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The carrier plasma in an inversion channel is investigated for quantizing band bending. The screen
ing of the charged-impurity field, the dispersion of the plasma oscillations, the electron spectrum, and 
the relaxation time for scattering by volume and surface ions are determined. 

AN inversion layer is produced near the surface of a 
doped semiconductor in the presence of a strong elec
tric field directed normal to the surface. If the field is 
sufficiently strong and corresponds in direction to re
pulsion of the majority carriers from the surface, then 
the bottom of the conduction band (in the case of a p-type 
semiconductor) or the top of the valence band (in the 
n-type case) can intersect the Fermi level near the sur
face. Then the near- surface layer in an n- type semicon
ductor is characterized by p-type conductivity (and vice 
versa in the case of a p- type semiconductor). 

Measurements of the Shubnikov-de Haas effect in 
inversion channelslll indicate that at the attainable band 
bending the quantization of the motion of the electron in 
a direction normal to the surface becomes significant. 
This is very important for the interpretation of other 
experiments (for example, the conductivity, the Hall 
effect in near- surface layers), and for a general under
standing of electronic processes in metal- dielectric
semiconductor layered structures. 

The difficulties of constructing the theory of an elec
tron plasma in an inversion layer are connected primar
ily with the inhomogeneity of the system with respect to 
the coordinate normal to the surface. Even the well
known summation· of Gell-Mann and Brueckner, which 
leads to a renormalization of the electron- electron and 
electron-ion vertices, is realizable only for spatially 
homogeneous systems, in which the Green's functions 
depend on the difference of the arguments. However, as 
will be shown below, the situation is facilitated in the 
limiting case of a very thin near- surface layer, and the 
theory of a weakly-non-ideal "two-dimensional" plasma 
can be constructed after the model of the known three
dimensional problem (see, for example, LZJ ). We shall be 
interested in the criterion for the aforementioned two
dimensional character, the renormalization of the 
Coulomb interaction and the spectrum of the plasma os
cillations, the electron spectrum, and the relaxation 
time for scattering by ions. 

We start with a consideration of. the nonrenormalized 
electron-electron and electron-ion vertices. Since we 
are dealing with charges in a semiconductor with dielec
tric constant ~1, bordering on a dielectric ( Ez), it is 
necessary to take into account the electrostatic image 
forces. Obviously, the interaction energy of two elec
trons located at the points r1 and rz depends on the dif
ferences x1- X2 and y1- yz (the z axis is perpendicular 
to the surface). The Fourier component of this interac
tion with respect to the coordinates along the surface is 
equal to 
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(1) 

k is a two-dimensional vector and the semiconductor 
occupies the region z > 0. We expand (/lee in terms of 
the eigenfunctions of the transverse motion of the elec
tron 1/Jn(z). As will be shown subsequently, the signifi
cant values of k are of the order of e 2/ ~ 1 (we use a sys
tem of units with fl.= m* = 1), i.e., k-1 is of the order of 
the effective Bohr radius aJ' in the volume of the semi
conductor. If the thickness of the layer in which the 
electrons are mainly concentrated is much smaller, then 
q;ee(k; z1, zz) does not have time to change appreciably 
over distances characteristic of the wave functions 
1/Jn(z). In this case the principal role is played by the 
diagonal elements of CfJee with respect to the quantum 
numbers of the transverse motion 

(n'm'jcp.,(k) lnm) ~ 2:e' .Snn'.Smm•, e' = e, ~·e, . (2) 

The indicated requirement is apparently not exceed
ingly stringent if it is recognized that the channel thick
ness can reach 30-40 A, and~ amounts to ~ 100 A 
in GaAs and ~ 500 A in InSb. Thus, the scattering of 
electrons with transitions between the subbands of trans
verse quantization (n"' n', m = m') is weakened with 
respect to the parameter a/~ « 1, where a is the 
effective thickness of the conducting layer. This param
eter determines the criterion of two-dimensionality of 
the problem and will be used in subsequent calculations. 

