B = 0 and Y the change in the solution in the presence of the field. 
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It is convenient to solve Eq. (4.4) in a spherical 
system of coordinates, in which the external field 
operator is diagonal in the projection of the rotational 
moment on the direction of the magnetic field: 

and (see (2.3)) 

Q8 Y1,,.,(M) = im,yBY,,,.,(M), 

Y,,.(M) = M'Y,,.(eM, cpM), (4.6) 

In this set of coordinates, the inhomogeneous term of 
the kinetic equation (2.4) is equal (for the viscosity) to 

N = Y,,.(v). (4.8) 

We introduce the complete set of orthonormalized 
states:[sJ 

11'· =.E c;~.,,,,.,Y,,,.,(v) Y,,,.,(M)T~, (v')E;, (M')cp,(a), 

n = ( lm, l,l,, r,r,, s). 
(4.9) 

In correspondence with the definition of the subspaces 
:~ and !!11., !ll states with l 2 = 0 enter into the expansion 
of the functions X lll and ~1Jt. states with l 2 # 0 enter into 
x!lll and N: 

XR=-~P.'I' •• X!IJ!=~Q~~-~· N=~R ... 'i'w (4.10) 
• I£ I£ 

The specific form of the coefficients P, Q, and R de
pend on the model of the interaction between molecules. 
It is clear from symmetry considerations that for all 
terms of the expansion (4.10), l = 2, while l 1 takes on 
only even values. 

We shall assume that the operator O!i!!IJI in the repre
sentation (4.9) is diagonal: 

(4.11) 

This relation can be understood as the definition of 
the orthogonal functions T, L and '{J in (4.9). But our 
information on the interaction between the molecules 
is too weak to allow us to pretend an accurate solution 
of (4.11). It would be more accurate to consider (4.11) 
as the result of the solution of the problem of the eigen
values in a single-moment approximation, choosing 
normalized orthogonal polynomials as the functions T, 
L and '{J. 

strictly speaking, the relations (4.6) and (4.11) are · 
insufficient to obtain a simple exact solution of Eq. (4.4). 
The fact is that the effective gyromagnetic ratio (4. 7) 
depends on the internal variables of the molecules and 
the operator On entangles ~11. states with different 
values of the numbers l, l 2 , r 2 and s (without affecting 
the numbers l 1o r 1). But if we neglect the dependence 
of the eigenvalues of OJJ. on these numbers, then 

Y!IJ!=- ~QtJ.'i'tJ.{im2x""'(1 + im2x~-')}, x~'-=rB!Q~'- (4.12) 
I' 

(the expression { .•• } is under the summation over m2, 
which is implied in </ljJ. ). Substituting (4.12) in (4.5), we 
find 

.1 "\1 c''" c''" · · 1 Cm =- .i...J 11m 112m 2 1 1m 1 t/m/1r1 t1'Br 1 r;'R~QJJ.•(Y,2 m~rl cp,, 'mzXp( 
.... ,...... (4.13) 

+ lm,x,)-'Y,~,.,L!';,cp,,). 
The expression (4.13) essentially coincides with the 

corresponding expression (ac2m,2m) which is found 

in [ 31 by perturbation theory, although the meaning of 
some of the quantities is different. This shows that the 
results of the theory of the Senftleben effect are not 
sensitive to any assumption on the "small non
sphericity" of the interaction, or, more accurately, to 
any assumption as to the smallness of the nondiagonal 
elements of the collision operator i'l in comparison 
with its diagonal elements. The advantage of (4.13) in 
comparison with the corresponding formulas in[sl can 
be noted only in the case in which we seek to obtain 
information about the quantities RJJ., Q iJ. and OJJ. from 
direct solution of Eqs. (4.3) and (4.11) by making use 
of the specific form of the collision probability. 

At the present stage of the theory, these quantities 
are chosen directly from comparison with experiment 
(see below) and unique establishment of the operator 
u is not possible. The situation is similar to that 
which prevails in the quantum theory of collisions-the 
scattering cross section in a strong potential can 
sometimes be described as the cross section in the 
Born approximation for a weak pseudopotential. 

5. For comparison of theory with experiment, we 
reduce a number of parameters in the form (4.13) to 
a minimum. For this purpose, we assume that the 
terms with l 1 = r 1 = r 2 = 0 differ from zero in the 
expansions of X;11 and N (4.10). From the viewpoint of 
the method of momentums in cartesian coordinates, 
this means that the function XID1 is chosen in the form 
of a superposition of terms: 

(M.M;}~p,(a), 11'•=1, ~p.="ff,a, IJ'•="f'f,(a'- 1/,). (5.1) 

In this model, the odd Senftleben effect is described by 
the formula 

1,. = Im(Ac,.)/c = -/1., (I Y ... J' 1 +~:x,)') 
- A,(J Y,,. J'm.z,(f +(m.z,)")-'), 

and the even effect, by the formula 

(5.2) 

R,. = Re(M,.) /c = -A,(JY,,.J'(mx,)'(1 + (mx,)')-') (5•3 ) 
- A,(JY,~J'(mx,)'(1 + (mx,)')-'). 

