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As a special case of the focusing potentials studied previously, a system is obtained which Maxwell 
referred to as the "fish-eye" problem. The wave equation for this problem can be reduced to the 
Laplace equation on a four-dimensional sphere. The symmetry group for this problem is, therefore, 
the same as that found by Fock for the hydrogen atom in the case of the discrete spectrum. It is 
shown that the Maxwell potential has focusing properties in the wave sense as well, i.e., when dif
fraction is rigorously taken into account. The Green function is found, and generalizations of the 
fish-eye problem are discussed. 

1. INTRODUCTION 

IN a previous paper[ 1J we considered a sphere of 
radius R with refractive index 

2n' 
n(r) = 1 + (r/R)' 

(1) 

where n(r) = n' when r > R. Let us denote the surface 
of this sphere by S3 • It was shown earlier that all rays 
leaving a point on S3 in the inward direction were 
focused at the point diametrically opposite on S3 • Let 
us now suppose that Eq. (1) is valid throughout space. 
In the equivalent problem of classical mechanics one 
considers the motion of a particle with zero energyll 
(i.e., such that its velocity at an infinitely distant point 
is zero) in a potential 

U (r)-- 2v 
' - (R' + r')'' (2) 

where v > 0 is an arbitrary parameter. In this case, 
all the trajectories are circles (or straight lines) in
tersecting S3 at diametrically opposite points. A 
striking feature is that the refractive index given by 
Eq. (1) will exactly focus rays leaving any point in 
space and not merely points confined to S3 • All the 
particle trajectories (or rays) leaving a point r are 
found to pass through the point rR2/r 2• The image of 
an object in such an optical system is the result of its 
inversion in the sphere S3 and reflection at the origin 
of coordinates. This transformation is conformal. 

The refractive index given by Eq. (1) was first 
found by Maxwell in 1854.[2] Maxwell demanded that 
all the rays in a spherically symmetric optical system 
were circles. He obtained Eq. (1), and then established 
the focusing properties of the system which he called 
the fish-eye problem. 

The reason for the particular properties of the fish 
eyewaspointed outby Caratheodory[3J (see also[4l). To 
demonstrate it, let us perform a stereographic projec
tion of the three-dimensional space onto a four-dimen
sional sphere S4 of radius R. A point (x, y, z) is 
then projected onto the point (RI;h R/;2, R/; 3 , R/;4 ), 

t>we shall be using the atomic system of units, and will set the par
ticle mass equal to unity. 

where the point (1; 1, /; 2, ~ 3 , ~ 4 ) lies on a unit sphere in 
the four-dimensional space 

£, = 2Rx I (R' + r'), £, = 2Ry I (R' + r'), s' = 2Rz I (R' + r'), (3) 
s• = (R' - r') I (R' + r'). 

The trajectories transform into the major circles of 
the sphere S4, and all these circles which pass through 
a certain point on S4 intersect at a diametrically op
posite point on the four-dimensional sphere, which 
explains the focusing phenomenon in the original prob
lem. 

The Maxwell fish-eye problem is closely related to 
the Coulomb problem. When an electron of energy ~ 
moves on an ellipse in the Coulomb potential Uc ( r) 
= -Z/r, the family of orbits in momentum space[s,a] 
is identical with the trajectories which we have con
sidered for the potential given by Eq. (2) ie1 

R'= -28. 

For a monotonic, spherically symmetric potential 
U(r) the action function in momentum space 

p 

T(p, p', e)= J rdp 
P' 

(4) 

(the integral is evaluated in momentum space over the 
classical trajectory joining the points p and p') satis
fies the equation 

(:;.)'+(:;,)'+(:;)'-[r(e-~')]'=o, (5) 

where r( U) is the inverse of U( r ). [?l In the case of 
the Coulomb potential r(U) = 2Z/(U2 - 2~), Eq. (5) be
comes identical with the Hamilton-Jacobi equation 
(with the momenta replaced by the coordinates) for the 
Maxwell problem, provided both Eq. (4) and the follow
ing condition are satisfied: 

Z'=v. 

This will be investigated below for the corresponding 
wave problems. 

2lThe motion of the imaging point over a major circle on S4 is, in 
both cases, nonuniform and is different for the two problems. Uni
formity can be achieved by introducing a new time parameter, and 
this is done for the Coulomb problem in [7 ]. 

