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The parametric excitation of sound in a ferromagnet during ferromagnetic resonance {FMR) is consid­
ered. As a rule, the frequency of the excited sound 0 is much less than the FMR frequency w, which, 
as shown in the paper, leads to the necessity of taking into account the oscillations Wk ~ w +0 along 
with oscillations of the spin subsystem of eigenfrequencies Wk ~ w ·- 0. As a result, the pattern of 
the process may change fundamentally. In particular, a large number of spin resonances may be in­
volved in the sound excitation process. The analysis includes the case of linear (if magnetostriction 
is neglected) spin subsystem and the case when spin-spin interactions occur concurrently with magne­
toelastic interactions. It is shown that with the growth of spin-spin nonlinearity, the conditions for the 
excitation of low-frequency acoustic resonances (0 ~ y, where y is the spin oscillation relaxation fre­
quency) change sharply. In the limit when 0 << y, magnetoacoustic instability may either be strongly 
suppressed or may appear before spin-spin instabilities even for very small values of magnetostric­
tion and strong damping of the acoustic resonance. The effect of nonlinearity of the spin subsystem 
weakens with growth of 0/y. The characteristic dimensions of the effects are determined and the 
limits of applicability of various approximations considered in the literature are discussed. Another 
purpose of the investigation is to draw attention to a number of features of the parametric excitation 
of low-frequency oscillations in nonlinear dispersive media. 

IN the simplest scheme of investigation of decay proc­
esses that develop in a complex dynamical object like a 
solid body under the action of an intense external per­
turbation of frequency w, only oscillations of frequen­
cies close to w and oscillations with combination fre­
quencies, minimally necessary for decay to occur, are 
retained out of the totality of oscillations of the system. 
For example, in the case of a decay process of the low­
est order, which will be the subject of discussion below, 
oscillations of frequencies w, 0, and w- 0 are re­
tained. However, and attention is not always paid to this, 
we certainly should not restrict ourselves to these three 
oscillations in the presence of low-frequency instabili­
ties (0 « w ). 

The point is that as a result of the nonlinearity, the 
small oscillations 0 generate in a high-frequency sys­
tem the oscillations w- 0 and w + 0 of, generally 
speaking, commensurate amplitudes, since both of these 
harmonics are results of one and the same lowest-order 
nonlinear process. If the system in which the oscilla­
tions having the side frequencies -with respect to w­
are realized (we shall call it the system A) is sufficient­
ly selective, then the optimum conditions for decay cor­
respond to the conditions when the system is "tuned" to 
the frequency w - 0. The frequency w + 0 is then fil­
tered out and the customary three-frequency approxi­
mation is valid. In the opposite case, in the analysis of 
transient processes and the thresholds of instabilities, 
it is necessary to take into consideration both harmonics 
since the frequency w + 0 also falls in the transmission 
band of the system A. The pattern of decay may then 
fundamentally change in the quantitative sense. In the 
particular case when the subsystem A is represented 
by a single mode of oscillations, the criterion for appli-

cability of the various approximations is the parameter 
0/y, where y is of the order of the relaxation frequency 
of the mode A. If, on the other hand, as may be the case 
in a distributed medium, the oscillation 0 effectively 
interacts with a large aggregate of resonances with den­
sity N(wk) and with close lying eigenfrequencies wk, 
then the role of the criterion is played by the parameter 
oaN/aw. 

Before proceeding directly to the subject of the pa­
per, the main point of which is the consideration of the 
indicated circumstances, let us note again that the nec­
essity for taking both the components w ±0 into consid­
eration follows regardless of the fact that the oscilla­
tions w- 0 are enhanced while the oscillations w + n 
are weakened in the course of development of a low­
frequency instability. In general, beyond the threshold 
of parametric excitation, the degree of suppression of 
the various combination frequencies is determined by 
the selective properties as well as by the nature of non­
linearity of the system. Also important is the converse: 
it does not follow that because these or other harmonics 
are suppressed in a steady post-threshold regime, they 
may be neglected in the calculation of the instability 
threshold, since the onset of decay and the post-thresh­
old behavior are determined by different nonlinear 
mechanisms. 

It is known that as a result of the large magnetoelas­
tic coupling constants and the high acoustic Q of the 
samples, the resonances of the spin system of a ferro­
magnet under conditions of an intense external variable 
field are often accompanied by the excitation of low­
frequency sound. Since the damping of the sound usually 
increases with the frequency, the excitation of low­
frequency sound is the most effective in a ferromagnet. 
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As a rule, to the resulting acoustic oscillation n corre­
sponds one of the principal modes of elastic oscilla­
tions of the sample, so that n/27T ~ v /2L, where v is 
the velocity of sound and L is a characteristic dimen­
sion of the sample. For L "" 1 mm the frequency of the 
sound is a few MHz, i.e., of the same order as the spin 
oscillation relaxation frequency y for the best samples. 
Depending on the dimensions and quality of the sample, 
a considerable difference, in either direction, between 
n and y is possible. A resonance directly excited by 
the field lies, depending on the shape of the sample and 
the conditions of the experiment, somewhere in the mag­
netostatic spectrum band II.~ 102 MHz. The precession 
modes, effectively interacting with the low-frequency 
sound, generally speaking, cover the whole band II, and 
their density may be very large. Nevertheless, in al­
most the entire extensive literature devoted to the pa­
rametric excitation of sound (we mention, for example, 
the earliest papers, [1, 2 l the reviews [3 1 and a number 
of the most recent ones/ 4 • 5 l), the analysis of the prob­
lem and the comparison with experiment were practi­
cally carried out on the basis of the model with three 
participating oscillations: w, n, and w-n. The only 
exception, apparently, are the papers [ 6 • 7 1 (we shall 
discuss the connection between these papers and the 
present paper later). 

