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Quantum oscillations of the energy gap, current density, and surface impedance in superconductors 
are investigated. The distinctive features of the oscillations with respect to the magnetic field are 
elucidated, and the period and temperature dependence of the amplitude are found. The experimental 
feasibility of establishing the dispersion law ;(p) and the gap ~(p) from the period and temperature 
dependence of the amplitude of the oscillations is proved. The conditions on Maxwell's equations at 
the interface between metal and vacuum are discussed. The rule for determining the phase y in the 
conditions for quasiclassical quantization is found in general form. 

1. INTRODUCTION 

SINCE Pincusu1 pointed out the existence of surface 
levels in superconductors, a large number of articles 
have appeared which are devoted to this question. The 
possibility of a quasiclassical consideration of such 
levels was first mentioned in article [2J and the Bohr 
rules of quantization for the excitations in supercon­
ductors are derived. In [sJ the quasiclassical treatment 
was used in order to study vortex lines in a pure super­
conductor. The asymptotic form of the exact wave func­
tions of the excitations is found in £41 in the quasiclassi­
cal domain, and with their aid the values of the phase in 
the quantization roles are obtained. In [Sl it is shown 
that the number of levels increases rapidly with increas­
ing magnetic field and decreases abruptly upon an in­
crease of the angle of reflection of the excitation from 
the surface of the superconductor. An analysis of the 
nature of the classical trajectories and of the quantized 
spectrum is carried out in £81 ; there it was shown that 
the strong dependence of the number of discrete levels 
on the magnetic field leads to resonances and to quan­
tum oscillations of the various physical quantities with 
respect to the magnetic field. 11 

The present article is devoted to the calculation of 
the quantum oscillations of the energy gap, current den­
sity, and surface impedance in a superconductor occu­
pying the half-space y ~ 0 in the presence of a magnetic 
field H 11 z. Since the quantum oscillations are essentially 
connected with the quasiclassical nature of the corre­
sponding levels, we shall discuss this question in some­
what more detail. In the classical case the energy of the 
excitations in a superconductor in the presence of a ma~­
netic field is changed by the amount- (e/c)A·v (see [2' 8 ): 

--- e e 
e{p)= ±;"6.'+ ~· --Av = ± e,(p)--Av, (1.1) 

c c 

6P = e,(p) - ~. v = a;p 1 ap, (1.2) 

where J1. is the chemical potential, ~ is the energy gap, 
and A is the vector potential of the magnetic field B. 

1lThe construction of a phenomenological theory of superconduc­
tivity was also discussed in [6]. In order to avoid misunderstandings, 
we emphasize that in this connection we had in mind the derivation of 
the well-known equations of the microscopic theory of superconduc­
tivity from intuitive semi-phenomenological considerations. 

In the geometry of interest to us 
~ 

A,= A,(y) = J B(y')dy', Av =A,= 0. (1.3) 

According to Eqs. (1.1) and {1.3) the phase trajecto­
ries Py = Py(Y) associated with the quadratic dispersion 
law €e = p2/2m are determined by the equation 

Pu= ±P± = [2m{j.t-'-±y'(e+p)'-il'}]V•, (1.4) 

p = p(y) = eA,v, / c, 

~-'- = e,- (Px' +P.') I 2m= e,- p 11' I 2m. (1.5) 

The form of the phase trajectory essentially depends on 
the parameters Px, Pz, and €, where in general there 
are four branches Py(Y) corresponding to each set Px, 
Pz, € in accordance with the four possibilities for the 
choice of the plus and minus signs in Eq. (1.4). In order 
to write down the condition for the validity of the quasi­
classical treatment, let us turn to the characteristic 
trajectory depicted in Fig. 1. One can talk about classi­
cal motion in that case when a quantum transition from 
one orbit to the other is excluded. It is clear that the 
uncertainty of the coordinate is characterized by the at­
tenuation depth o of the field (or by the dimension ; 0 of 
a pair; in our case o will play the fundamental role). 

2 

FIG. I 

Therefore, the obvious and easily satisfied condition for 
the absence of transitions from trajectory 1 to trajectory 
3 is (oy) » o (see Fig. 1), where the transitions are ab­
sent with exponential accuracy in [- (oy)jo]. On the other 
hand, the uncertainty in the momentum Py is given by 
(opy) ~ fi/6 and the absence of transitions (also with ex­
ponential accuracy) from trajectory 1 to trajectory 2 is 
guaranteed by the condition 

IP.I >fzl6. (1.6) 

1024 
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The fulfilment of condition (1.6) is equivalent to the 
"usual" criterion for the quasiclassical nature of the 
motion (see, for example, r71 ) and corresponds to a 
"division" of the motion along upper and lower orbits21 

(see Fig. 1); it is certainly satisfied for p 11 ~ PF· Pre­
cisely this simplification has been used in a large num­
ber of articles (see, for example, raJ) and precisely this 
criterion, in essence, is cited in r41 • For the validity of 
the "true" quasiclassical treatment, however, it is also 
necessary to exclude quantum transitions from orbit 1 
to 1' (or from 2 to 2'). The appropriate condition ob­
viously has the form 

(llp~'1 ) = (P+- P-)>lilll. (1. 7) 

The fulfilment of condition (1.7), as already mentioned, 
essentially depends on the values of Px, Pz, and E; thus, 
for example, for P11 = PF, € Rj !:!., and pRj 1::!. from Eq. 
(1.4) it follows that 

p,(O) - (m'tl.p)'1• - imtJ.- 1(/ipFf'Go- 1/h' I a'g,, >hI so, 1i I II (1.8) 

(see Fig. 2, where in order to be specific € is taken to 
be less than !:!.). 

A detailed analysis of the situations when the quasi­
classical treatment is valid is carried out in raJ. Of 
course, the question of whether to solve this or a differ­
ent physical problem quasiclassically requires a deter­
mination of what values of Px, Pz, and € are important 
in the problem, and whether they satisfy inequalities 
(1.6) and (1.7). 

