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A consistent theory of the depolarization of i.J. + mesons in magnetic fields parallel to the direction of 
the initial polarization of the i.J. + mesons is developed, in which the possibility of charge exchange 
occurring is taken into account. Formulas are derived for the residual polarization and the depend
ence of the polarization on time. Analysis of the formulas shows that in some cases experiments in 
longitudinal fields are sufficient to detect charge exchange processes. The results obtained allow 
the broadening of the class of substances which can be investigated by means of the i.J. •-meson tech
nique. The theory can primarily be employed for the study of semiconductors. The formalism de
veloped also describes a different physical situation when two competing chemical reaction channels, 
one of which leads to the formation of an unstable diamagnetic chemical compound, are open to the 
i.J.+ meson. 

1. The possible role of charge exchange in the process 
of i.J. +-meson depolarization has repeatedly been men
tioned in the literature[ 1• 21 • However, further analysis 
is extremely desirable since an erroneous expression 
for the polarization was obtained in[1l, while in[2 J the 
authors consider only the simplest case of absence of 
electron spin relaxation in the muonium atom, under 
the conditions that the mean lifetime of a muonium 
atom with respect to ionization is much larger or 
much smaller than the characteristic time of hyperfine 
~nteraction, and that the muonium atom does not enter 
into a chemical association. 

2. As is well known, the process of charge exchange 
is one in which a muonium atom (Mu), formed in a 
material at i.J. +-meson velocities close to the Bohr 
velocity, subsequently and several times successively 
ionizes and captures an electron. Clearly, the ioniza
tion probability is proportional to 

exp [-(I -lJ.EF) I kT], 

where I is the ionization potential of the atom Mu in 
the medium, while ~EF is the distance from the Fermi 
level to the conduction band. Naturally, in the general 
case the ionization potential cannot be calculated in any 
reliable manner and it is a parameter of the theory. 
Besides, in solid bodies the ionization potential can be 
expressed in terms of other thermodynamic character
istics of the Mu atom in the medium. For this purpose 
we should use the phenomenological formula obtained 
in[sJ. 

(1) 

Here, EMu is the equilibrium binding energy of muon
ium in the medium, We and Wi.J.+ are respectively the 
electron and i.J. •-meson thermodynamic work functions 
and QMu is the heat of solution of muonium. Clearly, 
the ionization potential I, defined as the distance of the 
level to the bottom of the conduction band, is related to 
the muonium binding energy EMu by the relation 

(2) 

3. Before proceeding to the quantitative analysis, 
let us note the characteristic features of the process. 
As is well-known, the characteristic time determining 
the depolarization of the i.J. + meson in a Mu atom is 
given by ~to = 1/ w0 , where w0 is the hyperfine splitting 
constant. If the muonium atom exists during the time 
~t « ~t0, then during this time the i.J. •-meson spin 
practically does not feel the influence of the electron 
spin and is not depolarized. Therefore, if the charge 
exchange processes proceed so intensely that the span 
of each "muonic" stage of the life of the i.J. + meson is 
much smaller than ~t0, then depolarization scarcely 
occurs. In vacuum 1/w0 = 3.6 X 10-11 sec, but in 
material media this time may turn out to be consider
ably longer. For the S-state the hyperfine splitting 
frequency is determined by the density of the wave 
function at the origin; for a hydrogen-like atom 
11/1(0) 12 = 1/1Ta3, where a is the Bohr radius. In (and 
only in) the case when the muonium atom is highly 
"swollen" in the medium and the corresponding Bohr 
radius is several times the lattice constant, the muon
ium can be described as a hydrogen-like atom with an 
interaction potential e 2/ €r and an effective electron 
mass m*. Since for a hydrogen-like atom I~ e 2/2€a, 
it follows, for instance, for an ionization potential 
~ 0.1 eV and € '::;; 10, that the radius of the atom in the 
material medium attains a value of several Angstroms 
and the corresponding depolarization time attains by 
qrder of magnitude a value of 10-9-10-8 sec. We em
phasize once again that the macroscopic description of 
the effect of the medium on the Mu atom with the aid 
of the parameters m* and € ( w, k) is possible only 
when the dimensions of the muonium atom are·large; 
the impracticability of this approach in the opposite 
case has been repeatedly noted in the literature[4 l. 

4. Since the time of thermalization of muonium from 
atomic to Maxwellian velocities is of the order of 
10-12-10-13 sec, charge exchanges can influence the 
depolarization only if they continue to occur after 
thermalization. This is possible only when the binding 
energy EMu is small (or negative). For example, in 
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semiconductors muonium may, under certain condi
tions 1 generally turn out to be ionized in the final 
statet 2J. The latter will be the case if the donor im
purity level formed by the Mu atom in the forbidden 
zone turns out to be much higher than the Fermi level. 

It is worthwhile, in this connection, to emphasize 
the difference between the energy characteristics of 
the muonium atom in a material medium: I and EMu• 
In its sense, EMu stands for the energy expanded in 
the excitation of a muonium electron to the Fermi 
level and, practically, it is precisely this quantity that 
determines whether the muonium will be ionized in the 
equilibrium state or not. The ionization potential I is 
suitable for use as a characteristic of the individual 
properties of the impurity center (the Bohr radius, 
etc.). Whereas in semiconductors I> EMu always, in 
metals EMu > 1. 