Depending on the magnitude of the magnetizing field 
and other conditions of the experiment, other nonlinear 
interactions may arise along with magnetoelastic inter­
actions. We shall first (see Part I) dwell at length on 
the simplest situation when the amplitudes of oscilla­
tion of the intensity of magnetization at FMR, which 
correspond to the sound excitation threshold, are small 
in the sense that spin-spin and other nonlinearities are 
not important. Analysis of the problem under conditions 
when spin-spin nonlinearities are important is pre­
sented in Part II. 

I. LINEAR SPIN SUBSYSTEM 

1. Formulation of the Problem 

We shall assume that for the description of nonlinear 
magnetoelastic phenomena, the model of a ferromagnet 
as an ensemble of interacting magnetic and elastic oscil­
lations described by the Hamiltonian: 

J'e = 1: w,c:c, +I, Q.d,'d, +{I}'¥, ""c:c,d, + C .c.}+ J'e, (1) 
~ i,k,v 

is applicable. Here q(t) and cj'(t)are canonically conju­
gate variables, so that their product c!q determines, 
according to (1), the strength of small spin oscillations; 
the mode i is characterized by its spatial shape fi(r} 
and its eigenfrequency wi , which is determined from 
the solution of the boundary-value problem. Similarly 
d11 , Q 11 , and F 11 (r) characterize the corresponding mode 
of elastic oscillations of the sample. The braces enclose 
the first nonvanishing nonlinear term of the magneto­
elastic interaction (linear interaction with an elastic 
system, an electromagnetic field and others, as is well­
known, may, in principle, be taken into account by a 
judicious choice of the normal oscillations). Other non­
linear interactions (they are contained in d'& 1} are not 
taken into consideration in this section. The coeffi­
cients >¥ 1 are proportional to the integrals of the com-

binations of the corresponding eigenfunctions fi(r), 
fk(r), and F 11 (r) taken over the volume of the sample. 
It is not, in the general case, possible-and hardly ever 
useful-to evaluate these integrals. In the case of short­
wave excitations in the system, when fi"" exp {jki · r}, 
F 11 "" exp { jkv · r} (j is the imaginary unit), the coeffi-

cients >Y!kv differ from zero when ki = kk + k 11 and the 
order of their magnitudes for a ferromagnet with cubic 
symmetry is given, for example, in [s 1• Notice that '111 

may be determined directly from experiments on non­
linear FMR. For example, by measuring the correction 

. ~wi to the resonance frequency Wi for the deformation 
d11 , we may determine 'lliiv, since according to (1), 

~wi ='lJ~iv dv. 
Let an FMR "transverse" pumping regime be real­

ized; the alternating field of frequency w excites one or 
at once several magnetic resonances of eigenfrequen­
cies close to w. From (1), bearing in mind the introduc­
tion of dissipative terms, we obtain equations of motion 
which describe the interaction of the sound d with the 
reservoir of spin oscillations: 

j(dfdt+v.)c,=w•c•+ 1: 'l',"c,(d+d')+h,e-M k =0,1,2, ... , 

' 
i(d/dt + r)a = Qd + 1: '¥," c:c •. 

(2) 

... 
Here y k and r are spin-oscillation and sound relaxa­
tion frequencies. The coefficients hk, which determine 
the degree of excitation of the mode k by the field 
h(r) exp -jwt, are proportional to the overlap integrals 
J fk(r)h(r}dr taken over the volume of the sample. It 
follows from (2) that in the linear regime (d = 0} of 
FMR, the power Wk absorbed by the oscillations k at 
resonance, w = Wk, is related to hk through the for­
mula hkhk = YkWk/2wk. As a rule, under given condi­
tions the excitation threshold for one of the sound vibra­
tions is minimal. The influence of other elastic oscilla­
tions is insignificant if their eigenfrequencies nv are 
sufficiently spread out. Here and henceforth, an elastic 
subsystem is represented by one oscillation d, with the 
index v omitted. 

For n << w a multimode system, similar to (2) but of 
different physical nature, has previously been investi­
gated by one of the authors, [9 l and we shall be guided 
by the results obtained there. 

2. Conditions for Stability 

In the absence of sound vibrations (the time deriva­
tive d = 0} those magnetic resonances k for which 
hk * 0 and having amplitudes11 

(3} 

1lNotice that when d = 0, the stationary solution of the system (2) 
contains a nonvanishing static deformation 

d = _ _1_ ~ '1' 1"(c;'c,), 
0 Q"""' 

i,k 

where ( ... ) denotes time averaging. The presence of d0 , in its turn, 
leads to a FMR anharmonicity, analogous to spin-spin interactions (see) 
Part II). Usually, the excitation of sound begins considerably earlier 
than the appearance of the indicated nonlinearity, the criterion for its 
insignificance being (see [ 9 ]) the smallness of the quantity r /ll (or for 
Q ~'"(,the quantity r'Y/ll 2 ). 
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are excited in the steady regime. With the growth of the 
amplitude of the alternating field, the forced periodic 
regime (3) becomes unstable with respect to the excita­
tion of sound. 