Here we have used the notation 

Xo = (x/ K.') (1 + xyK COS !lM), 

x, = xf K, x = 2JJ.,B /1!Q, y = 21!Q /"-. 
(5.4) 

The three positive parameters A are the quadratic 
combinations of the coefficients Rs and Qs correspond
ing to the functions (5.1). 

We note that in our model R0 = 0, so that the meas
urement of this coefficient can give direct information 
on the role in (4.13) of states which depend on the 
direction of the velocity ( l 1 # 0 ). 

In the experiments of I. K. Kikoin et a1.Y1 the co
efficients I1o I2 and the combinations (R 1 - R2) and 
(3R 0 - 4R 1 + R2) are measured as functions of the 
ratio B/ P for different fixed pressures. In these ex
periments, a violation of the B/P law is observed even 
for small values of the magnetic field. This violation 
cannot be explained within the framework of the pro
posed theory. Evidently the anomalous decrease in the 
Senftleben effect at low pressures is associated with 
surface phenomena. 

In order to eliminate this anomaly from considera
tion, we multiply the experimental curves by the com
mon factor ( P + P0)/P, as is done in the account of 
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the slippage phenomenon. The parameter Po is deter
mined by the geometry of the apparatus and is chosen 
equal to 5 mm Hg. As a result, curves are obtained 
that are identical for small values of B/ P. These 
curves are satisfactorily described by the present 
theories within the framework of the simplest model 
(5.1) (see the drawing) if we assume that 

A, :A, :A, =7 :3:22, Q = 10" sec-• at 760mmHg. (5.5) 

We call attention to the fact that the relaxation time 
of the internal degrees of freedom S'l -I has the same 
order of magnitude as the general relaxation time, 
which is obtained from the usual coefficients of vis
cosity and thermal conductivity. 

We shall now make clear on what considerations the 
choice of the model (5.1) is based. We see from (4.13) 
that quantities such as ac are basically determined as 
sums of contributions from the separate terms of the 
expansion of the function X.,1 (4.10). But the moment 
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Dependence of the quantities 11 (a), 12 (b), (R 1 -R2 ) (c) and (3R0 -

4R1 + R2 ) (d) on the ratio 8/P. The experimental points 0, e, 'i/ and & 
refer respectively to the pressures 6.2, 24, 50 and ISO mm Hg. The con
tinuous curves indicate the results of calculations by the formulas (5.2), 
(5.3). The dashed curves indicate the contribution of states with a= ±I. 

of the form {MiMj} gives a contribution of the same 
order to the odd effects 11 and 12 • At the same time, 
the moment of the form { MiMl} { VkVl} (proposed· 
earlier in(51 ), becau~;~e of the effect of the Clebsch
Gordan coefficients; leads to the result that the contri
bution to 11 turns out to be an order of magnitude 
smaller than that to 12 • This means that in the descrip
tion of the experiment (see the drawing), the latter 
moment can be regarded only as a small correction to 
the moments (5.1). The hint of a maximum in 11 and 12 

in the region of small values of B/P means that the 
odd effect is built up not only on the component a = 0 
but also on the components a = ± 1. 

For a description of this fact, we have introduced 
in (5.1) a term that is odd in a. Finally, we shall con
sider the moment cp in (5.1) so that the coefficient A 3 , 

which determines the principal part of the even effect 
(5.3) can be assumed to be independent of the coeffi
cients A 1 and A 2 • Account of moments of more com
plicated form incorrectly increases the number of 
fitting parameters. We emphasize that the number of 
parameters in our model is reduced to a minimum: 
one parameter (~~)determines the scale of the sixteen 
curves along the B/P axis and three parameters 
(A h A2 and A 3) the amplitudes of these curves. 

In conclusion, we consider the Senftleben effect in 
oxygen in the region of limitingly large magnetic fields, 
when the spin-axis coupling is destroyed. 

It can be thought that for B >> 104 G, when a break 
occurs between the spin and the axis of the molecule, 
the rotational moment will not keep up with the pre
cession of the large magnetic moment of the spin, and 
the paramagnetic Senftleben effect disappears and 
transforms upon further increase (in B) into the non
paramagnetic Senftleben-Beenakker effect. Actually, 
the transition from the case S'l << "'B << W,\, which de
scribes the saturation region of the Senftleben effect to 
the case S'l « W,\ << WB does not change the transport 
phenomena: in both cases, the inequalities U « W,\ 

and n << WB require that the density matrix satisfy 
the -et of equations 

[Vxs,p]=O, [V.,p]=O, Nf'>+icoli=O. (5.6) 

It follows from the vanishing of the commutators in 
(5.6) that the density matrix is diagonal both in the 
representation I a ) = I K, j, jz ) and in the representa
tion I Sz) = I K, Kz, Sz ). The first is characteristic 
for saturation of the paramagnetic effect, and the 
second, for saturation of the nonparamagnetic effect . 
Therefore the transition of molecules from states of 
the type I a) to states of the type I Sz) is not accom
panied by a dip in the curve ac(B/P). Only in the 
region of high pressures (5- 100 atm), when ~~ > W.\ 
can break in the spin-axis coupling materially change 
the character of the Senftleben effect. But here the 
break in this coupling takes place primarily from col
lisions. 

The author expresses his deep gratitude to I. K. 
Kikoin, Yu. M. Kagan, K. I. Balashov, and V. D. 
Berman for interest in the research. 
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