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The customary expansion of atomic functions in powers of a 2 (a = e2/tic) is insufficiently complete for 
the calculation of forbidden transition probabilities. Terms ""0! 2 in the expansion of the relativistic 
transition operator should also be taken into account. An expression accurate to these terms is ob­
tained for the magnetic dipole transition operator in one- and two-electron systems. Probabilities of 
the single-photon transitions 2s3S-1slS and 2slS-2s 3S are calculated on the basis of his expression 
for hydrogen-like and helium-like ions [ Eqs. (13) and (14)]. A similar expansion is also obtained for 
electric dipole transitions; the additional terms ""a 2 remove the intercombination forbiddenness for 
pure LS coupling. 

IT is known that either one or two photons can be emit­
ted in 2s-1s transitions of H-like ions. The probability 
of a single-photon (magnetic dipole) transition11 is zero 
in the nonrelativistic approximation. Due to the extra 
Z4 a 3 factor (a = e2 /tic is the fine-structure constant) 
relativistic calculations c 1• 23 yield a result that is con­
siderably smaller than for a two-photon transition.t 3 l 
A different situation exists for 2s3S-1sJs transitions in 
He-like ions; here two-photon transitions are consider­
ably less probable because of additional spin forbidden­
ness.t4l Moreover, several previously unknown lines in 
experimental spectra of the solar coronat6 - 9 l have been 
identified in t 53 with the 2s3 S -1s 1S transition in He­
like ions (C V, 0 VII, Ne IX, Si XIIT, S XV, and 
Fe XXV). This interpretation requires that the single­
photon transition probability exceed the two-photon 
probability. This condition is fulfilled according to a 
calculation of the 2s3 S-1s1S single-photon decay prob­
ability in the hydrogen-like approximation, t 10 l although 
Griem's final equation is incorrect. 

In the customary procedure for calculating the prob­
abilities of transitions that are forbidden in the nonrel­
ativistic approximation terms of the order of a 2 , which 
take magnetic interactions into account, are added to 
the nonrelativistic wave function. However, this proce­
dure yields zero probability for the aforementioned 
s-s transitions. (For this reason exact Dirac functions 
were used in tl, 23 .) We shall show here that this result 
is due to neglect of the additional a 2 term that appears 
when the relativistic transition operator is replaced with 
the corresponding nonrelativistic approximation, and we 
shall present expressions for additional terms ""a2 in 
the operators for magnetic and electric dipole transi­
tions. 

We first consider one-electron atoms, for which the 
probability of a magnetic dipole transition from state 1 
to state 0 can be written as (see Sec. 47 of t 113 ) 

4 w' 1 
W = 3"'ii?" 21, + 1 .E l~tod', 

. m 

llThe electric dipole transition is parity forbidden, while transitions 
of higher multipolarities conflict with angular momentum conservation. 

e eh 
"" = 2c (Ojg(kr)[rj] j1) = 2 [ (cp,j g(kr)[ro] lx•> 

- <xol [or]g(kr) jcp,)], (1)* 

where IJ. is the magnetic dipole moment operator, J 1 

is the angular momentum of the initial state, w is the 
transition frequency, j is the current density, k is the 
photon wave vector, cp and x are the respective large 
and small components of the Dirac functions, and a 
represents the Pauli matrices. The function g(kr) is 
expressed in terms of Bessel functions: 

(kr) = 2'hf('/z) I• (kr) ~ 1- (kr)' 
g (kr)'!. 1' 10 • 

We are not interested in other terms of (2), which 
are of a higher order of smallness than a 2 • We note 
that in the widely known Breit-Teller equation t 1 l the 
term (kr)2/10 is omitted; this error was corrected 
in t 2 l, 

(2) 

The expression for the small components in terms 
of the large components is 

1 [ ( e<D ) H, ] X= 2mc 1 + 2mc' op-op~ cp, (3) 

where H0 is the nonrelativistic Hamiltonian, e.P is the 
potential energy of the system, and p is the momentum 
operator. Inserting (3) into (1) and omitting terms of 
higher order than a 2 , we obtain 

"" = 2:J (cp,jF[rp] jcp,) + '/,(cp,jiF[r[po]] jcp,) 

1 1 ( I {[r[po]],H,} ·~- )] -2 (cp, I [[op]r]iFI cp,)- 2 cp, i 2mc' cp, ' 

F=1+e<D-e, 110(kr)', (4) 
2mc' 

where e: 0 is the energy of state 0 and {A, B} is the 
commutator of the operators A and B. We have thus 
far assumed that cpo, cp1 are the "large" components 
of the exact Dirac functions. The transition to nonrela­
tivistic functions 1/J follows the rule cp -- (1- p'l'8m2c2 )!/J 
[Sec. 33 of t 11l], where 1/J satisfies the ordinarySchro-

*[rjJ=rXj. 