The presence in the system of the oscillations d of 
frequency 0 is accompanied by the appearance of spin 
oscillations with frequencies w ± nn, n = 1, 2, ... , on 
both sides of w. These oscillations, in turn, act back on 
the oscillation d. The work done on the oscillations d 
at combination frequencies smaller than w is positive, 
while at frequencies greater than w it is negative. It 
follows from the system (2) that close to the steady re­
gime (3) and for small oscillations d, the negative 
damping introduced into the elastic subsystem, in the 
first order of smallness d, is equal to 

r. = r, '¥," 'l',"a,·a,[x."<w- Q)- x-''<w + Q) 1. (4) 

"·"'·' 
where Xk (v) = 'Ykl[ (v - wk)2 + y k] is the imaginary 
part of the susceptibility of the resonance k with re­
spect to the field hk at the frequency v. The difference 
Xk(w -0)- xk:<w +0) is positive when w > wk and 
negative when w< wk. When r1 ~r, the regime (3)be­
comes unstable and sound is excited. In the particular 
case when the external field excites one resonance (for 
definiteness, let this be the oscillations of the uniform 
precession c0 ; the excitation of some other oscilla­
tion ck does not affect the analysis in any way), we ob­
tain from (4) the following condition for the threshold of 
magnetoelastic instability: 

a,'a,;;:.r{,EI'l',"i'[x/'(w-Q)-x•"(w+O)] }-.· (5) 
• 

Depending on the relation between the values of the spin 
oscillation damping Yk• and also between the coefficients 
lJ! 1 of the magnetoelastic coupling with the given oscilla­
tion d, some terms or other will be the important ones 
in the sums (4) and (5). In the simplest case, the oscil­
lations with the side-frequencies-with respect tow­
accompanying the sound are realized only in one of the 
spin oscillations (in particular, the resonance directly 
excited by the field may play the role of the oscillations 
k). The remaining spin reservoir is not excited. This 
is precisely the idealized formulation in which the prob­
lem has been considered in the literature up to the pres­
ent. Let us analyze here the stability conditions which 
follow from (5) in this approximation. From this will 
follow, as limiting cases, already considered models. 
Retaining in the sum in (5) one vibration k, we obtain 
for the threshold 

. r [ "( < a, a,;;:;:. I 'I'," I' X• w- Q)- X•" w + Q)]-•. (6) 

Depending on the relation between 0 and Yk, we may 
here distinguish several cases. 

If O>>yk, then the expression in the square brack­
ets in (6) is a maximum when the oscillation k is tuned 

If ( to the resonance Wk = w - 0, when the term Xk w + 0) 
is small. Close to the optimal tuning, and neglecting in 
(6) the term Xk(w +0), we obtain for the threshold am­
plitude 

a,' a,;;:;:. P,[1 + (x,- Q ly,)']' (7) 

and for the threshold field 

where 

ho'ho;;:;:. P,y,'( 1 + xo') [1 + (x,- Q I y,)']', (8) 

W- COo 
Xo=---, 

Yo 

ro- (.IJR 
X~t=---. 

Y• 

If 0 .$ y k• then it is necessary to take into account in 
(6) both xk(W -0) and x~ (w + 0 ), and for 0 << Yk the 
thresholds are respectively equal to 

, Y• (1 + x.')' + 4Q'Iv•' 
ao ao~P~~,- , 

Q 4x, 

h 'h ~ p 'I• '(1 + ') (1 + x.')' + 4Q'Iy.' 
o o :::-- k Q '\'o Xo 4X1t • 

(9) 

(10) 

The right hand sides of (9) and (10) have their minimum 
values on the slope xk > 0 in the region of greatest 
slope Xk(ll ); when Xk < 0 instability is impossible. The 
FMR frequency detuning Xo may be of either sign re­
gardless of the relation between 0 and y, and the opti­
mum threshold corresponds to Xo = 0. 

If the most important coupling in the system is the 
direct coupling of sound with the uniform precession 
(>1!~0 is large), then the sound vibrations may be accom­
panied by a modulation of the oscillations of the uniform 
precession without the participation of other spin 
modes. The given expressions remain valid~ this case 
if we set in (7)-(10) Xk = Xo• Yk = y 0 , and >It~ = >1!~0 • In 
this simplest of all cases, only one tuning parameter x0 

enters into the instability condition, instability being 
possible only when the FMR frequency detuning Xo > 0. 
The optimum thresholds then turn out to be equal to 

h,'h, = P,yo'(1 + Q' I yo') when Q ~Vo, (Sa) 

ho'ho == P,yo'(vo I Q) when Q <;;;; y,, (lOa) 

from which it can be seen that as the sound frequency 
0 changes, the other conditions remaining unchanged, 
the threshold assumes its minimum value at 0 '""' y0 • 2> 

Beginning from [1 J, in which the excitation of sound 
at FMR in a disk, with the magnetizing field oriented 
normal to the plane of the disk, was investigated, almost 
all the subsequent papers dealing with the analysis of 
nonlinear magnetoelastic phenomena took into consid­
eration only three oscillations: w f':! w0 , 0, wk f':! w - 0. 
As has been shown above, this corresponds to the lim­
iting case 0 >> y. Another limiting case has been con­
sidered in [ 6 J, using as an example the excitation of 
sound directly by the uniform precession in a disk 
which has been magnetized in a direction parallel to its 
plane; this example was analyzed in [ 7 l for an arbitrary 
relation between 0 and y. Except for the notation, the 
expressions obtained in [ 1• 6 • 7 J for the thresholds go 
over into the expressions given here. In light of the 
analysis carried out here, the unified aspect of the 
above-mentioned papers as different limiting cases of 
a simple model becomes clear. 