Now let us go on to the description of the quantum 
picture of the energy spectrum in a magnetic field, raJ 
which is essential for what follows. In the absence of 
a magnetic field, for a given value of Px the allowed 
energy values E(Px) = En(Px) are indicated by the shaded 
region shown on Fig. 3 (as long as Px < PF values of 
Py and Pz can always be found such that Emin = !:!.; for 
Px > PF one has 

Emin = [ (P.'- p/) I 2m)'- A']ll. (1.9) 

If H < H1 then one discrete level (curve 1 on Fig. 3) is 
split off from the continuous spectrum (€ > 0, Px > 0) 
for each value of Px, where the distance of this level 
from the "old" cutoff of the spectrum has a maximum 
value for Px = PF and its order of magnitude is given by 

H' <D,a'£. <D, 
1\-e-A-- H,----10-'-10-'0e H,---10'0e. 

H,H,'' II' ' lisa 
(1.10) 

The n-th discrete level (for a fixed value of Px) is split 
off from the continuous spectrum in a field H > H~" For 
H » H1 the picture depicted in Fig. 4 is obtained; the 
minimum distance of the n-th level from the gap is of 
the order of 

(1.11) 

(measurement of the levels is conducted from below up­
wards). In the London case H2 ~He, and in the Pippard 
case H2 ~ HcK 113 « He with K = oL/~0 • 

For H > H2 the levels cross the Fermi boundary 
€ = 0; new levels appear in the magnetic field H = Hn, 
where Hn ~ H4n2 and H4 ~ Hca/oL· Their general form 

2) In the Gor'kov equations this corresponds to a change from two 
equations of the second order to two equations of the first order. 

FIG. 2 FIG. 3 

"'· r ~~ 
I 

FIG.4 FIG. 5 

is shown in Fig. 5 (for convenience both € > 0 and € < 0 
are shown in Figs. 4 and 5); the scaling in the figures 
is not maintained. The distance between the levels is of 
the order of (o€) ~ p(O)/n ~ l:!.(HH4 /H~)112 and is appre­
ciably larger than, for example, the quantity tin 
= tieHjmc. This is quite natural: The question is about 
levels resulting from "sliding" orbits with very small 
periods and large frequencies, which are essentially 
imbedded in a layer of thickp.ess o (Fig. 6). 

Quassiclassical quantization is determined by the 
usual Bohr formula S = s/)pydY = 27Tnti (see r7 ' 21 ). The 
more exact notation for the quantization condition has 
the form 

S = 2ali(n + y), (1.12) 

where the phase y depends on the nature of the trajec­
tory. Its form in the general case is derived in the Ap­
pendix (where, in particular, a mistake which was made 
during the calculation of one of the values of y in r41 is 
corrected). It is found that one can formulate the follow­
ing simple rule for the determination of y: if the num­
ber of turning points is even then y = - t , or what 
amounts to the same thing, y = t ; if the number of turn­
ing points is odd, then y = - t. 31 

--~-~---}6 
FIG. 6 

Now, when the structure of the spectrum is clear, 
one can pass to a physical picture of the quantized oscil­
lations in superconductors. 

2. PHYSICAL PICTURE OF THE QUANTIZED 
OSCILLATIONS 

The periodic splitting-off of the discrete levels from 
the continuous band spectrum would appear as if it might 
lead to quantized oscillations of the different physical 
quantities. Let us consider, however, the situation which 
arises in more detail. At low temperatures the levels 
which are split-off from above (€ ;::: !:!., see Fig. 4) are 
occupied to an exponentially small extent (to the extent 
exp {- 1::!./T}); at high temperatures (T ~ 1::!.) the thermal 
''broadening" of a given level (i.e., the possibility of 

3>This rule is valid both for the excitations in a superconductor as 
well as for "ordinary" particles and quasiparticles. 
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transitions to other levels and from other levels) leads 
to an exponentially small amplitude of the oscillations 
(small with respect to T/(o€), where (o€) is the distance 
between the discrete levels). The levels for € < 0 are, 
of course, occupied. However, high temperatures (~a) 
according to the same reasons as above do not lead to 
oscillations. At low temperatures the total number of 
states N for € < 0 is obviously conserved with exponen­
tial accuracy (in a/T) and since all thermodynamic quan­
tities can be expressed in terms of the number of states 
since 

• 
O(J.t) =-J N( JA.')d~t' , 

0 

the amplitude of the corresponding oscillations again 
turns out to be exponentially small. Therefore the ob­
servable oscillations appear when the discrete levels 
cross the Fermi boundary € = 0, i.e., for H > Hz; 
thereby the gap in the excitation spectrum vanishes 
and the oscillating picture develops in principle just 
like in a normal metal. In normal metals the oscilla­
tions are a bulk property; in the interior of a metal the 
discrete spectrum only depends on a single continuous 
parameter (Pz) while degeneracy exists with respect 
to the position of the center of the orbit, which is de­
termined by Px. In superconductors the spectrum is 
discrete only near the surface, where the quantizing 
magnetic field is not small, and it depends on both 
parameters (Px, Pz). Therefore the amplitude of the 
oscillations contains the first power of the parameter 
(o€)/€F ~ p/€Fnmax. which determines the fraction of 
the participating energies. (In a normal metal the cor­
responding parameter 1iQ/€F enters raised to the power 
t .) 