The polarization of the medium also leads to the oc
currence of single-electron terms in the potential en
ergy; these terms describe attraction or repulsion (de
pending on the sign of E1- Ez) of the electz:on at the sur
face. These terms can be regarded as a renormaliza
tion of the external field, leading to a bending of the 
bands, and need not be considered separately. In the 
present article we shall not be interested in the con
crete form of the near- surface potential well and the 
wave functions 1/ln(z), since all the results will be ex
pressed in terms of the number of electrons per unit 
area of the inversion layer, which can be measured 
directly in the experiment. 

To find the electron-ion vertex part 'Pei we start 
again from expression (1), in which zz is regarded as 
the coordinate of the ion. We shall assume the ions to be 
infinitely heavy impurities and average the results over 
the impurity configurations. The quantity (n' i'Peiln) for 
the ion located at the point Pj, zj is equal to 

(n'!cr"(k; p;, z;ln> ~ 2nii'k-' cxp(ikp;- kz;).Snn'· (3) 
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In calculating the matrix element in (3) we take into 
account the fact that the wave functions of the electrons 
cut off the integral at distances on the order of a << k-1, 
and the ion coordinate zj can have arbitrary values. 

We now proceed to calculate the renormalized elec
tron- electron and electron- ion vertices r ee and rei. 
We assume that the plasma is weakly nonideal, i.e., the 
effect of the Coulomb interaction is relatively small. It 
is well known that to this end the electron gas must be 
sufficiently dense, so as to satisfy the condition e 2 ~ Po, 
where Po is the Fermi momentum. Since the limiting 
Fermi momentum is not altered by the particle interac
tion, it can be calculated by assuming the electron gas 
to be ideal. Then p0 is determined from the equations 

1 
2 Po'= fll T~o, ri: ln(1 + e(Hm)fT) = vn, 

where fm are the energy levels of the transverse mo
tion, v is the number of electrons in the layer per unit 
area and T the temperature in energy units, and the sum 
is taken over all the subbands of transverse quantiza
tion. 

If only one subband is filled, then ~ = 21Tv, and the 
foregoing condition of weak nonideality of the plasma 
can be written in the form v/e4 = vaci' 2 » 1 (i.e., the 
number of surface electrons on the area of the Bohr 
orbit should be large). 

For a weakly nonideal plasma, the most important 
processes are those of scattering with a small transfer 
of momentum k, as seen from (2) and (3). We shall 
therefore calculate the renormalization of the Coulom\.J 
interaction retaining only the principal terms in e 2/k. 
It is knownl2J that this problem reduces to a summation 
of a chain of electron loops strung on the line of the 
Coulomb interaction (see Fig. 1). Figure 1a pertains to 
r ee' and Fig. 1b tor ei· The cross denotes an ion, the 
dashed line corresponds to the factor q; ei' and the wavy 
line to r ee· The dashed line does not carry frequencies 
(the ions are infinitely heavy). 

Before we calculate r ee and rei> let us see how to 
eliminate in our problem the difficulty connected with 
divergent diagrams for G-functions of the type shown in 
Fig. 2. For the spatially-homogeneous problem, the 
contribution of this diagram vanishes because of the 
plasma electroneutrality condition ( seel2 J). In the case 
considered by us, the situation is somewhat different. 
The sum of all the irreducible self- energy parts of the 
type under consideration is equal to 

~'(r- r', t- t') = 2e' J [G,(r,, 0; r,,- O)+ G,(O,- 0)] 

X Cf(r, r,) dr,6(r- r') 6(t- t') == U(r) o(r- r')Mt- t'). 

The quantity in the square brackets under the integral 
sign is obviously the total charge density of the ions 
and electrons, with the latter depending on the coordin
ates because of the action of the external field. U(r) is 

thus equal to the additional field produced at the point r 
by the inhomogeneous distribution of the electrons. The 
structure of the quantity :E ' ( r - r', t - t'), and namely its 
proportionality to o(r- r')o (t- t')' signifies that in the 
SchrOdinger equation for one electron the quantity U(r) 
is added to the external potential, i.e., a self- consistent 
field is produced. Consequently, diagrams of type of 
Fig. 2 can be disregarded if it is assumed that the 
single- electron levels and wave functions are known 
from a solution of the self- consistent problem. This is 
precisely what we shall assume from now on. 