2lThis may be understood from the following considerations. For 
n < w, the deformation d assumes the role of a slow parameter modu­
lating the frequency Wo 0 If n ~ 'Yo' then an almost adiabatic passage 
through the magnetic resonance occurs and practically no energy enters 
the slow system. For ll <'Yo, the magnetic resonance is passed through 
quasistatically, the retardation of the magnetostriction forces is small, 
and the increment r introduced is small. 
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3, Discussion 

FIG. I. Conditions for the 
parametric excitation of sound. 

Let us try and examine to what extent the various 
approximations can be realized in experiments. In par­
ticular, let us discuss the applicability of the simplest 
model when the spin reservoir is represented by only 
two (or one) magnetic resonances. Let us first consider 
the pattern of sound excitation in sufficiently extended 
ferromagnets, assuming that the plane-wave approxima­
tion works. The latter permits the use of the custom­
ary(2•3l dispersion diagram in the (w, k) plane. In 
Fig. 1 the solid arrows represent the process of decay 
of the oscillation w(k = 0) into sound O(k1) and the spin 
oscillation w(-k1). The lines e = 0 and e = 1r/2 repre­
sent the limits of the spectrum of the spin waves, e be­
ing the angle of propagation of the waves. Because of 
the law of conservation of momentum, an acoustic wave 
propagating in the direction - e0 interacts only with 
spin oscillations that correspond to only one dispersion 
spin branch e0 • Interacting with the sound, the spectrum 
of spin oscillations we (k) < w introduces, according to 

0 

(4), a negative damping into the elastic subsystem while 
the entire spectrum from we (k) > w introduces a posi­

o 
tive damping. Depending, therefore, on the relation be­
tween w and we (-k1), sound is either excited ' 

0 

(w >we (-k1)) or is suppressed (w <we (-k1)).3> This 
0 0 

is the state of affairs if 0 >> Yk· Allowance for the fi­
nite lifetime of the magnons leads to a broadening of the 
dispersion branch we (k) (this is arbitrarily represented 

0 

in Fig. 1 by the dashed lines). And if 0 .S yk, then si-
multaneously with the process of decay of the oscilla­
tion w into the phonon n and the magnon w 1 = w - n 
there effectively proceeds the process of fusion of the 
phonon n and the magnon w into the magnon w2 = w + n­
a process which is taken into account here (in Fig. 1 it 
is represented by the dashed arrow). 

As it is converted into excitations of longer wave­
length, the sound propagating in the direction e0 begins 
to effectively interact, by virtue of the finite dimensions 
of the sample, with some band of the dispersion branch 
w(k) near e0 • And, in the limit, the possibility of inter­
action of the sound with the entire band of spin oscilla­
tions arises. In that case (k is small) the spectrum is 
discrete, but when it is not too highly discrete, many 

3lNotice that allowance for the electromagnetic field leads to a de­
formation of the dispersion law w 80 (k) at small k. As a result, both 
the oscillations w-Q and w+Q in this branch can simultaneously ef­
fectively interact with the acoustic wave. This circumstance should 
lead to an appreciable selectivity in the excitation (or amplification) 
of sound. 

spin resonances are nonlinearly coupled with the sound, 
i.e., the parameters 1!1 1 for many oscillations in the en­
tire band of the spectrum are of the same order. Indeed, 
as a result of the sharp selectivity in the parameters 
x 11 (w - n) and x 11 (w + n ), only oscillations lying on 
bands of width "'y near the frequencies w ± n are se­
lected from the whole ensemble of resonances. Depend­
ing on the density of distribution of the resonances wk 
on these bands, we have either excitation or suppression 
of sound. In particular, at FMR in a disk magnetized in 
the direction perpendicular to its plane (precisely such 
a problem has been considered in (1 l ), the frequency of 
the uniform precession lies at the bottom of the spec­
truro of spin oscillations and the conditions for the exci­
tation of sound are extremely difficult. This, apparently, 
is the cause of the unexpected failure of the experiments, 
described in c 10 l, on the excitation of sound in a disk in 
a resonant magnetizing field normal to the plane of the 
disk. Sound should be easiest to excite in a disk magne­
tized in a direction parallel to its plane for then the fre­
quency of the uniform precession lies near the upper 
limit of the magnetostatic section of the spectrum. 