Since with an increase of the magnetic field the 
superconductor changes into a normal metal, specifk­
ally the "superconducting" oscillations, incipient for 
H > Hz, continue only up to Hcz ~ KH2 » H2 in the 
London case and up to He ~ K-1/ 3 H2 » H2 in the Pippard 
case. It is only necessary to mention that, beginning 
with Hc1 ~ K-1 H2 << H2, in the case of a London super­
conductor the picture is complicated because of the ap­
pearance of vortex lines, which leads to a two-dimen­
sional problem. However, since the distance between 
the vortices in fields H 1<:. H2 is much smaller than the 
size of the orbit (ro)112 (r is the Larmor radius), then 
in the x direction the dependence of A on x is averaged 
and in the basic approximation one can restrict oneself 
to the one-dimensional case (with a, of course, depend­
ing on y). All of the stated information can be directly 
transferred to the case of an arbitrary dispersion law 
and arbitrary dependence of a(p) in Eqs. (1.1) and (1.2). 
It is clear that the specific form of the oscillations de­
pends on ~(p) and on a(p); it is important, however, that 
the basic formula (1.12) of quasiclassical quantization 
is retained. Therefore, the period of the oscillations 
will always be determined by that change of the field 
aH for which the number of levels under the Fermi 
boundary changes by one: 

L'.S,.,,(e=O, H)= 2nli. (2.1) 

The extremum of S(Px, Pz) is taken with respect to Px 
and Pz, which guarantees the maximum density of oscil­
lation of the determined states. It is curious that the 

extremal nature of the number of levels as a function 
of Px and Pz indicates periodicity of the motion of the 
excitations along the appropriate orbits in coordinate 
space. In fact, the displacement during the period Tis 
given by 

dy o p oS oS 
. (t'.x)r = rf-v.- = -- p.dy = --0p , (t'.z)r =- ·0p (2.2) 

'f v11 aP:r. x " 

and for S = Sextr we have (ax)T = (az)T = 0. The shape 
of these orbits is shown in Fig. 7. We note that analo­
gous cross sections are also distinguished in cyclotron 
resonance, in the de Haas-van Alphen effect, etc . 

z CfS-· 
!/ 

FIG. 7 

As usual, the temperature dependence of the ampli­
tude of the oscillations is determined by the distance 
between the levels: 

cl I os .... I (lle)=liro,.,r=2nli - 0- . 
C e=O 

(2.3) 

Experimental investigation of the oscillations makes it 
possible, in principle, to determine two functions of H 
(namely, oS/o€ and oS/oH), where in contrast to the 
case of normal metals the dependence on the direction 
and magnitude of the field is not a universal function but 
depends on the specific form of ~P and a(p). Thus, ex­
perimentally one can obtain two functions of three vari­
ables whereas all of the quantities (~(p), a(p), and 
aUap) entering into formulas (2.1) and (2.2) are evalu­
ated only on the Fermi surface and therefore only depend 
on two variables. This implies the possibility in prin­
ciple of experimentally establishing all of the functions 
which enter into the theory. 41 

In conclusion, before going on immediately to the 
calculations, let us turn our attention to the nature of 
the conditions on Maxwell's equations at the interface 
between the metal and vacuum. Since the following dis­
cussions pertain to both superconductors and to normal 
metals, we shall demonstrate them for the example of 
normal metals. As is well known, the boundary condi­
tions on Maxwell's equations are considered to be con­
tinuity of the tangential components, Et and Ht, of the 
fields, and also continuity of the normal components Bn 
and Dn. These conditions are obtained after a suitable 
averaging of the microscopic equations of the field. The 
problem of specific interest to us about the quantum os­
cillations is the presence of several "microscopic" dis­
tances of different orders of magnitude, over which the 
macroscopic quantities are formed. These distances 
are: the intercharge distance a ~ li/pF, the Larmor 
radius r, and the mean free path length l. Upon averag­
ing over distances A >> a, r, l the usual macroscopic 

4)The point is that knowledge of a function of three variables is 
equivalent to knowledge of an infinite number of functions of two vari­
ables, for example 

~ z't.(x, y) 
f(x, y,z)= ~--k-! -, 

k=O 

iJ'f t.=-1 0 azTt. %=0 
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equations and boundary conditions are naturally obtained. 
However, as a rule we are interested in averaging over 
distances a<< A « r, l. In this connection in the equa­
tion connected with the magnetic field, 

4n 
rotB=-j 1 

c 
(2.4) 

both terms which are determined by distances of the 
order of a (the spin paramagnetism Ms, the constant 
Landau diamagnetism ML, and the lattice magnetism 
Mz) as well as the oscillating diamagnetic moment, 51 

which changes over distances of the order of r, enter 
into j. Therefore, in connection with the well-known 
derivation of the boundary conditions, the integral of 
the oscillating term on the right hand side of Eq. (2.4) 
turns out to be small (to the extent that A/r is small) 
and the quantity (B - 41TMs - 41TML - 41TMz)t turns out 
to be continuous. Since we are not interested in small 
monotonic terms, in what follows we shall write the 
boundary condition simply as the continuity of the vec­
tor B. 

Let us describe the plan of the calculation of the 
quantum oscillations to be given below. As already 
mentioned the oscillations are always associated with 
quasiclassical states; therefore Sec. 3 is devoted to a 
description of the quasiclassical wave functions and 
Green's functions. The necessity for a description of 
both the wave functions and the Green's functions is 
connected with the following. In order to calculate the 
energy gap and the current density it is necessary to 
carry out a summation over all of the states. In weak 
fields (H < H2 :>..He) in the presence of an essential 
"non-quasiclassical nature" in the energy spectrum­
that is, a gap whose magnitude is appreciably larger 
than the distance between the levels, 81 it is more con­
venient to use the Green's functions since the quasi­
classical Poisson summation in this case turns out to 
be extremely complicated. Namely, in Sec. 4 the ex­
ponential smallness of the amplitude of the quantum 
oscillations is proved for H < H2 with the aid of the 
Green's functions. In strong fields (H > H2 ) the gap in 
the spectrum of the states of interest to us is absent, 
and the calculations turn out to be simpler in terms of 
the wave functions (Sec. 4). Finally, Sec. 5 is devoted 
to the determination of the oscillations of an easily 
measured physical quantity-the surface impedance. 

3. QUASICLASSICAL WAVE FUNCTIONS AND 
GREEN'S FUNCTIONS 

The form of the wave functions of the excitations in 
a superconductor in the quasiclassical region was de­
rived in rel. In r41 the asymptotic form of the wave func­
tions is written down for two limiting cases in the re-

S)The separation of the electronic diamagnetic moment (more pre­
cisely, the moment associated with the diamagnetic orbital quantization) 
into a monotonic part (determined by the interval of the energies €F) 
and an oscillating part (connected with an interval of energies of the 
order of hQ) is, of course, nonunique; however, it is nonunique only 
to the same extent as the inaccuracy (of order A/r ~ a/r) of the bound­
ary condition itself. 