As has already been noted, if the charge exchanges 
are very intense and in each stage the Mu atom exists 
for the time At « 1/ w0 , then the coupling between the 
electron and iJ. +-meson spins does not practically have 
time to establish itself and depolarization does not oc
cur. As can be seen, qualitatively, the nature of the 
behavior of the depolarization as a function of the fre
quency of charge exchange is analogous to the depend
ence of the depolarization on the mean "flipping" time 
of the electron spin in a "purely muonic" mechanism 
of depolarization [2• 3• 51 • 

5. Let us proceed to the calculation of the depolari
zation. In future, we shall take into consideration three 
possible modes of state of a iJ. + meson in a material 
medium, namely, a Mu atom which has become part of 
a diamagnetic chemical compound, a free Mu atom in 
any excited state, in particular, ionized muonium (a 
free iJ. +-meson), and a free Mu atom in the ground 
state. To these states are assigned respectively the 
indices 0, 1 and 2. 

Notice that, generally speaking, we could leave out 
the excited (exciton) states of muonium and assume 
that the state 1 corresponds to a free iJ. + meson, since, 
as follows from the well-known formula for the ioniza
tion probability (see, for example, [sl), the population of 
the excited states is extremely small in comparison 
with the population of the ionized state. However, 
bearing in mind still another variant of the physical 
interpretation of the formalism developed below (it 
will be considered in Sees. 8 and 9 of the present 
article), we shall write the general equations withal
lowance for the excited states. 

Notice that in our case the combination of the ex
cited states with the ionized state is connected with 
two assumptions. First, all the excited states are, in 
so far as depolarization of a iJ. • meson is concerned, 
equivalent to the ionization state and, secondly, all the 
excited and ionized states are highly "mixed up" and 
enter into the kinetic equations as a single level. The 
first assertion is quite natural since even in a 2S-state 
of a hydrogen-like atom the hyperfine splitting charac
teristic time is larger by a factor of 8 than in the 
ground state, and, remembering that in investigations 
into charge exchanges the case of the "swollen" 
muonium is the most interesting, we see that depolari
zation in the excited states proceeds so slowly that we 
may identify them with the ionization states. The 

second assertion is also realistic enough; however, 
bearing in mind the relatively small population of the 
excited levels, we shall not discuss it. 

Let us introduce the transition probability aik 
= 1/Tik• where Tik is the mean decay time of the 
state i into the state k. Let us now define Pi(t) as the 
contribution of the iJ. + mesons in the i-th state to the 
general polarization: 

P,(t) = P/(t)N,(t) I N(t). (3) 

Here, Pi(t) = LNi(t)- Ni:(t)]/Ni(t) is the polarization 
of the JJ. + mesons in the corresponding state; Ni = Ni 
+ NJ: is the number of iJ. + mesons in this state; Ni and 
Ni are the number of mesons with spin orientation 
along and opposite the initial direction of momentum; 
and N(t) is the total number of iJ. + mesons. Then the 
polarization of the whole ensemble of iJ. + mesons is 

P= P,+P,+P, 

Let us write the system of differential equations for 
the case when the external magnetic field is directed 
along the initial polarization: 

dP,(t) 
-d-1- =-(a" +ato)P,(t)+ a,.P,(t), 

dP,(t) =-(a21 +a,)P,(t)+auP,(t)+( 8
8p') , 

& t ~~ 
dP,(t) 
--= a,P,(t) + a"P,(t). 

dt 

(4) 

The term (a P 2( t)/at) N2/N reflects the fact that the 
contribution to the general polarization of the JJ. + 
mesons in the Mu atoms decreases even if the relative 
fraction of these JJ. + mesons does not change. In ac
cord with[ 2l, we suppose that depolarization does not 
occur in the states 1 and 0. In other words, we are not 
considering here "slow depolarization" in a chemical 
compound caused, as a rule, by interaction with the 
nuclear magnetic moments of the atoms of the medium 
and having characteristic times of the order of 10-5 -

10-4 sec. We may assume that C:Xik does not depend on 
time beginning from the instant when thermalization is 
accomplished. In contrast, during the process of 
thermalization the probabilities of capture and ioniza
tion significantly depend on the iJ. •-meson and muonium 
velocities and, hence, on the time. Clearly, it is not 
possible to establish, in the general case, the form of 
this dependence and therefore we shall consider the 
system (4), beginning from the moment of completion 
of thermalization, with the initial conditions: 

P,(0)=1-r-~, P,(O)=r, P,(O)=~. (5) 

Here, r is the fraction of the JJ. + mesons which form 
muonium towards the end of the thermalization, while 
{:3 is the fraction of the iJ. +-mesons which form during 
this time a diamagnetic chemical compound (''hot 
chemistry"). As can be seen from (5) and in accord 
with what has been said earlier, we assume that the 
JJ. + mesons are not depolarized during the time of 
thermalization. Clearly, r and (:j are parameters of 
the theory. 