It is clear from the foregoing that calculations of the 
thresholds and the regions of magnetoelastic instabili­
ties (and even more so, of transient processes and post­
threshold behavior) in the framework of th,e customary 
model in which only three oscillations: w, n, wk ~ w - n 
are taken into consideration, are, generally speaking, of 
limited applicability. Such a model may be realized in a 
sample of small dimensions when, as compared with the 
relaxation frequencies, the y -spectrum of the spin os­
cillations is highly discrete, or in an extended ferromag­
net, when for some reason the excitation of low-fre­
quency sound is difficult and a comparatively high-fre­
quency sound (n >> y) appears. 

ll. NONLINEAR SPIN SUBSYSTEM 

Experiments on the study of highly excited states of 
a spin system, to which ever -increasing attention is be­
ing paid in recent years, have shown that different non­
linear regimes of FMR under conditions of "trans­
verse" as well as "longitudinal" pumping, as a rule, 
are accompanied by sound excitation (see, for example, 
en, 12 l). Apart from the obvious circumstances, con­
nected directly with the growth of the amplitudes of the 
spin oscillations, this may be favored by a number of 
distinctive features arising as a result of the nonlin­
earity of the spin subsystem. In particular, even with­
out taking into consideration the magnetoelastic inter­
action, a low-frequency instability of the FMR -auto­
modulation o 2 l -may arise as a result of the nonlinear­
ity; the periodic magnetostriction forces that appear 
here may, as discussed in c 12 l, give rise to intense 
elastic oscillations of the ferromagnet at the automodu­
lation frequency. Along with such a nonparametric 
mechanism for the excitation of sound in nonlinear FMR, 
we may have the usual magnetoacoustic resonance (MAR) 
with its own threshold. For example, in the experiments 
of c 10 l, the regions of automodulation and MAR do not 
overlap, although the thresholds of both instabilities are 
close. 

We wish here to draw attention to another peculiarity 
of the magnetoelastic interaction under conditions of a 
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highly nonlinear spin system. This peculiarity may be 
understood from the following considerations (they have 
been previously advanced in £7 • 9 l). Let us consider the 
stationary regime of high-frequency oscillations of the 
magnetization at FMR in the absence of automodulation. 
If a slow deformation of the sample d arises close to 
the position of equilibrium, then this leads to a change 
in the FMR regime, and, as a result, the squares of the 
magnetostriction forces, averaged over the spin oscil­
lations F(d}, change. The derivative aFjad has the 
meaning of rigidity introduced by the magnetoelastic in­
teraction into the acoustic system and is, depending on 
the FMR detuning, positive or negative. In response to 
the deformation d(t), the spin oscillations are estab­
lished not at once but over some interval of time T­

which causes a retardation of the forces F = F[ (d - T)]. 
As a result, the force F does nonvanishing work on the 
elastic system during a periodic deformation of the 
sample. At a sufficiently low frequency of the sound n 
(n T << 1), a damping TaF ;act of either sign is intro­
duced into the acoustic system as a result of the retar­
dation. When the changes introduced into the attenuation 
and rigidity of the mechanical oscillations become com­
mensurate with their initial values, magnetoelastic in­
stabilities appear in the system. They are most likely 
to be found at the points where aF ;act is large, and this 
is realized when small changes in the parameters lead 
to a sharp change in the stationary FMR regime. The 
latter is, in fact, unique for a highly excit~tl spin sys­
tem. In particular, the dependence of the eigenfrequen­
cies of spin resonances on the amplitude leads to such 
a deformation of the resonance curves that the appear­
ance on them of very steep sections becomes possible. 
At points close to a vertical slope we get aF/act- oo 

and we can expect sound to be excited with extremely 
small magnetoelastic couplings. Correspondingly, the 
regions of magnetoelastic instability may be very nar­
row. 

The effectiveness of such a kind of nonlinear mech­
anism of the intensification of the interaction between 
fast and slow oscillatory subsystems is well illustrated 
by the example of the magnetostrictive instability of a 
magnetic-tape parametron.£ 13 l The parametrically ex­
cited oscillations of the intensity of magnetization in the 
thin ("' 10-4 mm) film were accompanied by the excita­
tion of intense flexural oscillations of the thick ("' 1 mm) 
backing on which the film had been deposited; the region 
of sound excitation turned out to be much narrower than 
the region of parametric oscillations. 

It is significant that the considered mechanism of the 
intensification of the magnetoelastic interaction is ef­
fective only for low-frequency acoustic resonances. 
This is connected with the fact that for n >> 1/T the 
state of the spin system does not have time to change 
appreciably and, in such a near-adiabatic regime, prac­
tically no energy enters the slow acoustic system in a 
period 27T /n. The characteristic time for the establish­
ment of spin oscillations T in the nonlinear FMR regime 
depends, generally speaking, on the pumping power. As 
a rough measure of the retardation we may take there­
laxation frequency y of the spin oscillations. 

In view of the complexity of the problem, the theory 
of magnetoelastic phenomena at FMR, under conditions 
when other nonlinear interactions are present at the 

same time, has scarcely been worked out. Apart from 
the papers already cited, we mention again [4 , 5 l, In £4 J 

the case of the interaction of a parametrically excited 
spin-wave resonance with sound is considered, but the 
nonlinearity of the spin system which, in fact, deter­
mines the steady state of the parametric resonance is 
completely not taken into account and the problem is 
practically solved in the framework of the applicability 
of the customary model, ll J when the spin subsystem is 
linear. As far as we know, the first attempt to take into 
consideration the effect exerted on the parametric exci­
tation of sound by spin-spin interaction leading to the 
amplitude dependence of the resonance frequencies of 
the oscillations of the magnetization was made in £5 l. 

However, the specific character of the excitation of 
low-frequency sound was not taken into consideration in 
the analysis in £5 J and hence the mechanism of the 
strengthening of the magnetoelastic coupling was missed 
missed. 