(6) 
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2. THE WAVE PROBLEM 

The fact that the classical trajectories are closed is 
found to be related to the additional symmetry of the 
corresponding wave problem and the possibility of 
separating the variables in a number of coordinate 
systems. The particular feature of our case is that we 
must consider the wave problem and the classical 
problem for a fixed energy E = 0: 

[· _ _!_V'- 2v ]·'•(r)=O (7) 
2 (R' + r')' "' . 

Accordingly, the variables in Eq. (7) (and in the 
Hamilton-Jacobi equation for the classical problem) 
can be separated both in the bispherical and toroidal 
coordinate systems (as well as in the spherical system) 
provided the poles of the coordinate system lie on S3 • 

These two systems differ by the fact that the Laplace 
equation is separable for them, but the Schroedinger 
equation with nonzero energy is not. raJ The solution in 
the spherical set of coordinates will be given in Sec. 4 
for a more general case. 

Equation (7) is invariant under inversion in a sphere 
centered at an arbitrary point b if it cuts S3 on a 
major circle (i.e., if its radius is -IR2 + b2 ). These 
inversions form a group. Therefore, if we have a solu
tion 1/J(r) of Eq. (7), the function 

R ( r-b ) 
lr-bl 'I' (r-b)' (R'+b')+b (8) 

will also satisfy Eq. (7). By performing successive in
versions in spheres centered on the points x = b and 
x = i' + Ob on the x axis, we obtain an infinitesimal 
transformation. The corresponding infinitesimal opera
tor acting on the wave functions is 

A,'= 'j,R-'[-ix + (R'- r')p, + 2x(rp)], 

where p is the momentum operator. The quantities 
Ay and A~ are defined by analogy. The components of 
the angular momentum operator L and the operator 
A' form the algebra of the 0( 4) group of four-dimen
sional rotations: 

(9) 
[A,', A/]= ie,jkL,, LA'= A'L = 0. 

The commutator of the Hamiltonian H with the opera
tor A', i.e., 

r 
[H,A']= -2iRH, H = _ __!_ V'- 2v 

2 (R' + r')'' 
(10) 

yields zero when it operates on a function satisfying 
Eq. (7). The irreducible representations of the 0( 4) 
group are realized on such functions, and this leads to 
additional degeneracy of the energy levels of the prob
lem (H - E)I/J = 0 at the limit of the continuous spec
trum. These levels exist only for certain definite 
values of v Lsee Eq. (14)j and their degree of degener
acy is n2 (n = 1, 2, 3, .•. ), which is analogous to the 
electron energy levels in a Coulomb field, and con
trasts with the degeneracy of ( 2l + 1) for the usual 
spherically symmetric potential, where l is the 
orbital quantum number. Therefore, the symmetry 
group for the fish-eye problem is identical with that 

found by Fock[oJ for the discrete spectrum of the 
hydrogen atom. 

We note that solutions of Eq. (7), obtained by 
separating the variables in bispherical coordinates 
with the z axis, are the eigenfunctions of the operators 
H, A~2 + Ay2 + L~, and L~, and in toroidal coordinates 
they are the eigenfunctions of H, A~2 , and L~, where 
the corresponding eigenvalues are the separation con
stants. 

The above representations of the 0( 4) group are 
not unitary with respect to the scalar product defined 
in the usual way, and the operator A' is not Hermitian 
because the transformation given by Eq. (8) does not 
conserve the normalization of the wave function. The 
representations are unitary with respect to the scalar 
product with weight ( R 2 + r 2 r2. The introduction of 
the scalar product is equivalent to the reformulation of 
the problem, given below. Unitary representations can 
be obtained if we consider a new formulation of the 
problem, which is analogous to the Sturm problem for 
the hydrogen atom.( 10J If we use the wave function 

cp(r) = (R' + r')-''l'(r), 

Eq. (7) becomes the eigenvalue problem: 

(H- v)cp(r) = 0, 

where H = Y4(R2 + r 2)V 2(R2 + r 2). The Hermitian 
operator 

(11) 