6lof course, the "non-quasiclassical nature" in the sense of a sum­
mation does not in any way contradict the quasiclassical nature of the 
motion of the excitations. 

gion sufficiently close to the turning points, and the 
value of the phase y in the Bohr quantization rules is 
found. Let us carry out an investigation of the general 
case in a symmetric notation. strictly discrete levels 
correspond to finite phase trajectories. For p 11 - PF 
the corresponding trajectories, as follows from Eq. (1.4), 
have the form shown in Fig. Sa (the dotted line indicates 
the motion which would formally occur in the absence of 
the boundary at y = 0); with the reduction of (pF- Pu) 
the trajectory takes the form shown in Fig. Bb; finally, 
for (pF- Pu) :s 0 the trajectory is shown on Fig. Be. 

I 
I 

,' 

g,''ot-, ----1f---~-;;-g !I 
\ 

' 

a b 

FIG. 8 

Now let us find the wave functions in the quasiclassical 
regions, i.e., sufficiently far away from the turning 
points y0, y1 • The general equation for the wave func­
tions 'If is given by 

l' ( -p, - tJ. ) ( u ) 
~ ~ 'II= ell', 'II= . 

- L\, - ~- p v' 
(3.1) 

In (3.1) the small terms (eAvx/mc)2 are at once dis­
carded. We shall seek the solution in the form 

{ i s" , iP,x iP,z} 'l"=(Fo+liF,)exp h (p,+lip,)dy +--;t+~ . (3.2) 

Substitution of (3.2) into (3.1) leads, in the zero-order 
approximation in 11, to the following homogeneous equa­
tion for F0 : 

; Po' p.'-pll' 
~ ( 2m- 2m 

(H,- e)Fo= 
_ tJ. -~+PF2 -Pil2 

1 1 2m 2m 

p-e~ -/',. 

F, = 0, (3.3) 
p-8 

which contains Po as a parameter. The condition for the 
solvability of the homogeneous equation (3.3) determines 
p0, coinciding with the "classical" Py(Y) in Eq. (1.4); and 
the solution of (3.3) associated with this Py gives the 
"classical" solutions for u and v. In the qext approxi­
mation inti an inhomogeneous equation is obtained for 
F1 

~ PoA{_dF, i d } (H,-e)F,=-o, t-+-Fo-(lnp,)-p,F, 1 
m dy 2 dy 

A ( 1 0) 
o,=· 0-1 · 

(3.4) 

Since the homogeneous equation (3.3) corresponding to 
(3.4) has a nontrivial solution F0, for (3.4) to have a 
solution the right-hand side (which depends on p0 as on 
a parameter) must be orthogonal to the solution of the 
homogeneous equation which is the adjoint of (3.3), that 
is, to F0 : 

{ A dFo 1 A d } ~ 
i F,o,-+-F,o,F,-(lnpo) =p,F,o,F,. 

dy 2 dy 
(3.4a) 
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From Eq. (3.4a) it follows that 

i d ' 
p, = --.-ln[p,(F,cr,F,)]. 

z dy 
(3.5) 

Substituting (3.5) into (3.2), in the basic approximation 
(in order to write down this approximation, knowledge 
of F 1 is not required) we obtain the natural quasiclas­
sical formula 

'!' = c_F,exp{.!.._ J p,dy'}, F, = ( ['/,(1 +s/(e+ p))J'i'). (3 6) 
1'u, h -['/,(1-s/(e+p)))Y> · 

In connection with the fact that the phase trajectory 
has several branches, finally one can write down the 
following answer for 'Ill: 

nr- C~exp{irp.} F ~ { i s" "d '} -r - o cxp - Pu Y . 
''v • h • r , 

(3.7) 

For y < y1 the summation in formula (3.7) goes over 
all values Py(Y) which are classically possible, and for 
y > y1 it goes over those Py(Y) for which Im Py(Y) > 0, 
which guarantees attenuation of the wave function at in­
finity. In order to determine the phase factors exp (i<Pa), 
it is necessary, as usual, to match the quasiclassical 
solutions to the right and to the left of the turning points 
y0 and y11 near which the quasiclassical solution is not 
admissible, and it is also necessary to take the boundary 
condition 'Ill I y=o = 0 at the surface of the metal into ac­
count. The constant C is found from the normalization 
conditions: 

C' ,Lj exp{i(rp.- rp~)} F,•nexp{ ~ f (p,"- p,')dy'} dy = 1. (3.8) 
"·' , fv,"v,' h 

It is obvious that all of the integrals over y appearing 
in Eq. (3.8) are small for a t- {3 (to the extent that the 
quasiclassical parameter 1/n is small, where n denotes 
the number of the level); with the same accuracy one 
can assume that the integration in (3.8) only goes over 
the region 0 5 y 5 y1• As a result for C and 'lily we obtain 

C' ~ j' dy" = C'~ .:!!!__ =C' ~, 
a o Vy Vy 8e (3.9) 

'l" = 1 ~ e"'• F,"cxp{.!.._J p "dy'}· 
l'/ iJS/iJe / • jv," h " 

(3.10) 

From the last discussion it is also seen that to the 
accuracy we are interested in the phase factors exp (i<Pa) 
only affect the phase y in the conditions for quasiclassi­
cal quantization (see Appendix 1). 

Now let us find the quasiclassical temperature-de­
pendent Green's function 

, ( G (w,) ) 
G(w,,P,,P,,y,y )= F+(w,) . (3.11) 

Here Ws = (2s+1)JTT (sis a natural number). For this 
purpose let us utilize the following property of the 
Gor'kov equations, namely: G(ws) = g1(iws) where g1(w) 
is the solution of the corresponding equations for the 
time-dependent Green's functions obtained under the 
condition that w t- En(Px, Pz), where the En denote the 
energy levels of the excitations in the superconductor. 
The equation for the determination of g1(w) has the 
same form as (3.1); it is only necessary to replace E 
by w, and for y = 0 and y = y' it is necessary to estab-

lish the following boundary conditions: g1(0, y') = 0, 
gl(y'- o, y') = gl(y' + o, y'), 

ag, I dg,,. 2m ( 1) 
dy u=u'+o- "diJ u=u'-o = hz 0 . 

