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The conditions for the coexistence of phases in magnetic and ferroelectric substances are found by 
taking into account the elastic deformation energy (formulas (17) and (17')). Depth properties of the 
domain structure are investigated. It is shown that a consequence of the condition of minimum of 
the volume part of the free energy is that in the interior of an ellipsoidal sample both Et(Ht) and 
En ( Hn) are continuous at the phase interfaces. The number of parameters determining the depth 
properties of the domain structure exceeds by one the number of relations between the parameters, 
so that the problem involves a degeneracy. The parameters can be determined only if effects re
lated to the emergence of the domains to the surface are taken into account. Nevertheless, it is 
possible to calculate for uniaxial ferromagnets the magnetization and the deformation for an ex
ternal field H0 arbitrarily oriented with respect to the ellipsoid axes and the crystallographic 
axes, and averaged over the domain structure (see formulas (5), (37), and (38)). The optical 
properties of the simplest domain boundary (Bloch wall) are investigated in the low-frequency 
range. It is shown that for waves of a certain polarization the domain structure is impenetrable 
(perfectly reflecting). Hence a massive domain bounded by such walls is essentially a waveguide. 

1. INTRODUCTION 

IN one of the author's papers[ll, conditions were ob
tained for the coexistence of phases in magnetic sub
stances 1> and in ferroelectrics: 

H, = const, B.= const, <I>' (H,, B.) = const, 

<D'(H,,B.) =CD +'-1-H.B. =- - 1-JB BdH +.,.!._H.B., 
4:n 4:rt 4:rt 

0 

E, = const, D.= const, <I>' (E,, D.) = const, 

(1) 

- f 1 E 1 
lll'(E.,D.)= <I> +4;E.D. = -4; JDdE +4;E.D.. (1') 

0 

The simplest domain structures are found in bulky el
lipsoidal bodies, in plane-parallel plates, and in cylin
drical samples of ellipsoidal cross section. If the ex
ternal field is homogeneous, then, neglecting effects 
connected with the emergence of the domains to the 
surface, it can be assumed that several homogeneous 
phases separated by plane-parallel boundaries coexist 
in the sample. In the simplest cases the number of 
phases is equal to two. Each of the phases represents 
a system of domains in contact with the domains of the 
other phase. The width of the domains a is small com
pared with the dimensions ,of the sample l. In the case 
of an unbranched structure a~ z112 [s,aJ, and for a 
branched structure a~ l213 [ 7 l. The values of the mag
netic field H and of the induction B averaged over the 
domain structure (or else of the electric field E and 

Owe have in mind ferro- and antiferromagnets, and also diamagnetic 
metals under conditions of the de Haas-van Alphen effect. The condi
tions for the existence of the domain structure in antiferromagnets are 
considered in [2]. Experimental and theoretical investigations of the 
domain structure of diamagnets are dealt with in [ 3,4]. 
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of the induction D) inside such samples are homogene
ous. These quantities are connected with the external 
field Ho (or Eo) by the relations 

H0, = (6,.- n,,)((H,)) + nu.((B,)), 

E0, = (6,,- n,,)((E,)) + n,,((D,)). 

(2) 

(2') 

The double angle brackets denote averaging over the 
volume of the sample, nik is the tensor of the demag
netization (depolarization) coefficients. Stratification 
into domains leads to a decrease of the thermodynamic 
potential, which is proportional to the volume of the 
sample. 

The depth properties of the domain structures are 
characterized completely by specifying Ht and Bn (or 
Et and Dn), by the two angles determining the orienta
tions of the interfaces, and by the phase concentrations. 
These quantities satisfy three equations (2) (or (2')) and 
the conditions for the coexistence of the phases 

<1>/(H,, B.)= <D,'(H,, B.) 

There are two fewer equations than unknowns 2>. Two 
parameters must be determined from the condition that 
the total thermodynamic potential of the body must be a 
minimum. In magnetic substances it is necessary to 
minimize the thermodynamic potential 

CD.= ~ J d'x[ CD(x)+ ~:J. 
and in ferroelectrics the thermodynamic potential 

1 s [ Eo'] - 1 !D.== -V d'x !D(x)-- , !D =<I>+ -ED. 
8:rt ' 4:rt 

Here V is the volume of the sample, and the integra-

2lstructures of the "checkerboard" type have a fewer number of 
degrees of freedom and can be realized only in special cases, for exam
ple in the absence of an external field. 
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tion is carried out over the entire space, including the 
volume outside the body. 

It was shown in[ 1l that as a result of minimization 
of the volume part of the thermodynamic potential 
there is obtained only one additional condition Hn1 
= Hn2 (or En1 = Em). The complete system of condi
tions for the minimum can be written in the form 

H = const, Bn = const, <ii·= const (3) 

or 

E = const, Dn = const, li> = const. (3') 

The number of equations is one less than the number 
of unknowns, so that there is degeneracy in the prob
lem. We emphasize that the condition Hn = const (or 
En = const) is the consequence of the ellipsoidal shape 
of the sample and is not satisfied in samples of more 
complicated shape. 