In order to find (ap2jat)N2/N• let us introduce the 
function q(t), which defines the law according to which 
the polarization of the JJ. + mesons in muonium de
creases from the moment of formation of the muonium: 
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P,1 (t) = q(t-t1 )P,1 (t 1 ) (6) 

In conformity with[ 2• 31, we set q(t) = p 10(t), where 
p 10(t) is the component of the muonium density matrix 
which determines the polarization of the J1. + meson. 
To determine (aP2 /at)N /N• we first consider the 
contribution to this term lrom the mesons produced at 
the moment of time t'. The number of such mesons 
remaining up to the time t in the state 2 is evidently 
equal to 

(JN,(t, t1 ) =a12N,(t1)exp {-(a,.+a,.)(t-t1 )}dt1• 

On the average, the polarization of each such meson is 
equal to P~(t) = q(t- t')P~(t), from which it is easy to 
see that 

6(!!:._) =a,,P,(t1)exp{-(a21 +a,.){t-t1)} dq(t-t') dt1• (7) 
at ,., dt 

In order to obtain (apdat)N /N• we must integrate 
(7) and add the change in polahzation in that portion of 
the Mu atoms which was produced just before the 
initial moment: 

(ap,) s' 1 1 dq(t-t1
) - =a12 P,(t)exp{-(a,.+a,.){t-t)} d dt1 (8) 

at """ o • t 
dq(t) 

+ rexp{- (a,.+ a,.)t} --;u-· 

By formally integrating it and taking into account 
(5), (6) and (8), we easily reduce the system (4) to a 
system of Volterra type integral equations with a dif
ference kernel: 

P, (t) = (1- r- ~)exp{- (a.,+ a.,)t} 

• 
+a,. J P,(t1) exp{- (a12 + a 10 ) (t- t1 )}dt1, 

I 

P,(t) = rexp{- {a21 + a 20)t}q(t) 

I (9) 
+au J P,(t1)exp{-(a,. + a,0) (t- t1 )}q(t- t')dt1, 

' ' 
Po(t) = ~ + a 20 J P,(t1 )dt' + a10 J P,(t1 )dt1• 

0 0 

The system of equations (9) can, of course, be obtained 
directly from physical considerations. 

Remembering now that the role of the excited states 
is small in comparison with the ionized state and, also, 
assuming that a two-stage reaction of the type e + 1J. + 
+ A - ( iJ.A +) + e - ( iJ.A), which leads to the same 
stable dimagnetic compound as the reaction Mu + A 
- MuA, does not occur in matter, we shall henceforth 
assume a 10 = 0. The case when u 10 ~ 0 will be con
sidered in Sec. 9. 

Let us first consider the simplest case, when elec
tron spin relaxation is absent in the muonium atom and 
the characteristic times for ionization and chemical 
reaction is considerably larger than the characteristic 
time of hyperfine interaction in the medium, which 
determines the depolarization of the 1J. + meson in the 
muonium atom: 

1/ Cilo ~ 1 I a,. + 1 I a,.. (10) 

Then, in conformity with[ 1- 31 , we may assume that in a 
longitudinal magnetic field q(t) is equal to 

From which 

for t =0, 
for t =1= 0. 

aq = _ 1 { 
at 2(1 + x') ll t). 

Here the dimensionless field is 

H(1 + m,fm.) 
x= 

HacOlovacuum 

(11) 

(12) 

The solution of the system (13) is elementary, but in 
the general case the expression for P(t) = P 1(t) 
+ P 2(t) + P0(t) is quite unwieldly. Therefore we only 
give the answer for the special case when there is no 
chemical reaction ( a 2o = 0, {3 = 0): 

cr = y(a,.- a,.)'+ 4a.,a,.q~, 
(15) 

A = cr-'{(a., +a,.) [1- r{1 - q~H - a.,(1- r) (1- q~)}, 
B= 1-r{1-q~)· 

If r = 0 (which, generally speaking, is hardly realistic), 
the formula (15) coincides with the solution obtained 
in( 2J ·by a different method. 

6. In the general case it is more convenient to ob
tain the solution using the notation of the system in the 
form of (9). To begin with, notice that in an experiment, 
besides the polarization P(t) at a given instant of time, 
we can measure the mean polarization of the ensemble: 

where TIJ. = 2.2 x 10-6 sec is the mean lifetime of the 
1J. + meson and P 00 is its residual polarization. 

As can be seen from the system (4), we neglect in 
this paper the direct interaction of the 1J. +-meson spin 
with the random magnetic fields existing in the medium. 
Accordingly, we assume that if a muonium formed a 
diamagnetic chemical compound with saturated bonding, 
its depolarization ceases (see (4)). Then, evidently, 
P 00 = P only when, after a time t << T J1., the whole en
semble of 1J. + mesons finds itself in chemical combina
tion. To solve the system (9), let us use the Laplace 
transformation. The Laplace transform of the function 
f(t), as is well known, is 

~ 

L(j, cr) = J e-•• f(t)dt 
0 

and we see at once that 

P~ = P0 (t = oo) = a 20 J P,(t1)dt' = a20L(P2 ; cr = 0) (16) 

and the mean polarization is 
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- 1 • 1 
P=- _EL(P,; o=-). (17) 

'Tp i=O '('"' 

In accordance with the well-known convolution theorem, 
the Laplace transformation for the system (9) yields for 
us 

L(P,1 o) = 1-r- ~ +' a 21L(P21 o) 1 

au+ o au +o 

L(P,1 o) =rL(q1 o+a .. +azo) +a"L(P., o)L(q1 o+a21 +azo) 1 

fJ azo ) L(P,1 o)=-+-L(P,1 o). (18 
0 0 

As has been previously shown[sJ, we have for L( q, u) 

L(q u)=~q~(u)= 1 (1+2vlu)'+(ro,lu)'('lz+x') (19) 
1 u u (1+2vlu)'+(ro0lu)'(1+x'+vlu) · 

Here, 211 is a parameter characterizing the attenua
tion of the polarization of the electron in the Mu 
atom[ 2• 3l, 

Solving the system (18), we obtain 

L(P., o) = (1- r- fJ) + a21rL(q1 o + a 21 + azo) 
a"+ o- a"a .. L(q1 o + a 21 + a 20 ) 

L(P,, o) = [au(1- ~) + or]L(q, o +a .. + a 20 ) 

a"+ o- a,.a"L(q, o +a,.+ a,) 

(20) 

In accord with (16), we have for the residual polariza
tion 

The physical meaning of these requirements are clear 
enough: all the iJ. + mesons should attain a chemically 
bound state within a time much shorter than the life
time. These requirements can, of course, be obtained 
by using obvious kinetic considerations. We emphasize 
that these are not necessary conditions. 