Solving Eq. (3.1) for g1 is basically the same as for 
the determination of the wave functions; taking into con­
sideration that w t- En one can easily obtain the follow­
ing expression for the part of g 1(w) of interest to us, the 
part connected with the quasiclassical discrete levels: 

g,(w) = F(w, y, y') /sin (S / 2/i- ny); (3.12) 

F(w, y, y') is related to the wave functions in a simple 
manner and for y = y' it depends on w according to a 
power law; S = S(En)lEn=w andy= y(En)lEn=W· Having 
utilized the relation (3.15), one can finally write down 
that 

G(w,) =F1(iw., y, y') /sin [S(iw,) / 2/i- ny]. (3.13) 

Since an approximate calculation of the thermodynamic 
characteristics in the presence of a gap in the energy 
spectrum is a rather delicate matter, it is helpful to 
have an idealized model, which admits an exact solution, 
as a check on the correctness of the results. Such a 
model is provided by the potential introduced by 
Pincus:UJ 

A(y)={Ho, O<y<o, 
0, {j < y< 00, 

(3.14) 

With the vector potential given by (3.14), the Gor'kov 
equation is, in essence, a system of two second-order 
equations with constant coefficients. Their solution, 
corresponding to G and F+ being equal to zero on the 
boundary of the metal, is given by 

, { ~A,sina,y, O<y<y'<o 

G"(y,y )= 

~B,e''•", o < y' <y < oo. 

(3 .15) 

Here the following notation has been introduced: r = ± 1, 

1 ' 
a,= h[2m(J.t-'- :- r)'(iw + p)'- i\ ')] 'h, 

(3.16) 
1 

B, = Tz[2m(J.t-'- + ir)'w' + i\')J"', Im B,:;;, 0. 

The coefficients Ar and Br are easily determined from 
the boundary conditions. In a sufficiently weak magnetic 
field, when not only in Eq. (3.11) but also for u and v 
one can restrict one's attention to the linear approxi­
mation in H, it is reasonable to use a somewhat more 
realistic (in the sense of analytic properties) model: 

A(y)={H(o-y), 
0 , 

O<y<o 
o<y< oo. 

(3 .17) 

4. QUANTUM OSCILLATIONS OF THE GAP AND OF 
THE CURRENT DENSITY 

The gap and the current density in the superconductor 
are related in the well-known way to the Green's func­
tions F+ and G. (9J However, as will be evident from what 
follows, for calculations of the quantum oscillations of 
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these quantities it is convenient to express them in 
terms of the wave functions of the excitations. 

The corresponding formulas have the form 

t; =P-IEu:v"n,(en), 
states 

ix=i=~ E(Px-~-Ax)lunl'n,(e,). (4.1) 
states 

In each of the relations ( 4 .1) there is an integration 
over the continuum and a summation over the discrete 
spectrum. As already discussed, the oscillating term 
of interest to us is contained only in the summations 
over the discrete states. For their computation we shall 
use Poisson's formula, uoJ and the wave functions of the 
excitations and the energy spectrum we take in the 
quasiclassical approximation. As a result, for the os­
cillating correction to the current density we have 

Nma:c 

J, =--:--.Re \' J dPxdP, J Pxlunl'nF(e")e"'''"dn, (4.2) 
2n mn' "-" 

li=i NYI'l"-

Nmin and Nmax are the minimum and maximum values 
for the number of levels associated with fixed values of 
Px and Pz. Now in the integral over n let us change the 
variable according to the formula n = S(E, Px, Pz)/21Tti, 
after which one can easily perform the integration over 
the energy under the following assumptions: I Emin max I 

T . . ?) h d , >> , s1gn Emin = - s1gn Emax, w ere Emin an Emax 
denote the upper and lower boundaries of the discrete 
spectrum for fixed values of Px and Pz. As a result we 
find 

O(x)=-x-, "A=2n'Tanl . 
shx ae <;0 

(4.3) 

The integration over Px and Pz, which appears in for­
mula (4.3), is elementary to perform using the method 
of steepest descents, after which we obtain the follow­
ing answer: 

k=t 

(I a'n I I a'n I ) -•;, X - 2 - 2 cos(2nkn'"'' + <p), 
aPx ,.,, aP, "''' (4.4) 

where p~xtr and p~xtr are determined from the equa­
tions iln/ilPx = 0 and iln/ilPz = 0; cp = 0 if il2n/ilPi and 
il2n/ilP~ have the same sign, and cp "'= - 11/2 if they have 
different signs. Similar calculations for the gap ~~ lead 
to the following answer: 

_ 

00 I "AI (uv),.,, (I iJ'n / I a'n I ) -'I• 
t;,= E 4 'n'k' apz iJP' cos(2nkn,x,,+'l'). 

k=t Jt :c extr z extr 

(4.5) 

As already referred to in (2.2), the extremal cross sec­
tions correspond to excitations with average velocity 
equal to zero. 

The absence of a gap in the spectrum was very es­
sential in all of the calculations which have been car-

7lThat is, the minimum energy of excitation in a superconductor is 
equal to zero. 

ried out. In the presence of a gap (i.e., in a magnetic 
field H < H2) it is more convenient to write the energy 
gap and the current density in terms of the Green's 
function: [9 l 

T J ~( ePx e'Ax) ix = 2n'n' dPxdP, ~ --;;:;---;;;- G ((u), 

(4.6) 

t; =I "AI ~ J dPxdP, 4:,n' F+(w). 

From formulas (4.6) and (3.13) it follows that for p < ~ 
the series in (4.6) are represented by a sum of exponen­
tially small terms, i.e., the series are exponentially 
small. In fact, as is clear from (3.17), if p < ~. then 
even for T = 0 one finds Im S * 0 and G ~ exp {-1m S}. 