1102 



MAGNETIC DIPOLE TRANSITION OPERATOR 1103 

dinger equation. Relativistic a 2 corrections to lji will 
be discussed below. 

For the operator p. we finally obtain 

Jt = ~~ r,1 + e$- Bo _!_ (kr)'- ___t__] 
2me l 2me' 10 4m'e' 

+~s [1 +-1- (e!l> +_!__rV!l>-__!:-{~- rV<D}) 
me 2me' 3 3 m 

_ _!_(kr)' _ ____t_] +'~_!_ [s(rV/)- 3(rs)V/ 
6 4m'e' me 6 

1 ( p' p ) ] --- s--3-(ps) , 
2me2 m m 

f = ~-____!__ (kr)'. 
me' 10 

It is reasonable to divide p. into two parts, p.' 

(5) 

= (eti/2mc)(l + 2s) and p.", which is proportional to a 2• 

We shall discuss in some detail the physical meanings 
of the different terms in p.". The operator p2/4mc2 is 
associated with the "pure" nonorthogonality of the large 
components of the Dirac functions; the terms containing 
(kr) arise by taking into account a "retardation" effect; 
the remaining terms are determined by the ratio be­
tween the Coulomb interaction energy and the rest en­
ergy of an electron [compare with Eq. (3)]. 

We note that p." contains a quadrupole term2> in ad­
dition to the terms with vector properties similar to the 
properties of the orbital angular momentum 1 and spin 
s operators in p.'. 

We have thus far neglected relativistic corrections 
of the order of a 2 in the wave functions. 3 > When these 
corrections are included we have for the transition ma­
trix element accurate to a 2 terms (with V representing 
the perturbation of a 2 order and H0 as the nonrelativis­
tic Hamiltonian) 

- 1 
1Jl=¢-H,-eV¢, (6) 

('l]iol~tlili•>=<¢•ll'l¢•>-(¢•1vn ~ ~t'+~t'-H 1 VI¢•)· 
o Bo o-Et 

Utilizing JJ.' = (eti/mc)(J -1) (where J is the total angu­
lar momentum) and the vanishing of the commutators 
{JJ.', Ho} and {J, V}, we transform the second term into 

en 1 
---(¢oj{V,l}j¢,). 
me eo-Et 

This expression vanishes identically for s-s transi­
tions. Thus the probability of a 2s-1s single-photon 
transition is nonvanishing only because of the term 
< l/io I JJ."Il/J1). 

A calculation based on (5), with only the term pro­
portional to the spin operator s remaining, yields 

a9Z 10 me' 
W(2s-1s)= 972 y,· (7) 

This result agrees with the calculations in [3 l. 

2>1t is easily seen that for s-s transitions this term, like the term 
proportional to 1, does not contribute to the transition matrix element. 

3>The difference between the foregoing corrections and corrections 
made directly to the nonrelativistic function actually consists in the 
fact that corrections such as (3) and (5) are corrections to X· The oper­
ator changes because the ordinary nonrelativistic theory contains noth­
ing analogous to the small components of the relativistic functions. 

We now consider two-electron atoms, writing the 
Hamiltonian in the form 

H = ca,p, + ~,m,e' + ca,p, + ~,m,e' +• e!l> + V. (8) 

Here a 1, 0! 2 , (3 1, (3 2 are the Dirac matrices operating on 
the coordinates of the first and second electrons, 

Ze' Ze' e' 
e!l>=----.+-

rt r2 r12 

is the nonrelativistic potential energy, and V is the 
operator of magnetic and delayed interelectronic inter­
actions. The specific form of V is not required, but 
only that its order of magnitude be ~a2• We introduce 
the following notation for the large and small compo­
nents of the 16-component function lji: 

'I'• i ,;;;;;2, k,;;;;; 2, 
J(,(ll, i>2. k,;;;;;2, 

(9) 'i'ik= '"J.(2), i,;;;;; 2, k>2. 

x. i>2. k>2. 