By letting in formula (23) a 12- oo and a 21 - 0, 
we obtain P for the "purely muonic" case. Taking into 
account the three-point relation, we see that if for the 
"purely muonic" case P differs from P 00 , then we 
have four equations for four unknown parameters: 11, 

w0 , a 20 and (3. Consequently, we can, in principle, 
determine all the parameters using only Poo and "P. 
Notice, however, that in the "purely muonic" case P 
differs from Poo only if a 20 $ 1/Tfol. = 4.54 x 105 sec-1 • 

Such small reaction rates are, generally speaking, 
seldom met with. 

7. Let us turn now to the analysis of the time de
pendence of the polarization in a longitudinal field. 
Using (18), (19) and (20), we obtain for the Laplace 
transform of the polarization P( t) = P 1( t) + P 2( t) 
+ P0(t) the expression 

f3 
L(P1 o)= 0 (24) 

(1- f3- r)oR(o)+ Q(o) {a"ro +(o + a 20 )[a12 (1- [3) +or]} 
+ o[(a"+o)R(o)-a,a .. Q(o)) ' 

(21) where Q(o) == (a"+a,+o+2v)'+"''•'('/,+x'), 

from which 
P~-13= 1 - ['l•+(v+'l,a .. )/azo]OJo2 • ( 22) 
1- fJ [a,+ a .. + 2v]' + ro,'[1 + x' +(v + 'l,a21 )la20 ) 

It can be seen from formula (22) that in case of charge 
exchanges the residual polarization P00 is described 
exactly by the same formula as in the "purely muonic" 
case[ 3• 7 l, but now the role of the relaxation parameter 
is played by the quantity 11' = 11 + }'2 a 21 • For this reason 
it is not possible to reveal the presence of charge ex
changes if we restrict ourselves to the analysis of P00 • 

Using the formulas (17)-(20) we obtain for the mean 
polarization P. 

(P- p)l(1- ~) = 1- 'l,b'.ro,'[1 + r I (1- p)a"T"] {azo'[b" 
+ ro,'(1 + x' + (·v + 1/ 2a")/a,]+ (a.,'+ a 21 )R/a20'.a!2"r.}-', (23) 

where 

a 20' = a, + 1 I T"' b' = (a.,' + a .. + 2v) 1 

R = b" + ro,'(1 + x' +v 1 (a.,'+ a .. )). 

It can be seen from formula (23) that, again for the 
mean polarization in the event of charge exchanges as 
well as in the "purely muonic" mechanism, the char
acteristic three-point relation 

[ P(H,) P(H,) ] 1 const 
1-P(H,) 1-P(H,) H,'- H,' 

is fulfilled. It is clear from obvious physical consider
ations that P differs from P00 only when a "highly 
prolonged" time dependence of the polarization is ob
served. From formula (23) follow at once sufficient 
conditions for P to coincide with P whenever they are 
simultaneously fulfilled. These conditions are 

1 1 1 azo'-'" -<;;;;a.,, -<;;;;a,, -<;;;;---. 
't'" 't" 't11 a21+azo 

R(o) == (o +a"+ a,) (a"+ a,+ a+ 2v)' + (uo'[ (a,+ a"+ o) 
X(1+x')+vJ. 

To find P(t) we must take the inverse Laplace trans
form of (24). For this purpose, as is well known, we 
must break the expression (24) up into partial frac
tions, which, generally speaking, requires our finding 
the roots of the equation 

(a"+ o)R(o)- a,a,Q(o) = 0. (25) 

Since this is quartic equation in a, its roots can, 
generally speaking, be obtained by a standard method. 
We shall not, however, do this, bearing in mind that in 
reality, the dependence of the polarization on time may 
be observed only if Eq. (25) has roots which are small 
compared with w0 • In fact, it follows from (24) that the 
polarization has the form 

' 
P(t)= EA,e"•'+Poo. 

1=1 

At the present level of experimental technique, the 
time dependence can be observed only if there are 
roots I a I s 108 sec-\ which is equivalent to the re
quirement I a I « Wo. 

In its expanded form Eq. (25) has the form 

(26) 

o' + o'[3(a21 +a,)+ a"+ 4v) + o'[a"a" +(a .. + a,+ 2v) (27) 
X (2au + 3a21 + 3a20 + 2v) + OJo'(1 + :t2)) 

+ o[(a .. +a,+2v)'(a,+a,+a,) + 2a"a,(a,+azo+2v) 
+ ro,'{(a, + a 12 + a20 )(1 + x') +v}] ·~ 

+ [ a,a, (a" +a,+ 2v)' + ro,'a, {a, ( 1 + x') + v + 1/ 2a 21}). 