Now let us demonstrate this same result for the ex­
actly solvable model of Pincus. With the aid of (3.15) 
h and ~ are easily calculated according to formulas 
(4.6). One can represent Gw as the sum of two terms: 
G~m -the smooth part and Glli'c -the oscillating part. 
One can verify that the current jx, calculated by using 
G~m, is equal to the expression cited in [9l if the vector 
potential is taken as (3.14) plus a small smooth correc­
tion, connected with the effect of the surface. The func­
tion QOSC is proportional to exp { ia r<'>}, and for I p I < ~ 
(see (3.16)) a&sc ~ exp {- o/(a~0) 112 } -which is an ex­
ponentially small quantity. Thus, the oscillations exist 
in that region of magnetic field where I p I > ~. Simi­
larly, for the temperature dependence of the amplitude 
of the oscillations (I p I > ~) we obtain 

Gosc { 2nTp } 
• ~ exp - (n'/2m6') 'l'(p'- t.'ft' · 

5. QUANTUM OSCILLATIONS OF THE SURFACE 
IMPEDANCE AND OF THE GAP 

As is well known, the surface impedance Z(w) is 
given by 

Z( = 4niw A.(O) = 4niw Joo B d '/B (O). 
w) c' B.(O) c' • y • 

0 

(5.1) 

Here Aw(O) and Bw(O) are the variable components, re­
spectively, of the vector potential and of the magnetic 
induction on the boundary of the superconductor. For 
not too large frequencies, the j {B} in Maxwell's equa­
tions for the determination of the field can be taken in 
the form j { B} = QA + j { B}, where Q is tli.e operator 
connecting j and A in the "usual" case when no oscil­
lations are present, [9l and Tis calculated according to 
formula (4.5). Let Bw(O) be smaller than the period ~H 
of the oscillations and, of course, smaller than the ex­
ternal constant magnetic field H. In this case the equa­
tion 

4n ~ A -

rot B +rot B.= -c-{QA + QA. + j} (5.2) 

can be easily solved in the linear approximation with 
respect to Bw. From (5.2) we have the following equa­
tions for the determination of Band Bw: 

"±n ,.., 4n - (5 3) 
rotB=-QA-1--j{B}, · 

c c 
4;;; ~ 4n - - 4n " 4n - ( ) 

rot B.= -QA. + -[j{B +B.}- j{B} J = -QA. +- (6j). 5.4 
c c c c 
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In the last term of Eq. (5.4) it is necessary to separate 
out the part which is linear in Bw. It is clear that in 
this connection it is necessary to keep the dependence 
on Bw only in the argument of the cosine in (4.5). Let 
us consider the expression for nextr in more detail: 
27Tllnextr = sf)py{B- Bw} dy. For the determination 
of Py(Y) we have the equation 

p(y) +p.(y) =l'6.'+<'>'= eo(p), (5.5) 

where Pw = (e/c) Aw(o~p /oPx). We shall seek Py in the 
form Py = p~0 > + p~W), where p~0 > satisfies the relation 
p(y) = e:0(p); then from (5.5) it follows that p~w> = Pwlvy. 
Having substituted this expression into nextr• we find 

{B } 1 ~ (o) 1 ~ p. n,x,, +B. =- p, dy+- -dy. 
2nli 2nli v, 

extr e;,;;tr 

(5.6) 

Having made use of formula (5.5) for the correction to 
the current density which is linear in Bw and of interest 
to us, we obtain 

w '"'' I"' I ' 
> ~ eP. T ,.,, (k'J., ) 

({)/) =- l...J m 8n'li'k e '"'' 
n=i 

X ('I iJ'n,l I iJ'n,l )-'t.~~dysin(2nkn,.,,+q>). (5.7) 
aPx extr &Pr. extr Vy 

We note that in formula (5.7) for Pw and Bone can use 
the basic approximation, that is, one can use the solu­
tion of the equations 

4n ~ 
rotB=-QA, 

c 
4n ~ 

rotB. =-QB •. 
c 

(5.8) 

From (5.8) it is clear that Pw and p decrease inside the 
metal in the same way and differ only in their ampli­
tudes, that is, 

B.(O) ~ iJf 
p. = B(O) p, and (bJ) = B.(O) iJH . (5.9) 

In Eq. (5.4) we change to Fourier components, having 
continued the field Bw onto the semi-axis y < 0 in an 
even manner. We recall that this corresponds to making 
the assumption about the spectral nature of the reflec­
tion of the excitations at the boundary of the metal. After 
this the equation is easily solved, and one obtains the 
following answer for the surface impedance: 

Z=~Jw[1+ 4n'( iJf)] (q'+Q(q))-'l•dq, (5.10) 
c' , c iJH , 

iJf 1 w iJf 
(-) =-Jcosqy-dy. 

iJH n iJH 
0 

We note that the attenuation depth of a static field (the 
solution of Eq. (5.3)) is given by 

(5.11) 

Now let us again return to the quantum oscillations 
of the gap t::.., which it is natural to represent in the fol­
lowing form: 

L'i=L'io(Y) + ~(y), (5.12) 

where a(y) denotes the corresponding oscillating part. 
For the calculation of both t::..o and ~ one must use the 
self -consistency condition: r9l 

(5.13) 

The Green's function F•{t::..(y)} in turn is the sum of 
the contribution F~ { t::..(y)} from the continuous part of 

the spectrum and the contribution 'F+ { t::..(y)} from the 
discrete part of the spectrum. During the calculation 
of F .. { t::..(y)} one can neglect the small correction ~(y); 
it is precisely this quantity ~1(y) = F .. { !::..0 } which was 
calculated in Sec. 4. As a result, the following equation 
is obtained for the determination of the gap: 

L'i(y) + ~(y) =F,+{L'i,(y) + ~(y)} + ~.(y). (5.14) 