The calculation of rei is in essence the problem of 
screening of the field of a static impurity. The series 
represented by the diagram of Fig. 1b can be summed 
with the aid of the temperature-diagram technique when 
(nlq;eelm) is proportional to Onm' i.e., in the limit when 
a « at. In this case it reduces to a geometrical pro
gression, and we obtain (fork ~ p0 ) 

c,(k; nn', j) = 2ne'6nn' exp (ikp;- kz;) [ k + 2 E e't(em) ] -: ( 4) 

where f(Em) = (1 + e(€m-J.t)/Tr1. At Tm= 0 the screen
ing constant in the denominator of (4) is equal to 
2e2N(J.t), where N(J.t) is the number of levels E:m lying 
below the Fermi level. Thus, the screening radius ex
periences jumps when the new subband begins to be 
filled11 . For a nondegenerate gas filling only the first 
subband, the reciprocal screening radius is equal to 
21Te2v/T. It is seen from (4) that the renormalization 
affects momenta k :s e 2; this justifies the assumptions 
k ~Po and ka « 1 on which the derivation of (2)-(4) is 
based. 

Let us now find the renormalized electron- electron 
vertex r ee( w, k). For a strongly degenerate electron 
gas, under the condition that one subband is filled, we 
obtain 

r, (ffi, k) = 2ne' 1 [k + 2e'II ( w, k)], 

[ El(ffi2 - k'p,') El(k'po'- (!)2 ) ] (5) 
II(ffi,k)= 1-1(!)1 +i , 

fffi2 - k'po' ""fk'po'- (!) 2 

where ®(x) = 1 for x > 0 and ®(x) = 0 for x < 0. 
Neglecting the retardation of the interaction, i.e., for 

w « k:Po, we obtain from (5) the already known result 
r ee = 21Te2/ (k + 2'e2). The opposite limiting case is 
characteristic of plasma oscillations. The pole of the 
quantity r ee determines the dispersion law of the plas
mons in the two-dimensional plasma of the inversion 
layer 

ffi(k) = ye'p,'k(i + k 1 2e') (1 + k 1 4e') -'~>, 

(!) > kp,, k«:; p,. 
(6) 

At small k (k « e 2) we obtain w ~ v'e2pgk, i.e., the dis
persion of the plasmons has no gap, just as in the three
dimensional case. Fork >> e 2 we obtain w ~ kp0 • The 
characteristic plasma frequency is of the order of Poe2 , 

which amounts to approximately 1013 Hz for v ~ 1012 
cm-2 and (€1 + 102)/2 ~ 10. 

We proceed now to calculate the Green's function and 
the energy spectrum of the electrons, with allowance for 
their Coulomb interaction. The problem consists of cal-

I) A similar problem of screening of a chared impurity in a thin film 
was solved by Rytova for the case when one sub band is filled [ 3 ]. For
mula (4) with N(!L) = I agrees with Rytova's results. 
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FIG. 3 

culating the self-energy part represented by the diagram 
of Fig. 3. Without allowance for the renormalization of 
the Coulomb interaction, this quantity is equal to 

.., ( ) _ .2 _2 J G(w,, p,)e'"•' dp,dw, 
"'' p -t ne 

t-.+D IP-Pd (2n)' 
(7) 

where K and E are respectively complete elliptic integ
rals of the first and second kinds. The value of ~o(p) at 
p = Po determines the renormalization of the chemical 
potential fl.JJ. =- 2Ei2p0 /?r. Expression (7) must be correc
ted in the region (p- Po) :S 'if, for in this case small 
momentum transfers in the vertex become significant. 
It is necessary to calculate ~(p) using formula (5) for 
r ee· Omitting the rather cumbersome manipulations, 
we present the final result: 

2e' [ ( v ) Re~(p) = ~,(p)--;-sign~(p) nln 1 + 2 

+ s~ (arctg-v +arctg v . )~]. 
, ix' -- v' (1 + x)Yx'- v' x + 2 

2e' [ s· ln(1 + x) Im~(p) = -sign1;(p) dx 
n 0 x+2 

(8) 

1~s ( v'(x+2)) dx] 
-2, ln 1 - x(x+1)' x+2 ' 

1 
~(p) == 2 (p'- p,'), v,. R. 