It can be verified that for small roots I a I/ w0 « 1, 
for all values of the parameters: a 12, a 20, a 2t, 11, the 
a 4-term is small in comparison with the term quad
ratic in a while the term cubic in a is small com
pared with the term which is linear to within 
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I a 12/ wg. Therefore, the small roots may be found by 
solving the quadratic equation obtained from {27) by 
neglecti.ng terms depending on a 4 and a 3 • 

In the case when a= 0! 12 + 0!20 + 0!21 ?:' w0, we can, 
to within I a II w0, neglect the term quadratic in a and, 
hence, verify that Eq. {27) has the only small root 

[a,.b' + filo2 {(X2o(1 + .x')+ V + '/,a 21}) 

cr, =-a.. [b'a + 2a.,a,.b + filo2{a( 1 + x') + v}] ' 

{28) 

where b = a20 + a 21 + 2v. It is easy to see that for a 12 
« w0 there is a small root for all values of the re
maining parameters. 

If a 12 Z w0, analysis of formula (28) shows that in 
the case when w0/b >> 1, there is a small root if 
a20 « w0. When w0/b ~ 1, there is a small root if 
a 2o « w0 and the magnetic field is strong ( x2 » 1 ). 
If, however, w0/b << 1, then the conditions for the 
existence of a small root are: a 20 << w0, if a 12 > a2r. 
and a 20 / a 21 << w0/ a 12 if a 12 > a 12. 

Notice, however, that there exists another very 
general restriction on the parameter a 20. It is clear 
that any observation of the time dependence is possible 
only in the case when Poo differs so much from unity 
that this fact can reliably be fixed by experiment. 
Estimates which may be obtained on the basis of 
formula (22) show that at the present standard of ex
periments the condition a 20 ;S; w0 should always be 
fulfilled. Notice, finally, that in all the cases when a 
small root exists, the term 2a 12 a 2ob in the denominator 
of formula (28) turns out to be negligibly small in 
comparison with the rest and is consequently dropped 
in future. 

Let us begin the analysis with the case a 12 2' w0. If 
at the same time w0/b « 1, then, calculating in the 
conventional way the coefficient A1 which corresponds 
to a small rootll, we obtain for the time dependence of 
the polarization 

{29) 

The formula {28) which determines the root a r, is in 
this case insignificantly simplified. The physical 
meaning of the formula (29) is clear: a rapid depolari
zation of the J.J. + meson does not occur in the case 
being considered. When w0/b ~ 1, a small root exists 
only at high fields (x2 » 1). In this case we have 
again P(t) = Poo + (1 - P 00 )ea1t, but the formula {28) 
is considerably simplified: 

_ a, [ + v + '/2a 21 ] O't----- a,. a,, + a, 1 + .x' • 
{30) 

Finally, if w0/b » 1, we have 

p -P [1+2x' 8 
(t)- ~ + 2(1 + .x') + 2(1 + .x') 

(31) 

and 
_ [ +v+'/,a21 ] 

cr,-- a,. 1 + .x' . (32) 

When a 12 << W0 it is sufficient to consider the cases 
w0/b ~ 1 and w0/b « 1 since the condition a ?:' w0, 

1>Here, as below, we omit the simple but long computations and give 
only the final results, which, moreover, almost always can be obtained 
from physical consideration. 

which has been taken as the basis of our classification, 
excludes the case b << w0. Generally speaking, when 
a << w0 there can also be a case when only one small 
root exists, but we shall consider it later. 

When w0/b « 1 we again have for the polarization 
formula (29). From {28) we obtain for a / 1• 

a, [ 1 w,'b ] 
cr, =-a a 20 + 2 b' + filo 2 (1 + .x') . 

(33) 

If w0/b ~ 1, the coefficient A1 is most easily ob
tained from physical considerations. At the initial 
moment of time we have according to formula (26) 

• 
1=P~+A,+ EA,. (34) 

i=2 

Let us note, in order to find the sum of the coefficients 
for "fast" roots, that during an interval of time of the 
order of 1/ w0 the loss in polarization can only be due 
to the depolarization of those mesons which found 
muonium from the very outset. Since a 12 << w0, no 
appreciable pumping into the "muonic state" will 
occur during this time. In order to determine the 
polarization lost in the "muonic state," it is useful to 
remember that the decay rate of the second state 
(a21 + a20) in our case is of the order of w0. There
fore, the loss in polarization after a time .lt, satisfy
ing the condition 1/a 1 » .lt >> 1/ w0, will be deter
mined by the formula 

• 
I'J.P= EA,=r£1-q~(a,+a",v)]. (35) 

i=2 

We obtain from the formulas (34) and (35) 

P(t) =P~+{1-P~-r[1-q~(a"+a20 , v)]}e"•'. {36) 

The quantity q00{u) is determined by formula {19). The 
formula for the small root takes the form 

a,[u'+filo'('/,+.x')] {37) 
a,= -a, [ 1- ( ) [b' , 1 ')] , ] a, + a,. + filo ( + .x + ffio 'V 

When a 12 « w0 we can obtain a further simplification 
of the formulas {36) and {37), namely: a 1 = -a 12 and 

P(t =P + (1-r-~)(1-P~) e-""' (38) 
I ~ (1- ~) • 

Let us now consider the case when a << w0. As has 
already been noted, we must seek the small roots, 
neglecting in Eq. (27) the terms of the order of a 4 and 
a3 • Then we have 

1 [ filo 2
'V ·] 1 {[ filo2 'V ]' 

cr,,, =-2 a+ 4v' + •filo2 (1 + .x') ± 2 a+ 4v' + filo'(1 + .x') 

4 [. + (v + 'f,a,.)!ilo2 
]}'" 

- a, a,. 4v' + ffio'(i + .x') . {39) 