1. Formulation of the Problem 

We shall describe nonlinearly interacting spin and 
elastic oscillations of a ferromagnet by the Hamiltonian 
(1) where, as in [5 l, 

(1a) 
i,lt,l,m 

(for details about the coefficients >!!2 determining the 
spin-spin interactions, see £5l). Let, as in Part I, a 
regime of "transverse" FMR pumping be realized and 
let the alternating field excite only one resonance c0 • 

We consider the case when the frequency w/2 lies be­
low the bottom of the spin oscillation spectrum, so that 
conditions ar difficult for the parametric excitation of the 
spin resonances wk~ w/2,[ 14 l forwhichthetermsinthe 
Hamiltonian which are cubic in c are responsible. 
These terms are therefore dropped, and their presence 
is reevaluated as corrections to the coefficients >!!2 • 

With the interaction (la) taken into consideration, the 
behavior of the system is described by the equations 

j(d / dt + y,) Co= <•loCo + h0e- "' + 'V, 00c0 (d + d') + 4'¥,00c0'co', (11} 
j (d / dt + y,)c, = w,c, + '¥ 1 "co ( d + d') + 8'¥2"c, 'c,c, + 4·'¥,"c>co' 

(k=1,2,3, ... ), (12) 

j(cl ci' + f)d = Qd +'¥,"'co' co+ ),'¥,"(c0'c,, + c0c,'), (13} ....... 

where >!!go =>!!go, oo' >J!gk = >J!gk, ok = >!!go, kk. In these 
equations only terms linear in the amplitudes ck are 
retained since we intend to consider only the process of 
the development of instability and not post-threshold be­
havior. 

The main difference between the above equations and 
those considered in £5 l lies in the fact that we have re­
tained terms which are important when there is coupling 
with low-frequency sound: 

1) The coupli.ng of sound with the resonance c0 (the 
term "'>!!~0 } is taken into account, since this coupling is 
important even for a uniform precession in a sample of 
finite dimensions. 

2) Coupling with both the oscillations d and d* is 
taken into account in (11) and (12). 

3) We retain in Eq. (12) the term "'Ck c~ which, 
generally speaking, is responsible for the parametric 
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excitation of the resonance k with frequencies wk 
"'" w, [ 14 l and, in our case, is just the term that leads 
to the strengthening of the magnetoelastic coupling. 

The regions of applicability of the results obtained in 
[ 1• 5 • 14 l and also of the results in Part I, will be seen 
from the analysis. 

2. Conditions for Stability 

In the absence of elastic oscillations of the sample 
((d/dt}d = 0}, the usual expression for the resonance 
curve of the nonlinear FMR follows from (11)-(13): 

I 1'- [ho[' 
,a, - y,'[i+(x,-b,)']' 

b 4'¥," +Eo I I' 
o ao . 

" 
(14) 

The correction 

- L 2 I"'"' I' fo-- - Tt 
Q, 

is due to the static deformation of the sample at FMR; 
the main contribution to the sum over v may not nee­
essarily be made by the chosen mode d. For the fre­
quencies of the resonances k we have similar nonlinear 
corrections 

I: 2 ,., I" e, = - -I'¥, ", 
Q, . 

In order not to complicate the analysis and redesignate 
the coefficients >1>' 2, we shall neglect the corrections E0 

and Ek· For high-Q acoustic resonances (ry/Q 2 << 1) 
the presence of E0 and Ek does not affect the quantita­
tive results. 

Equation (14) determines the amplitude aa implicitly. 
As the field h0 grows, the resonance FMR curve de­
forms and, beginning from some value of the field, be­
comes nonunique and a hysteresis develops on its pas­
sage. It follows from Eqs. (11)-(13) that, close to the 
stationary regime (14), the negative damping introduced 
as a result of the magnetoelastic interaction into the 
acoustic resonance d is, in the first approximation with 
respect to the smallness of the oscillation d, equal to 

r, = laol'~ I'I',"I'A,, (15} 

(16) 

Assuming that when ho grows the instability of the sta­
tionary regime (14) with respect to the excitation of the 
sound d is the first to set in, we obtain for the insta­
bility the criterion r 1 :o:: r. This instability may com­
pete with the Suhl instability [ 14 l against excitation of the 
resonance k of frequency w k"'" w in the absence of 
sound. The threshold of this latter instability can be 
obtained from (11) and (12) when d = 0; it is equal to 

[a,['= g.[!l,,(w) I, (17) 

and we must suppose that the process with the lower 
threshold is the one which will develop. The quantity 
g1 = Ykl 41 >I>'~k I determines the minimum value of the 
threshold of the Suhl instability and corresponds to the 
FMR amplitude aa at which the nonlinear shift of the 

frequency of the resonance k assumes the half-width 
Yk of the resonance. 