The solution of (5.14) in a magnetic field of arbitrary 
magnitude is an extremely complicated problem. How­
ever, if it is assumed that H2 < H < He, then it is found 
that in the basic approximation one can use the "usual" 
expression for F~; r91 after this it is not difficult to ob­
tain the result that ~ = ~1 ln (en I l::..o);8 > having substi­
tuted here the value of ~1 from (4.5), we finally obtain 

~(y)= 

(I iJ'n I I iJ'n I ) -·r. ~iJ , -, -e(k'J.,,.,,)cos(2nkn,.,, + q>). 
Px extr &Pr. extr 

(5.15) 

6. DISCUSSION OF THE RESULTS 

First of all let us consider the temperature depen­
dence of the amplitude of the oscillations. As is clear 
from formula (5.10), the temperature dependence is de­
termined by the function () (k"-extrl· If the temperature 
T > (oe:)extr /27T2 , then the amplitude of the oscillations 
is proportional to 

[4n'T /(be),.,,] exp {-2n'T / (lle),.,}, 

i.e., it is exponentially small. For low temperatures 

(T < (lle),x,/2n'), 8(k'J.,.x1 ,) = 1. 

Now let us estimate the relative amplitude, for ex­
ample, of the oscillations of the surface impedance. It 
is most convenient to do this by assuming that the dis­
persion law is quadratic, and the field decreases deep 
inside the metai according to the exponential law 
exp {- y /o}. Then Py = ±p± (see Eq. (1.4)), and all of 
the quantities appearing in (4.4) are easily calculated 
in explicit form. As a result we obtain 

l'2mp,/l 
nextr=~, ( iJ'n ) n,.,, ( iJ'n ) 

8Pz2 extr =- 2pF21 8Px2 extr =- p/· P413 L\!JJ' 

9next,-

( iJn ) n,., ( i)n) n,.,, 
&H extr = 2H ' Oe extr = -p-; 

here it is assumed that p(y)ly=o =Po> t::... With the aid 
of these formulas we obtain the following result for the 
relative amplitude of the oscillations of the surface am­
plitude, t::..Z/Z: 

liZ 10_, a ( 6o ) '/. ( 2nT ) (6 1 ) z ~ 6; 6; e (p,li'/2mll')'h , • 

where a ~ tifpF, (1/oi,) = 47TNe2 /mc2-L and ~0 = tivF /1rt::... 
From formula (6.1) it follows that (t::..Z/Z) ~ 10-3 to 10-5, 
which is the same order of magnitude, obviously, as 
~/t::..o. 

Now let us consider an analogous estimate for the 
derivative of the surface impedance with respect to the 

8lThe similar local relation is, of course, an approximation since 
strictly speaking 7S. = 7S. {7S. 1 }. We further note that the smooth (in the 
sense of the dependence on given values of the gap and of the magnetic 
field) part of the current density also contains oscillations due to 7S.; 
however, this part is (H/HcHiiL/~0) 2/ 3 times smaller than I;_ 
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magnetic field. At low temperatures (T < Tc) the 
smooth part of the surface impedance depends on the 
magnetic field weakly due to the fact that the numerical 
coefficient of (H/Z)(dZ/dH) ~ 10-a to 10-4;U1 l for the 
oscillating correction the corresponding quantity is of 
the order of 

~ dl\Z ~ 1o-• n. , -.!:_ (~) ''• ~ 10-'- w-• (6 .2) 
Z dflo "' 6L 6L • 

From here it is seen that the quantum oscillations of the 
derivative of the surface impedance with respect to the 
magnetic field may turn out to be dominant. If the dis­
persion law is cylindrical, then all of the relative am­
plitudes of the oscillations obviously turn out to be 
(nextr )112 tiines larger. 

Now let us return to the question of the possibility of 
establishing the dependences of the amplitude of the os­
cillations through the functions (an/aH) and (an/oE) (in 
what follows the subscript extr is omitted everywhere). 
Let us assume, for simplicity, that the dispersion law 
is known to us, and the field falls off inside the metal 
according to an exponential law. Then 

a an 6 d ( t 2 --=---- p<l(O)-p<l(O)), 
aH, ae 2nlip, dH, 

_!!!_ = _ 6_ (p<'l(O)- p<'l(O)), (6.3) 
aH, 2nliH, 

where p 111(0) and p<21(0) are possible values of the mo­
mentum Py of the excitations on the boundary of the 
superconductor. From the picture under consideration 
of the classical motion of the excitations, it is clear 
that the surface states are connected with those exci­
tations whose velocity along the y axis is small. Making 
use of this property, it is not difficult to obtain the re­
sult that 

p<'l(O)- p<'l(O) = 21'2m'(l1-'- + lP•'- 1\'), 

• o'!;. (o) p p ) m = -0 2 (pll , x, z , 
p, 

where p~01 = pyo>(Px, Pz) is the solution of the equation 
(a~p /ilpy) = 0. From relations (6.3) it now follows that 

a(p) = p,m'((q:g I m')'- 1) '"I q:g. (6.4) 

Here 

_ nH,It _a_ (!!!._) 
'P- 6 oH, oe ' 

nHolt on 
g=----

11 an, 
are directly measurable quantities. Formula (6.4) solves 
the problem which has been posed, provided the extremal 
point (Px, Pz) is known. We note that with an accuracy of 
the order of (4/p(Hc))2 ~ 5 to 20%, we have the following 
equations for the determination of the values Px and Pz 
of interest to us: 

a's. --;;--; = <p(H,)g(H,), 
vp, 

7. CONCLUSIONS 

In this article the quantum oscillations of the energy 
gap, current density, and surface impedance in super­
conductors have been investigated, and the correspond­
ing expressions (5.15), (4.4), and (5.10) have been de­
rived for these oscillations. 

It has been ascertained that the oscillations in super­
conductors have an essential singularity with respect to 
the magnetic field-said singularities being present only 
for H > H2, that is, when the gap in the energy spectrum 
vanishes. It is shown (see expression (6.1)) that the 
relative amplitude of the oscillations of the gap and of 
the current density is determined by the quantity 

.!_ (~) (~) ''• exp {- 2n'T}, 
n 6L 6L (6e) 

and for the surface impedance the relative amplitude is 
determined by 

(~) (~) ''• exp {- 2n'T}, 
6L 6L (6e) 

provided that the Fermi surface is spherical; the rela­
tive amplitude is n1/ 2 times larger if the Fermi surface 
is cylindrical; here n denotes the number of discrete 
levels. 