As can be seen from {39), there exist two small roots 
if the condition 

( 2v) + ~ (1 + .x') ~ 1. 
ffio 2v 

(40) 

is fulfilledo It is clear from this that only one small 
root exists if v ~ w0 and the external field is not too 

2>In the case x = 0, a 20 = 0 and v ~ a 21 , the formula (33) goes over 
into the Nosov-Yakovleva formula [2 ]. 
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strong. We obtain at once this root from (39); 
CJ1 = -a 12. Accordingly, we have in this case the 
physically obvious expression for the polarization 

P(t) = ~ + (1- r- ~)e-«,t.' (41) 

For the case of two small roots, a convenient 
formula may be obtained for the sum A1 + A2 of the 
coefficients before the small roots. It is clear that 
when v >> w0, or when v ~ w 0 and x2 >> 1, there is, 
generally, no rapid loss in the polarization of the iJ. + 
mesons. Therefore 

A,+A•= 1-P~o (42) 

The rapid losses in the case when v << w0 are con
nected only with the loss in the polarization of the iJ. + 
mesons which formed muonium at the initial moment 
of time (after thermalization). We obtain in analogous 
fashion to formula (35) 

A,+A,=1-P~-r/2(1+x')o (43) 

Formula (43) is very important since it affords us the 
possibility of a direct experimental determination of 
the parameter r-the fraction of iJ. + mesons which form 
free muonium towards the end of thermalization-and 
also of the hyperfine splitting frequency w0, provided 
the condition v « w0 is fulfilled. 

The coefficients A1 and A2 must be found by con
ventional means. For the case v << w0 

A_ (cr,'+cr,a+a 12a 20}[(1-~)a .. +rcr,] (44 ) 
•- cr.{a .. a,.+2(cr.+au)'(1+x')/(1+2x')}' 

1 ( v ) 1 {( v )' ( v+'/,a")}''• 
cr,,, =-2 a+ 1 + x' ± 2 a+ 1 + x' -4a" a,. + 1 + x' 

For the case v >> w0 

(cr.• + acr, + a .. a,.) [ (1- ~)a .. + rcr,] 
k= ' cr,[aua" + (cr, + au)'] (45) 

cr,,, = --f(a +c)± Y (a+ c)'- 4a12 (a,. +c), 

where c = w~v/[4v 2 + w~(l + x2 )]. With the exception 
of the case of ultrastrong fields we have c R~ w~/ 4v. 

The formulas (44) and (45) become considerably 
simplified if the radicand can be expanded in a series. 
Let us classify the cases which are of interest for the 
interpretation of experiments. 

a) Let wo»v;a12»{a2ha20,v/(1 +X2)}. Then 
we have 

P(t)=[1-P- ( 1 -~) )ex {-(a +v+'/,a,.)t} 
. ~ 2(1+x') p 20 1+x' 

+ (1-P-r) e-a,• +P 0 (46) 
2(1 +x') ~ 

As can be seen, if an experimental P(t) dependence is 
available and the parameters of the problem satisfy the 
set conditions, then using the formula (46), we can 
determine the parameters {3, a 12, a 20 and v + Y2a21. 
As has already been noted, the parameters r and w0 

are determined, in the general case, with the aid of 
formula (43). Thus, in the case under consideration 
we can extract practically all the information about the 
nature of the charge exchange process. 

b) Let a 12 ~ a 21 >> (a20, v/(1 + x2) and x » 1, 
w 0 >> v. 

Then 

P() 1-P { aua,.[1+a .. /2a,.(1+x')]t} t = exp - ------';__------''----'-:...;;_ 
1 + 2a,. ( 1 + x') /a21 a21 + a 12 

(1-~) (47) 
+[ 1-P~- 1 +Za,.( 1 +x')/a,. )exp[-(a 12 +a21)t]+P~o 

It can be verified that we can, with the aid of formula 
(47), extract all the information about the parameters 
of the problem with the exception of v, which we can 
find from the residual polarization Poo provided it 
does not turn out that v << a 21• 

c) Let a 21 + a 20 + vj(l + x2) » a12, and let, as 
before, w 0 >> v. In that case 

p ( 1 + 2x') rv [ ( v ) 1 
(t)= 2(1+x')[a(1+x')+v] exp - a+ 1+x' t 

[ 1 (1+2x')ra ] + - p ~ - r + --:::-:~-,:--;;:-'---,----c;-
. 2[(1+x')a+v] (48) 

[ -a .. (a,. +(v + '/,a.,)/(1 + x'))t 1 
X~ o 

a+v/[1+x'] 

As a simple analysis shows, we can, when we have 
available the experimental P(t, x) dependence (for 
different values of the field), extract with the aid of 
formula (48) all the necessary information except the 
parameter {3, which is determined with the aid of the 
formula (22) for P00 , the formula assuming a simple 
form in this case. 

d) Let us proceed now to the cases when v » w0 • 

There arise here especially simple relations. If a 12 
+ a20 + c >> a 12, then 

P(t)=Poo+ (1-P~-~)exp[- a.,(a,.+c) t] 
a+c a+c 

+~exp[-(a+c)t]o 
a+c 

(49) 

If we do not make any additional assumptions about the 
parameters of the problem, then experiments in ultra
strong fields-w~ ( 1 + x2) ~ 11 2-are necessary in this 
case for the extraction of the complete information. If, 
however, the condition a 21 + a 12 >> a 20 + c is fulfilled, 
then 

P(t)=Poo+(1-P~)exp{- a"(a,.+c)t}o (50) 
a12 +a,. 