1 
A= (R' + r')-'A'(R' + r') = ml- 3ir +(R'- r')p +2r(rp)], 

commutes with H, and as A' it satisfies relationships 
of the form given by Eq. (9), i.e., it is a generator of 
the 0( 4) group, where 

H=R'(A'+L'+'J,). (12) 

If we now transform to the coordinates ~i given by 
Eq. (3), and introduce the wave function cl>(~ 1, ~2, ~ 3 , 
~ 4 ) = ( R2 + r 2 )3/ 2cp ( r ), then by using Eq. (12) we find 
that we can write Eq. (11) in the form of the Laplace 
equation on the four-dimensional sphere 

• 
R'(D- '/,)Ill= viii, D = _ •j, L M..M., + 1. 

i',k•t .... 
(13) 

In this expression Mik is the generator of an infinitesi
mal rotation on the ~i~k plane of the four-dimensional 
space, and 1-D is the angular part of the four-dimen
sional Laplace operator. The expressions for the op
erators Mik in terms of the coordinates x, y, z are 
given, for example in [11' 12l, The eigenfunctions of Eq. 
(13) are the four-dimensional spherical harmonics 
>Itnlm [oJ, and the eigenvalues are degenerate in the 
quantum numbers l, m: 

v.=R'(n'- 1/,). (14) 

The Schri:idinger equation for the discrete spectrum 
of the hydrogen atom in the Fock representation[oJ 
takes the form 

(15) 
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where K is the integral operator 
1 f ID(s.', sz'. li.s.')d'n' 

KID(s,, 5,, 5,, 5,) = 2n' (f.,- s/)' +(£.,- 5,')' +(f.,- s.')' +(£.,- s.')' 

(16) 

In this expression d4n' is an area element on the unit 
four-dimensional sphere over which the integral is 
evaluated, <l»(~1, ~2, ~s, ~4) = (R2 + r 2)2cpc(r) (we are 
omitting normalizing factors), ~i can be expressed in 
terms of x, y, z with the aid of Eq. (3), and cpc(r) is 
the wave function for the hydrogen-like atom in the 
momentum representation in which p is replaced with 
r. 

The functions +nlm form a complete set of eigen
functions for the operators K and D, and comparison 
of the eigenvalues 

K'P' nzm = n-np nzm, D'J! nzm = n2'¥ nzm 

leads to the result 

(17) 

Therefore, the wave equation for the fish-eye problem 
reduces to a differential equation for the four-dimen
sional spherical functions +nlm, while the Schrodinger 
equation for the hydrogen atom in the Fock representa
tion is an integral equation for +nzm. The wave func
tions for the original problems can be expressed in 
terms of each other 

'ljl(r) ,= (R' + r)-'lzrpc(r). (18) 

The wave equation with the potential - 2v / ( R 2 - R 2 ) 2 

(with a singularity at r = R) is invariant under inver
sions in spheres which cut S3 at right-angles. The 
internal symmetry of the problem is described by the 
Lorentz group, and so is the continuous spectrum in 
the Coulomb problem with which this potential is con
nected in a similar way to that in which the Maxwell 
potential is related to the discrete spectrum. 

3. FOCUSING IN THE WAVE PROBLEM AND THE 
GREEN FUNCTION 

The transformations given by Eq. (8) of the sym
metry group of Eq. (7) enable us to find the Green func
tion quite readily. Separating the variables in terms of 
the spherical coordinates, we can find the spherically 
symmetric solutions of Eq. (7) with a singularity of the 
form r- 1 : 

l'R'+r' ( _1 R )/ na ~j>,(r)= rR exp tatan --;: isin2 , 

'(R' + r' ( _ R ) j na ~j>,(r)=Re[~j>,(r))=---sin atan 1-· sin-, 
rP r 2 

where a = .J1 + 4v/R 2 • If we apply the inversion given 
by Eq. (8) to I/J 1(r), substitute r' = -bR 2/b 2, and multi
ply the result by (R 2 + r' 2 r 112, we obtain the following 
solution of Eq. (7), which is symmetric in r and r': 

1 1 (R' + r') (R' + r'') 'I• 
r(r, r') = tsin(na/2) lr- r'l [ (R' + r') (R' + r'')-lr- r'I'R' ] 

{. [(R' + r') (R' + r'')-lr- r'I'R']''•} 
X exp 1a arctg I , 

r-r'IR (19) 

which has singularities of the form I r - r' l-1 and 
I r + r'R 2/r' 2 r\ and describes a source placed at the 
point r' and its point image (sink) at the point 
-r'R2/r' 2 • The existence of this solution means that the 
Maxwell potential will ensure perfect focusing in a 
wave sense as well, i.e., when diffraction is rigorously 
taken into account. 