Regarding the cp components as "large," the custo­
mary expansion in powers of a gives the other compo­
nents: 

1 [ ( 1 { Po' }) H, l let'>=-- 1+-- e!l>+- (o,p,)-(o,p,J- QJ, 
2me 2me2 2m 2mc2 

2 1 [ ( 1 { , P•' }) H, ] x< l = Tme 1 + 2mc2 e!l> +. 2m ( 02p2)- ( 02p,) 2mc2 <p, 

( o,p,)( 02P2) 
X= 4(me) 2 <p. 

(10) 

Here Ho is the ordinary nonrelativistic Hamiltonian for 
a two-electron atom. The matrix element of the mag-
netic moment is 

Jt01 = 2: (Ojg(lcr,)Lr,j,]+ g(kr,)[r,j2] ji). (11) 

The subsequent calculations are performed like those 
for one-electron systems. For the relation between the 
cp components and the nonrelativistic wave function lji 
we have 

'I'-+ ( 1- (p,2 + p,') / 8m2e')"¢. 

Finally, for the operator p. we obtain 

f.l = 1-1(') + "(2), 

~ "' 1 ' 2 (') _ e" I [ 1 + ew- Bo (k )' p, - P2 ] 
I' - 2me 1 ~-10 r, - 4m2e' 

+-s, 1+-- e<D+-r,V,e!l>-- - 1--r,V,e!l> en ( 1 { 1 1 ( p' )} 
me 2mc2 3 3 m 

-+(kr,)'-4m!e2(p,'-p,')) (12) 

+'~_!_ [(s,(r,Vt/)- 3(r,s,) Vd)-__!_,(s,!!l.._- 3~(p,s,))] . 
me 6 2me m m 

The expression for p.< 2 > is obtained simply by changing 
the indices in (12). As in the case of a one-electron 
a tom [ see Eq. ( 6)] , the opera tor V makes no contr ibu­
tion to the transition matrix element. 

We used (12) to calculate the probabilities of 
2s3 S-1s 1S and 2s 1S-2s3 S single-photon transitions in 
He-like ions. Since we are interested mainly in atoms 
that are in a high stage of ionization, it is feasible to 
construct the nonrelativistic wave functions by means 
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of perturbation theory in terms of the interelectronic 
interaction term 1/r12.[ 12 l For the 2s3 S-1s1S transi­
tion probability we obtain 

2' !:J.E 3 1 'me' 
W(2s'S -is'S) = 39 u'Z" (Z'Ry) { 1 +z-0.28} F· (13) 

This probability is about four orders greater than that 
of two-photon decay; [4 l therefore the 2s3 S-1s 1S line 
should be extremely intense in the case of a highly 
rarefied plasma. 

We obtain, similarly, 

W(2s'S- 2s'S) = ~u'Z" (~) 3 me' (14) 
2' Z'Ry ft3 • 

Unlike the 2s3 S-1s 1 S line, thi~ line is very weak even 
in a rarefied plasma, because the probability (14) is 
considerably smaller than that of 2s 1S-1s 1S two­
photon decay. [4 l 

The lifetime of the 2s3 S level of Ar xvn was meas­
ured in recent work. [ 13 l The value 172 ± 30 nsec that 
was obtained is consistent with (13), which yields 
196 nsec. 

We note, in conclusion, that a similar expansion for 
the electric dipole transition operator leads to replace­
ment of the operator r by 

r-+r+ [ps] /Bm'c'. (15) 

When in (14) the term added to r is taken into account 
along with the usual magnetic interactions we find that 
intercombination transitions are possible even in the 
case of "pure" LS coupling. The power of Za is then 
the same as for the spin-spin and spin-other orbit 
inceractions, but is Z2 times smaller than for the 
sp~n-(same) orbit interaction. 

The authors are indebted to L. A. Vainshtein for a 
discussion of this work. 
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