In this case it is not possible to extract the complete 
information from experiments in a longitudinal field 
only. 

8. Let us now note an extremely important circum
stance. The entire formalism of the theory of iJ. +
meson depolarization in which charge exchange is 
taken into account, without a single alteration, de
scribes a completely different physical situation, 
namely, that case when no charge exchanges occur but 
muonium may enter into a stable as well as an unstable 
diamagnetic chemical combination. Then the state 1 
should be understood as an unstable chemical compound. 
The principal equations of the theory completely 
characterize this situation with the only assumption 
that no free iJ. + mesons remain after the completion of 
thermalization. The generalization of the results to 
this case is, in principle, trivial. However, the corre
sponding computation is quite tedious and we shall not 
consider this variant, especially as it is somewhat 
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exoteric. Notice that the quantity ( 1 - r - {3 ), which 
earlier determined the number of free iJ. + mesons 
towards the end of thermalization, but now determines 
the fraction of iJ. + mesons which form an unstable 
diamagnetic compound towards the end of thermaliza
tion, may be different from zero in the new interpreta
tion of the equations (''hot chemistry"). 

In view of the possibility of a new interpretation of 
the equations of the theory, the s pee ial case {3 = 0, 
a 20 = 0 is of considerable interest. This case now 
corresponds to the formation of only unstable chemical 
compounds. It is obvious, in the first place, that the 
residual polarization is P00 = 0 when {3 = 0 and a 20 

= 0 On the other hand, all the formulas determining 
the time dependence of the polarization are consider
ably simplified. Thus, instead of the formula (28) we 
now have 

0', = -a.,w,'b /2{b'a + w,'[a(1 -l- x') + v]}, (51) 

Where b = (a21 + 211) and a= (a12 + a21). 

In conformity with the foregoing, let us begin the 
analysis with the case a Z w0 , and in it, with the case 
a 12 ~ w0 • Formula (29) now takes the form 

P(t) =e"•', (52) 

the root 0' 1 being especially simple here if 11 « b 2alw~ 
and w0 v'T+X2 « b. In this case 

P(t) = exp{-a12wo't / 2ab}o (53) 

In the case w 0 lb ~ 1 and for strong fields, we obtain 

P(t) =exp{-a12bt/2a(1+x')}o (54) 

When w0 lb » 1 we obtain instead of the formulas (31) 
and (32) 

1+2x' { bt} 
P(t)=2(1+x')exp -2(1+x') 0 

When a 12 « W 0 and w0 lb « ..J 1 + x2 the quantity 
P(t} is determined by the formula (53). When a 12 

« w 0 and w0 lb ~ 1 the formulas (37} and conse
quently (36) are insignificantly simplified. 

(55} 

Let us consider now the simplification which arises 
when a << w0 • In the case of a single small root, we 
must set {3 = 0 in formula (41). If there are two small 
roots, substantial simplifications arise in those cases 
when the formulas (46)-(50) work. 

Let us consider the case when w0 >> 11. We now 
have, when a12»{a 21, 11l(l +x2 )}, 

P() 1+2x' { (v+'/,a,.)t} 1-r 1 (56) t = exp - + e-«., 
2(1 + x') 1 + x' :l(1+ x') 0 

Consequently, it is possible to determine the quantities 
w0, a 12, r and ( 11 + }'2 a 12 ) in the case described by the 
formula (56). Therefore, the rate of production of the 
unstable chemical compound a 21 can be determined in 
this case only if 11 << a 21 whereas the decay rate a 12 

can be determined at once provided there exists a 
canal for the production of the unstable compound by 
means of "hot chemistry." If a 12 ~ a 21 >> 11 I ( 1 + x2) 

and x2 » 1, then we obtain instead of the formula (47), 

P( [ a.,a 21 t ] t) = exp - -:::-:--~-:-
2(a., +a,) (1 + x') 0 

(57) 

Evidently, in this case w 0 and ( T 12 + T 21) are deter
minable, the last expression being the sum of the 

formation and decay times of the chemical compound. 
If a21 + 11l( 1 + x2 ) » a 12, we have 

(1+2x')r { ( v ) } 
P(t)= 2(1+x')[1+(1+x')(a.,+a,)/v] 6xp- ah+1+x' t 

[ 1 + r(1+2x')(a12 +a21 ) ] 

+ -r 2(1+x')[a21 +v/(1+x')] (58} 

{ a.,(v + 'f,a.,)t } 
X· exp - --:-:--.:.::.::--:-'-~~-,--,

(1+x')(a12+a,)+v 0 

In this case, it is possible to determine all the parame
ters of the problem with the exception of special situa
tions. Indeed, imposing the more stringent condition: 
a 21 ». (a 12, 11 I ( 1 + x2 )), we obtain from formula (58) 

P(t) = [t- r ] r""'o 
2(1 +x') 

(59) 

Intheoppositecase: 11l(l +x2 )» (a 12,a21) we have 

(1 +2x')r { vt } (60} 
P(t)= 2(i+x') exp - 1+x' +(1+r)exp{-ant}o 

For a rapid relaxation of the electron spin in 
muonium ( 11 >> w0 ) in the case a 21 + c >> a 12 we ob
tain instead of formula (49) 

P(t)= [1- r I ]exp[- a.,t/ ].+: r exp[-(a21 +c)t]o 
1 + a, c 1 + a 21 c 1 + a 21/c 

(61) 

In this case the number of unknown parameters is one 
more than the number of equations which may be ob
tained with the aid of the formula (61 ), provided we do 
not employ ultrastrong fields. 