Let us analyze the sound excitation threshold. To the 
case of a weakly nonlinear spin subsystem correspond 
those thresholds I a0 12 , for which the nonlinear correc­
tions to the resonance frequencies Wk are small (bk 
<< 1). In that case 

A,~ x."(w- Q)- x/'(w + Q), (18} 

and we arrive at the approximation considered in Part I. 
The spin-spin nonlinearity gives rise to nonlinear cor­
rections to the resonance eigenfrequencies Wk and, what 
is more important, causes, for each mode k, interac­
tion between the harmonics w + n and w - n' which in­
tensifies as the sound frequency n decreases in com­
parison with Yk· 

We shall trace the pattern of the phenomena in the 
simple case when the spin reservoir is represented by 
one oscillation k while the coupling with other spin res­
onances during the excitation of the sound d is unim­
portant. We then obtain from (15} the instability condi­
tion 

a , >- f A_, 
I o[ ""' I'I',"I' • ' (19) 

which implicitly determines the threshold I aa 12 • Let us 
discuss the results for n >> Yk and n << Yk· 

For n >> Yk, as the analysis of (16} shows, the ex­
pression on the right hand side of (19} is a minimum 
when w - n = Wk + 2Ykbk· Close to such a tuning of the 
system the spin oscillations at the frequency w + n are 
unimportant and 

(20} 

We then arrive at the expression obtained for the insta­
bility threshold in [SJ. The nonlinearity of the spin sub­
system in such an approximation, as can be seen from 
(19) and (20}, shifts and deforms the region of magneto­
elastic instability in accordance with the variation of the 
resonance frequencies, but does not change the magni­
tude of the minimum threshold. 

The effect of nonlinearity is felt most in the opposite 
case n << Yk· Correct to terms ~ (n/yk)2 the condi­
tion (19} then takes the form 

I I' [ (x,- b,) (x•- 3b,) + 1)' + 4(Q/y,)' 
a, ;;;;. g, 4(x,- b,) ' 

(21) 

The quantity g2 corresponds to the minimum threshold 
for sound excitation when >1>' 2 = 0 (see (9)). The vanish­
ing of the expression in the square brackets in the nu­
merator of (21) coincides with the threshold for the Suhl 
instability (17). 

Depending on the magnitude and sign of the spin-spin 
nonlinearity, the minimum threshold determined from 
(21) varies considerably. If >I>'~k< 0 then bk< 0 and it 
is not difficult to see from (21) that the minimum thresh­
old increases with l>~>'~kl. And conversely, if >I>'~k > 0 
then the threshold decreases. In the case when the non­
linearity of >I>'~k is due to dipole -dipole interaction, >I>'~k 
is a maximum and positive for resonances correspond­
ing to the spin branch e = 0 (the wave vector is parallel 
to the constant field}; for e = 0 the Suhl instability 
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threshold is a minimum: Wk Rj w.l 141 Depending on the 
direction of propagation (} and the shape of the sample, 
+2 may also have the opposite sign. For the uniform 
precession in a disk magnetized in the direction perpen­
dicular to its plane, wgo > 0, while when the direction of 
magnetization is parallel to the plane +~0 < 0. Crystal­
lographic anisotropy may make a contribution of either 
sign to +2; for yttrium iron garnet this contribution is 
negative. 

Let us see how the sound excitation threshold varies 
as the relation between the spin-spin and the magneto­
elastic interactions changes. To do that it is convenient 
to introduce the parameter Jl = g1 /g2 and consider the 
region of instability in the (I~ I , Xk) -plane (see Figs. 2 
and 3). 

Let wgk < 0 (Fig. 2). The vertical shading corre­
sponds to the region of the Suhl instability which, in this 
case, lies to the left of the straight line Xk + lbkl = 0. 
According to (21) the excitation of sound is possible only 
in the region Xk + lbkl > 0, i.e., the regions of the two 
instabilities are separated for all values of Jl· As J.L 
decreases the sound excitation region (in Fig. 2 it is 
obliquely shaded) becomes bounded from the top, de­
creases, shrinks to a point and vanishes. Total suppres­
sion of the sound occurs at J.L s 2 + 0(0 2 /yk). (Were­
call that we are considering here low-frequency sound 
U << Yk·) Thus, even if the minimum MAR threshold 
g2 is below the Suhl instability threshold g1 by almo3t 
a factor of two, sound is nevertheless not excited. 

Let wgk > 0 (Fig. 3). In this case both the region of 
the Suhl instability (it is enclosed by the boundary 1 in 
Fig. 3), and the sound excitation region lie to the right 
of the straight line Xk- I bk I = 0. For J.L >> 1 the mag­
netoelastic instability threshold (the curve 2 in Fig. 3) 
lies far below the boundary 1 and the effect of the non­
linearity of the spin subsystem is insignificant. As J.L 
decreases, the boundary of the sound excitation region 
rises towards the boundary of the Suhl instability. (If 
we assume the quantity g2 to remain constant, then the 
sound excitation threshold decreases with actual growth 
of the nonlinearity of wgk, i.e., in terms of laol 2 instead 
of bk.) As J.L - 0 the boundary of the sound excitation 
region intersects the curve 1 as it rises. In the region 
of detuning, Xk .$ 3 - 5, the two boundaries practically 
merge at some J.L = J.Lo• If J.L > J.L0 , sound is excited first, 
while when J.L < J.Lo the Suhl instability occurs first; the 
quantity J.Lo Rj0 2/yk. 

Close to J.L Rj llo• the distance between the boundaries 
of the two instabilities along the straight line Xk- 2lbkl 

FIG. 2. Region of instability when 1/1°k < 0, (rl./'yk )2 = 0.1; for I, 
1.1 = 10 and for 2,1.1 = 3. 

FIG. 3. Region of instability for 
1/1/'" > 0, (fl./"(" )2 = 0.1; I - boun­
dary of the spin-spin instability, wk 

,., w, 2-1.1 = 10, 3-1.1 =I, 4-1.1 = 0.2. 