Applying the transformation given by Eq. (8) to 
1/! 2 ( r ), we find that 

G(r,r') =Re[r(r,r')], 

which has a singularity of the form I r - r' l-1 • It is 
clear that 

[V' + 4v I (R' + r')']G(r, r') = 4n6(r- r'), 

(20) 

i.e., we have found the Green function for Eq. (7). 3> 

In[e] the Coulomb Green function in the momentum 
representation Fc(p, p', ~) was found in the phase
integral approximation as the sum over all classical 
trajectories join~ng the points p and p' in the momen
tum space of the components whose wave behavior is 
determined by the factor expL-iT(p, p', ~)}. In view of 
the above connection between the two problems we can 
replace the momenta p, p' in the expression for 
Fc(p, p', ~) by the coordinates r, r' and then by 
multiplying it by ( R2 + r 2 r 312( R2 + r' 2 r 312 and using 
Eqs. (4) and (6) we obtain the quasiclassical Green 
function for the Maxwell potential. It is interesting 
that this differs from the exact Green function given by 
Eq. (20) only by the fact that 0! = .J1 + 4v/R 2 has been 
replaced by 2 fV!R. 

\ l/ ···.; t,... ~- \\ ~-. 

4. ~2l~POTENTIALS AND ADDITIONAL 
DEGENERACY 

The fish-eye problem can be generalized as follows. 
We shall require that all rays leaving a given point on 
the sphere S3 and lying in a certain plane passing 
through the source and the center of symmetry will 
pass through some other point on S3• Let rr/ iJ. be the 
angle which the two points subtend at the center. 
Therefore, rays lying in a given meridional plane will 
be focused, but the "foci" for different planes will lie 
on a circle. The angle of deflection is given by Eq. (17) 
in[ 1 l for b = 1, a= iJ.- 1 - 1, and for r < R the refrac
tive index is found to be a special case of Eq. (18) in[ 11 : 

n(r) = n' ~ [ ch (f!ln ~)] _,= ~ (r/R/:(R/r)" · (21) 

When iJ. = 1 this result becomes identical with Eq. (1). 
If we can extend the validity of Eq. (21) to all space by 
analogy with what has been done for Eq. (1 ), we obtain 
the refractive index first found by Lenz[ 1sl (see 
also[ 4 141), or the mechanical problem of the motion of 
a zero-energy particle in the potential 

2v 
U.(r) =- r'R'[ (r/R)" + (R/r)"]' · 

(22) 

Let us introduce the polar coordinates r, ~ in the 
plane of a particular trajectory. The equation of the 
trajectory is 

(r/R)" = B sin f!(1'r--!to) +l'B'sin'f!(-lt- tt,) + 1, (23) 

3) The expression for the Green function is valid for either sign of v. 
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where the constants J 0 and B are determined from the 
initial conditions. If iJ. is a rational number, i.e., if it 
can be written in the form of the simple fraction 
iJ. = 11 1/11 2, where 11 1 and 11 2 are integers, theri the 
function r(J) in Eq. (23} is periodic and the trajectory 
closes after 11 2 revolutions around the center. In the 
opposite case, the trajectory is open and fills densely 
a plane region. All the rays leaving the point r are 
focused after 11 2 /2 revolutions: 1) at the point 
-rR2/r2 if 11 1 and 11 2 are odd, 2) at the point rR2/r 2 if 
11 1 is odd and 11 2 even, and 3) at the point -r if 111 is 
even and 112 odd. 