It is shown (see Sec. 2) that from the temperature 
dependence of on/oe: and from the period on/oH of the 
oscillations one can, in principle, establish ~P and 4(p) 
as functions of p. In Sec. 6, under the simplest assump­
tions, formula (6.4) is derived for the determination of 
4(p) from (an/ae:) and (an/aH). The result is obtained 
that the condition on Maxwell's equations at the inter­
face between the metal and vacuum is the continuity of 
B. 

A general rule is found for determining the phase y 
in the Bohr quantization conditions (see the Appendix): 
y = i if the number of turning points is even and y = - t 
if the number of turning points is odd. 

APPENDIX 

Let the parameters e:, Px, and Pz be such that the 
classical trajectory corresponding to the motion of the 
excitation has the form (see Figs. Sa and 8b) where the 
quasiclassical approximation is applicable in the region 
{ 0, Yo} < y < y1, but the point Yo lies close to the sur­
face of the metal, y = 0. Here {a, b} = max (a, b). Let 
us find the value of the phase y in the Bohr quantization 
rules for such trajectories. With quasiclassical accu­
racy the equation for the component v of the wave func­
tion w = ( ~) has the form 

(A.1) 

First of all let us write the quasiclassical solution in 
the interval { O, y0 } < y < y1• It has the form 

. ~ . " 
v =A, exp{T J P+dy' }-A,exp{- ~·J P+dy' }+ 

0 ·' 

., ., 
In order to determine the coefficients At and Bt. we 
match this solution with the asymptotic exact solution 
of Eq. (A.1) to the left of the point y1• Near this point, 
to the accuracy we require Eq. (A.1) has the form 

v'v+2v"k-'-'+k-'-'+~(y-y,)v = 0. 

k_,_' = 2m~t-'- I ft', 
13 = -81\p' (y,) m' I It'> 0. 
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Solving this equation by Laplace's method, we obtain 

(A.3) 

We choose the contour L so that the solution (A.3) de­
creases at infinity. In order to achieve this, it is clear 
that it is sufficient to position the ends of the integra­
tion contour in the region where Re t5 > 0. The asym­
ptotic form of (A.3) to the left of the point y1 is obtained 
by the method of steepest descents. In this connection, 
the saddle points are determined from the equation {:Jay 
+ (t8 + k~)1 = 0, from which it follows that 

t •.•.•.• = ±i(k.L' ±1-J:iA¥))"'. 

The choice of contours and the saddle points are 
shown in Fig. 9. After simple calculations we obtain 
asymptotic expressions for the two linearly independent 
solutions of Eq. (A.1) in the region y < y1: 

v ~ C [ exp { i : + * j P+dy'} + exp { t 3: + ~ j p_dy'}] , 

•• •• (A.4) 

v ~ C' [ exp { i ~n - ~ j P+dy'} + exp { i ~ - -/t j p_dy'}]. 
~ ~ 

By comparing formulas (A.4) with the quasiclassical 
solution (A.2) we obtain two relations for the coefficients 
Ai and Bi· 

FIG. 9 

Equations which are not sufficient for the determina­
tion of Ai and Bi follow from the boundary conditions on 
the surface of the metal. Having written the solution of 
Eq. (A.1) near Yo in the form 

t • . • 
v(y)=Aexp{--,tf P+dy'}-Aexp{- ~ r P+dy'}+v,, 

where v 1 satisfies the equation 

v" + a(y-y.)v = 0 (A.5) 

and vanishes at the boundary of the sample, we also 
guarantee, with the necessary degree of accuracy, fulfil­
ment of the boundary condition u{O) = 0, as is easy to 
verify. Here we have introduced the notation 

2mp'(y0) l'~' + Ll' 
a=- ft' >0. 

!'.L 

The solution of Eq. (A.5) of interest to us is obviously 
a linear combination of Airy functions. Matching the 
asymptotic form of the thus obtained exact solution with 
the wave function (A.2), we obtain two more relations 
between Ai and Bi. The system of equations for the de­
termination of Ai and Bi has a nontrivial solution pro­
vided 

(A.6) 

where 

N C' ' sin (n/12)- A. (y0) cos (n/12) 
S = 2 1) p+dy - J p_dy J ' tg q> = cos (n/12) - A. (y0) sin (n/12) ' 

0 lo 

J [ • • ~·1· 
A.()-- -'I• laraYol 

Yo - J ['' ,1 •1,1 • 'I• ·far ago 

Let us consider a few special cases. Let y0 be posi­
tive and large; then by using the asymptotic form of the 
Bessel functions one can easily obtain the result cp = n/4, 
from which it follows that for trajectories of type b on 
Fig. 8 we haveS= 2w(n- t) (compare with c4J). 9 ) Simi­
larly for trajectories of type a shown in Fig. 8, that is, 
if Yo< 0 and large in absolute value, we find that S 
= 2w{n- !). We note that for an "ordinary" particle in 
the case of two turning points on the classical phase 
trajectory y = i {for a single turning point y = -{- ). c7J 

Thus we see that in the Bohr quantization rules the value 
of the phase is determined by the evenness (or oddness) 
of the number of turning points both for the excitatioos in 
a superconductor as well as for "ordinary" particles and 
quasiparticles. For an arbitrary number of turning points 
the same statement is easily proved by induction. 

9l An error was noted in [4], which was made in [ 2] in connection 
with writing down the general form of the transition matrix relating the 
coefficients in the wave function to the right and to the left of the turn­
ing points. This remark is based on a misunderstanding: the author of 
article [4 ] ignored the fact that the matrices in [2] and [4 ] differ only 
by an interchange of the rows, i.e., the components of the correspond­
ing vector are relabeled. 
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