2e'p, 

From this we get the energy spectrum t(p) and the 
damping y(p) of the electronic excitations in the region 
I~ I « 'E?po: 

e(p) = s(p) [ 1 + n~, (ln 2:,· -2)]' 
y(p) = ..illl (ln 2p,e' - _!_) 

4np,' lsi 2 

and in the region po{? « I ~ I « p~ : 

[ 2e' ( 2{ip, 1 )] e(p)=6(p) 1+- In-=--- , 
:rp, l'lsl 2 

2e' ( lsi n') y(p)=-sign~ ln'--- -1+- . 
n 2p,e' 24 

(9a) 

(9b) 

In formulas (9), the energy t(p) is reckoned from the 
renormalized chemical potential. From (9a) we can find 
the change of the effective mass of the electron as a re
sult of the interelectron interaction 

_, • , [ e' ( 2p, ) ] merr= m- 1 +-- In-_-- 2 , 
1tPo e2 

where m* is the usual effective mass in the volume (out
side the inversion channel). Thus, the longitudinal effec
tive mass of the electron in the inversion layer is 
smaller than m* and increases, tending to m*, with 
increasing Po, i.e., with increasing transverse electric 

a 
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I 
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field. It should be noted that the dependence of meff on 
the transverse field may also be connected with another 
circumstance. The deviation of the nonrenormalized 
dispersion law Eo{p) from parabolic also changes the 
effective mass at the Fermi level with changing field. It 
is natural to assume that true E0(p) curve lies lower than 
the parabola p2/2m*. Therefore meff will increase with 
increasing po, i.e., with increasing transverse field. 
The order of magnitude of this effect can be estimated 
as the ratio of Po to the reciprocal-lattice vector. For 
v ~ 1012 cm-2 this ratio is several percent. The param
eterl?hrPo at this value of v, (t1 + t2)/2 ~ 10, and 
m* ~ 0.1 me is equal to 0.06. Thus, both effects are of 
comparable order of magnitude and act in the same 
direction; meff increases with increasing external field. 

Finally, let us calculate the time of relaxation of the 
inversion-layer electrons due to scattering by ions. In 
the calculation of the scattering matrix element it is 
necessary to replace the quantity cpei by the renormal
ized vertex rei. In addition, the question arises of 
allowance for the corrections represented by the dia
gram of Fig. 4. Figure 4a corresponds to replacement 
of the nonrenormalized G function by the quantity 
(G(i1- ~r1 . Figure 4b, as can be verified, makes a con
tribution that is small in terms of the parameter e2/po 
compared with 4a, owing to the limitations on the angles 
between the momenta. 

The remaining procedure is perfectly analogous to 
the calculation of the residual resistance of metals with 
the aid of the technique of Abrikosov and GorkovL21 . 
The only difference is that the equation for the Green's 
function averaged over the positions of the impurities 
contains the quantity (Gii1- ~r1 in place of Go. This 
means that in addition to impurity damping there is an 
intrinsic damping in the electronic Green's function, 
connected with the electron-electron scattering and des
cribed by the quantity y(p) in formulas (9). It will be 
shown below that in the significant region of values of 
~ (p) ( ~ 7 v ~ 1), where 7 v is the time of relaxation on the 
ions, the intrinsic damping is small compared with 
1/7 v· This enables us to write down immediately the 
result for the conductivity, for in the case when y(p) 
<< 1/7 v the problem reduces to that solved inL21 : 

-~() =~ ~ IL,(p-p')l<exp(-2lp-p'lz;)) (10) 
T, p S k..J 

j 

- ,,, p" 
X (1- cospp')ll (-2--2 ) dp'. 