The wave equation with the Lenz potential 

[- 1/2V' + U.(r)]¢(r) =0 

where v = VN and 

VN=R'!l'(N+ 2~ )(N+ 2~ -1), 

(24) 

(25} 

has the following regular solutions which decrease at 
infinity: 

( ) - ( r )'[( r )'"+1] -<"+'Jf'"c<"+'>'••+'k (R'"-r") y (tt q>) 
'i'nlm r - R R n' R'• + r" lm ' ' 

(26} 
where nr is the radial quantum number (nr = 0, 1, 
2, .•• ), n = nr + Z + 1 is the principal quantum number, 
N = n + (JJ.- 1 - 1}Z, and c/1 are the Gegenbauer poly
nomials. Therefore, the values of v for which energy 
levels exist at the limit of the continuous spectrum 
depend on the quantum numbers n and Z, but only in 
the form of the combination n + (JJ.-1 - 1)Z. This leads 
to additional degeneracy of the zero-energy levels if 
11 is a rational number. The same reason (dependence 
of energy on only the linear combination of quantum 
numbers) is responsible for the degeneracy of the 
levels of the two-dimensional anisotropic harmonic 
oscillator. The possible degrees of degeneracy are 
equal to the squares of integers. If we adopt the defi
nition of the symmetry group of a quantum-mechanical 
system given in[151 , the Sturm problems for all the Lenz 
potentials with rational I.L have 0( 4) symmetry. The 
infinitesimal operators of the group can be constructed 
by analogy with the case of the anisotropic oscilla-
tor. [15• 161 but the finite transformations of the group 
are unknown.4 > We note that, in the case of two dimen
sions, the solutions of the wave equation for the Lenz 
potential can be obtained from the solutions for the 
Maxwell potential with the aid of the conformal trans
formation used in£41 for the corresponding classical 
problem. 

5. CONCLUSION 

The connection between the closed nature of the 
trajectories in classical mechanics and the additional 
degeneracy in the corresponding quantum-mechanical 
problem is well known. It is also known that there are 
only two central fields, namely, the Coulomb field and 
the harmonic field for which the classical trajectories 
are closed for arbitrary energy E (this occurs only 
for E < 0 in the Coulomb field). We have considered 

4>we note that Eq. (24) is invariant under the transformation de
fined by Eq. (8) when b = 0 (inversion in the sphere S3 ). 

here a class of problems in which the trajectories are 
closed only for the fixed energy value E = 0, but with 
the coefficient of the potential energy were allowed to 
take arbitrary values. We could then choose a potential 
U I.L ( r) such that the ratio of the periods of the radial 
and angular motion will be constant for all trajectories 
(when E = 0) and equal to any number given in advance. 
In the corresponding quantum-mechanical problem we 
have the additional degeneracy for E = 0, so that as 
the coefficient v in the potential increases, and the 
potential well becomes deeper, the new bound states 
appear in groups with the same value of the linear 
combination of the quantum numbers nr and l, and the 
degeneracy is removed as the energy of these states 
decreases and departs from the value E = 0. In spite of 
the fact that we have confined our attention to E = 0, 
the fact that the coefficient in the potential has been 
arbitrary enables us to formulate the self-adjoint 
problem and obtain a complete set of orthogonal func
tions for each potential. 

In the simplest potential of this kind, i.e., the fish
eye potential, the ratio of the radial and angular 
periods of the particle is unity, i.e., it is the same as 
in the case of motion in a Coulomb field. Accordingly, 
in the quantum case, we have the same degeneracy, 
i.e., the energy depends only on the linear combination 
nr + Z. Hence, it follows that the symmetry group for 
the two problems should be the same, and for the fish 
eye the existence of the group of four-dimensional ro
tations is even more useful than for the Coulomb prob
lem because the stereographic projection in the co
ordinate space transforms the Schrodinger equation 
into the differential equation for the spherical functions, 
whereas in the Coulomb field we obtain the integral 
equation for the spherical functions after stereographic 
projection in momentum space. 

The fact that the wave equation for the fish-eye 
problem can be written as a wave equation on the sur
face of a four-dimensional sphere provides a particu
larly useful and unique property of this problem, i.e., 
the fact that the perfect focusing occurs not only in the 
geometric but also in the wave approximation. In fact, 
waves leaving the source located on one pole of the 
sphere are obviously focused at the opposite pole. 

The analysis given here shows that the focusing 
properties of the potential are quite general and are 
closely related to its internal symmetry. Analysis of 
this connection in a general form would be an interest
ing theoretical problem. 
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