Finally, if a21 + a12 >> c, then 

P(t) = exp[-a,ct/ (a.,+a.,)]o 
(62) 

The set of formulas (52}-(62} describes practically 
all the interesting cases of iJ. +-meson depolarization 
in the formation of unstable diamagnetic chemical com
pounds. It must also be borne in mind that the pheno
menological constants a 21, a 12 and 11 could purposely 
be varied, making those changes in the mode of de
polarization which would enable us to obtain sufficiently 
complete experimental information about all the con
stants of the theory. We shall not carry out a detailed 
analysis of the various possibilities. We only note one 
curious consequence of the formulas (56) and (62). It 
is easy to see that if the "hot chemistry" channel is 
absent, these formulas are "degenerate" and, there
fore, there arises a possibility, when investigating 
depolarization, to obtain information about the pres
ence of the ''hot chemistry" channel in the production 
of unstable chemical compounds of hydrogen. Of 
course, we must then remember that the extrapolation 
of all the conclusions obtained in the investigation of 
the chemistry of muonium to hydrogen should be car
ried out taking into consideration the role of the iso
tope effect. Especially significant differences may be 
expected exactly in the investigation of the ''hot 
chemistry" canal since the role of the tunnel effect 
may be important for this canal. On the other hand, 
significant differences may arise in the case of un
stable compounds with small binding energies as a 
result of the influence of the isotope effect on the mag
nitude of the binding energy. 
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Nevertheless the method proposed appears to be an 
extremely promising method for the study of the 
chemical reactions of hydrogen in which unstable com
pounds are formed. Since unstable diamagnetic com
pounds of hydrogen are very common (it is sufficient, 
for example, to mention the group of the metallic 
hydrides, and also the solutions of acids), the proposed 
method is of sufficient interest. 

9. Let us now consider the case when a 10 "' 0. Evi
dently, this means, when the equations are interpreted 
in the spirit of Sec. 8, that the resulting diamagnetic 
chemical compound does not necessarily disintegrate 
into the initial products, but may subsequently be con
verted into a stable compound. In other words, the 
final products of the reaction of muonium may be 
formed in two ways: directly and by means of a two
stage reaction. In this case we obtain for the residual 
polarization 

[a.,(1-[3)+ a"r]wo'(v +'/,(a"+ azo)) 
[a 10 (a21 + azo) + a,a,,] [b' + wo'(1 + x')] +' (63) 

+ wo'[a"v + a,(v +'/,a,)] 

It is easy to see that with the aid of the substitution 

1 -V= (1-B)a,+a 10r =(1-R.-r)a, +r, (64 ) 
U12 + <lto <ltz + Uto 

Utz" = Uto + 'Utz, Uzo 11 = Uzo +- a2ia10 I (ato + 'Cl.t2), 

v" = 'V +T- Uztat0/2(au+ Uto), 

we obtain instead of the formula (63) a complete 
analog of formula (22): 

( 1- B") wo'b/2 
Poo=1- • 

azo"[b' + wo'(1 + x')] + wo'v" · 
(65) 

Thus, when a 10 "' 0 the residual polarization is deter
mined by the same formula as in the "purely muonic" 
case. 

As before, it is always possible in the case a 10 

;e 0 to obtain analytic expressions for the time depend
ence of the polarization P(t). The classification of all 
the possible variants, as well as the complete analysis, 
is, generally, absolutely analogous to the case when 
a1o = 0. 

We shall not give here all the rather unwieldly 
formulas for P( t). We shall only note a general 
property characteristic of the structure of these ex
pressions. Experiments in only longitudinal fields do 
not make it possible for us to recognize the situation 
when a 10 "' 0 and for the analysis of this problem we 
need a complete experiment, i.e., a concurrent investi
gation of P( t) in longitudinal and transverse magnetic 
fields. This is quite natural if we remember that ex
periments in only longitudinal fields are in a number of 

cases insufficient for depolarization in a charge ex
change process to be distinguished from the "purely 
muonic" mechanism. To illustrate the above state
ment, we give one of the formulas for P( t) for a 10 

"'0. 
If a 12 + a 10 ;?; w0 and w0 /b « 1, then 

P(t)=[1-Poo- a,(1-B)+ra" ]e"', (66) 
2(a, + a 10 ) (1 + x') 

with 

a= - [a,.+ a;,~~ azo (a"+ 2(1 ~2x') ). + 1: x'] · (67 ) 

As is easy to see, the formulas (66) and (67) coincide 
with (31) and (32) when a 10 = 0. 

10. It seems to us that the complete theory devel
oped in this paper of J-1. +-meson depolarization, in 
which the process of charge exchange has been taken 
into account, permits us to significantly broaden the 
class of solid bodies and chemical reactions for the 
investigation of which the J-1. +-meson method may be 
employed. However, as is evident from the results, in 
a number of cases it is impossible to recognize from 
experiments in longitudinal fields the presence of the 
charge exchange mechanism and, consequently, the 
theory should be supplemented by an investigation of 
J-1. +-meson depolarization in magnetic fields perpendicu
lar to the initial polarization. 

In conclusion, we express our sincere gratitude to 
D. P. Grechukhin, I. I. Gurevich, V. G. Nosov, 0. B. 
Firsov, D. Ya. Choporov, and E. G. Chudinov for an 
extremely useful discussion of the results. 
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