= 0 is given by o Rj (IJ. - IJ.o)/2 ll· For low-frequency 
sound llo may be extremely small. This means that 
whenever it would appear that there should be a purely 
spin-spin instability, it would be preceded by sound ex­
citation even though the magnetoacoustic instability 
thresholds are large (g2 Rjg1 /llo >> g1)· 

Let us discuss again the simplest case which is re­
alized when the coupling of the sound with the reso­
nance c0 , directly excited by the external field, is the 
most important. Then, it is necessary to replace the in­
dex k by 0 everywhere in the above given conditions 
for instability. Now, the instability condition (17) im­
plies not a parametric excitation of the resonance c0 at 
the frequency w, but a development of a region where 
the stationary states of the FMR curve (14) are not 
unique. On passage through resonance, the system of 
these states becomes stable jumpwise; the FMR curve 
manifests a hysteresis. For anharmonicity of the right 
sign, sound should be observed close to the points where 
the stationary regime collapses -if, of course, there are 
low-frequency resonances in the spectrum of the elastic 
system. 

3. Discussion 

On the dispersion diagram (Fig. 1), the processes 
may be represented in the following way. As has been 
said already, when U ~ y the pairs of oscillations 
w1(-k1 ) and w2(k1) participate in the excitation of the 
sound. When +2 * 0 these same pairs are at the same 
time the results of a Suhl process of the second order: 
2w(k = 0) = wk'-k1) + w2(k1), which leads to important 
effects as U/y decreases. Notice that when the magne­
toelastic interaction is neglected, the instability with 
respect to disintegration into two spin oscillations has 
the threshold (17) regardless of the density of the mag­
netic resonances in the band close to Wk Rj w, whereas 
the process of the development of low-frequency sound 
includes the entire aggregate of these resonances (the 
sum over k in (15)). Since the terms which are cubic in 
c in the energy of the spin-spin interaction most effec­
tively generates a coupling between FMR oscillations of 
frequency w and the oscillations wk Rj w /2, while the 
coupling with the resonances wk Rj w appears only in 
second-order perturbation theory, the effect of this 
spin-spin nonlinearity on the process of the excitation 
of low-frequency sound in a ferromagnet appears, ac­
cordingly, in that same order of smallness. Therefore, 
under the conditions of the Suhl instability wk Rj w/2, 
the two processes are not so strongly intertwined. 

We dwelt at length on the case when the parametri­
cally excited spin subsystem is represented by one os-
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cillation k. We must, however, take into consideration 
the fact that, in reality, the minimum thresholds of the 
magnetoacoustic instabilities g2 may correspond to one 
group of spin resonances G2 , connected with the acous­
tic resonance d2 , while the thresholds of the Suhl insta­
bility g1 may correspond to another group G1 "ic G2 • It 
is clear that if JJ. >> 1, then the resonances G2 are ex­
cited simultaneously with the sound d2, while if JJ. << 1, 
then the spin resonance G1 and the acoustic resonance 
d1 which is most strongly coupled with G1 and is, in the 
general case, different from d2 , are excited. 

The considered pattern is, generally speaking, valid 
only when we exceed the values of the threshold param­
eters by small amounts, and our analysis does not allow 
us to elucidate what happens when the thresholds of both 
types of instabilities are simultaneously exceeded. The 
establishment of oscillations in a parametric excitation 
is determined exclusively by the nonlinear properties of 
the system. Notice that the processes that occur in this 
are extremely complicated and the consistent theory of 
the steady FMR state, even without the consideration of 
the magnetoelastic interaction, is far from complete. 

Thus, the presence of spin-spin nonlinearity may 
lead either to a strong suppression or to the excitation 
of low-frequency sound when the magnetoelastic cou­
pling is extremely small and the acoustic damping is 
large. The effectiveness of the mechanism of the 
strengthening of the coupling with the acoustic system 
increases as the frequencies of the acoustic resonances 
in the system decrease. In particular, the effects are 
favored by increase in the dimensions of the sample and, 
as estimates show, even by "loading" the ferromagnet 
with a large additional mass, in spite of the decrease in 
the magnetoacoustic coupling '11' 1 (for example, a ferro­
magnet diluted in a dielectric or a magnetic film on a 
backing). 

The elucidation of the regions of applicability of the 
models which have hitherto been considered in the liter­
ature and in which the authors restricted themselves to 
the consideration of either only spin-spin or only the 
magnetoelastic nonlinearity, has shown the following. 
Usually, for the analysis of the pattern of nonlinear phe­
nomena in a system, it is considered sufficient to deter­
mine the thresholds of each of the competing nonlinear 
processes separately, neglecting the rest and supposing 
that, in reality, the process with the lowest threshold is 
the one that develops. The present problem shows that 
this, generally speaking, is not the case if one of the 
competing processes is the excitation of a low-frequency 
system. In our example, the MAR threshold g2 may ex­
ceed the Suhl instability threshold g1, in principle, by 
many orders (by a factor of y 2/U 2 ) and nonetheless the 

process of sound excitation develops (simultaneously 
with one of the resonances of the magnetization which 
correspond to the threshold g1). 

We should expect a similar intensification of the in­
teraction of a high-frequency system with low-frequency 
resonances of different physical nature, owing to the non­
linearity of the high-frequency system. 
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