Here S is the surface area of the sample, the angle 
brackets denote averaging over the coordinate of the ion, 
and the summation is over all ions. Substituting in (10) 
the expression for rei (see (4)) and assuming the ions to 
be distributed in the volume of the sample with constant 
density nv, we obtain 

_1_ = ne'n. "s'' da sin a ~ ne'n. (ln 2p - 1) . ( 11) 
T,(p) p3 

0 (sina-f-e'/p) 2 p' e' 

The last equation in (11) was obtained under the condi-
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tion e2 ~ p, since the conductivity of a strongly degen
erate gas is determined by T v(P) at p = Po· 

We can now verify the statement made above con
cerning the intrinsic damping of the electronic excita
tions. In both limiting cases (9a) and (9b) the ratio of 
Tv to 1/y (p) in the region ~ ~ 1/ Tv turns out to be much 
smaller than unity. The total electric current through 
the layer, per unit length, is 

. - - ( 2 ""f""2;; ) J,=2'12ne•v'"Ffn,e' ln~-1 , (12) 

where F is the drawing electric field (along the surface). 
The scattering centers can be located not only in the 
interior of the semiconductor, but also on the very 
boundary separating the semiconductor from the dielec
tric. If the surface concentration of such ions is ns, 
then it is necessary to average expression (10), taking 
the ion density in the form nv + o(z)ns. Then the total 
relaxation time is determined from the formula 

1 1 1 -=-+-. 
T 'tv 't', 

1 2n'e'n, 
,;,(p)"=-p-'- (13) 

We note that in the calculations of T s(P) we can neglect 
the screening in the denominator of r ei• since e2 << p 
and the transport cross section for scattering by a sur
face center converges even without allowance for the 
screening. This constitutes the difference from scatter
ing by an ion in the interior, where the transport cross 
section diverges logarithmically in the small-angle 
region if screening is neglected. The current over the 
layer per unit length equals in the case T s ~ Tv 

;. =' e'v'F I ne'n •. (14) 

The relative role of the volume and surface ions de
pends on the ratio of the quantities v312/~ and v/ns· For 
example, for v ~ 1012 cm-2 and nv ~ 1016 cm-3 , the sur
face scatteriiJ prevails over volume scattering at 
ns > 1010 em . In the general case, as seen from (12) 
and (14), the dependence of the effective surface mobility 
on 11 is intermediate between power-law relations with 
exponents 1 and 3/2. This conclusion is in qualitative 
agreement with experiment (seel41 ). 

All the formulas obtained above pertain to a degener
ate plasma. In the Boltzmann case jv is proportional to 

vT'I• ( T) -• 
-- ln-_, , 

n, e 

and js ~ vT Ins, i.e., the surface mobility ceases to de
pend on the strong transverse field. This also agrees 
qualitatively with the experimental data. 

The problem of carrier mobility in inversion quantiz
ing layers was also discussed by Stern and HowardLsJ . 
Stern and Howard made a variational calculation of the 
self- consistent problem for the determination of the 
form of the potential well and of the wave functions 
l/ln(z). They also calculated the surface mobility as a 
function of 11 but (inasmuch as computer calculations 
were involved) they represented their results in the 
form of plots, making a comparison with the present 
work difficult. As seen from the foregoing, in the case 
of very thin inversion layers it is possible to obtain ra
ther simple analytic expressions for T s and Tv without 
knowing the concrete form of the potential and of the 
wave functions. The results are expressed in terms of 
the concentration in the inversion layer, which can be 
determined directly from experiment. 

In conclusion, I am grateful to E. G. Batyev for use
ful discussions and to S. P. Sinitsa for numerous dis
cussions on problems touched upon in the paper and for 
the opportunity of becoming acquainted with the results 
of his experiments prior to publication. 
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