In a uniaxial ferromagnet 

<ii =:= U,. - MH - H' I 8n, 
U,. = 'l,f3M' sin' e, f3 > 0, IMI=:= M = const, 

(4) 

where () is the angle of deflection of the magnetization 
M from the easy axis (the z axis), the conditions (3) 
denote that the interface is parallel to the easy axis[6 l 
and the field H is perpendicular to this axis. The de
generacy in this model is connected with the fact that 
at given phase concentrations c1 and c2 (c1 + c2 = 1) 
and for a given field H 1 z the volume part of the total 
thermodynamic potential of the body ~n does not 
change when the interface is rotated about the z axis. 
This makes it possible to find the connection between 
(( M)) and Ho in the region of the existence of the 
domain structure for all the orientations of H0 and of 
the crystallographic axes relative to the axes of the 
ellipsoids (this was not done earlier). 

We take into account the fact that when Hz = 0 and 
H~3 + H~3 < ({:lM )213 the "equation of state" of the 
uniaxial ferromagnet takes the form 

f3M. = H,, f3Mv == H., M, = ± (M' - M.' --: M.') Vx. 

Since H = const, relation (2) can be rewritten in the 
form 

H,. = H, + 4nn,.((M.)), 

or else 

where 

n,. = n,, + (f3 I 4rr) (ll,. -ll.tll.,). 

(5) 

The concentrations of the phases are determined from 
the conditions 

((M,)) = (c, - c,) (M'- M.'- M.') 'h, 
M. = M., = M., = ((M.)), 
M, = M., = M., = ((M.)). 

(6) 

All these results were obtained without taking into 
account the energy of the elastic deformation. In ferro
magnets, the magnetostriction energy is in most cases 
small compared with the magnetostatic energy, but 
there are substances in which they are comparable 
(see, e.g.,(sJ). In ferroelectrics the electrostriction 
energy is always appreciable[ 9l. We note also that the 

problem of elastic deformation under magnetization 
(polarization) is of independent interest. 

The generally accepted theories of electrostriction 
and magnetostriction are not fully correct. In Sec. 2 
we shall write out the correct thermodynamic relations 
for the striction phenomena. In the same section we 
obtain the condition for the existence of phases with 
allowance for the elastic deformations. 

In Sec. 3 we investigate the depth properties of the 
domain structures and show that the degeneracy men
tioned above remains in force also when account is 
taken of the energy of the elastic deformations, in 
spite of the fact that the condition for the minimum of 
the volume part of the total free energy leads to one 
more additional condition En = const. Therefore all 
the parameters characterizing the properties of the 
domain structure in the interior of the sample can be 
obtained only when account is taken of the effects con
nected with the emergence of the domains to the surface. 
Nonetheless, we shall calculate the average deforma
tion of uniaxial ferromagnets with allowance for the 
domain structure. 

In Sec. 4 we investigate the optical properties of 
the simplest domain boundary (of the Bloch wall type) 
at low frequencies. It is shown that the domain bound
ary is impenetrable (perfectly reflecting) for waves of 
definite polarization. Therefore a massive domain 
bounded by such walls constitutes a waveguide. 

2. 1HERMODYNAMIC THEORY OF ELECTROSTRIC
TION AND MAGNETOSTRICTION: CONDITIONS 
FOR THE COEXISTENCE OF THE PHASES 

We note first that in an anisotropic body the free 
energy depends not only on the symmetrical compon
ents of the strain tensor 

u .. = 'f,(au.j ax.+ au./ ax,), 

but also on the antisymmetrical ones: 

Vm ='/,(au, I ax.- au. I ax,). 

Let us consider, for example, the free energy of a die
lectric 

( au,) ( au.) 1 s· FE,- =F E=O,- -- DdE. ax. ax. 4n. 
0 

This quantity does not change under rotations* 

u = [ro, r], l'm = -eiktCOt, uik = 0, 

if the field E is rotated simultaneously: 

<IE= [roE], 
i.e., 

From this we readily find that 

( ap) 1 
-- = --(E,D,-E.D,). 
av.. •.••• 8n 

(7) 

The derivatives (aF/auik )E v·k are determined by the 
' 1 

relation 
aF 1 

o,.=-a -+Fil,,+-8 (E,D.+E.D,), (8) 
Ui~t 1t 

where a ik = aki is the stress tensor. This relation is 

*[w,r] "'w X r. 
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given in the book of Landau and Lifshitz[6 l 3>. 
Using relations (7} and (8}, we can easily show that 

dF= a,.-F6,.--E,D. d---DdE. ( 1 ) au, 1 (9) 
4n ax. 4n 

For the free energy 

we obtain the relation 

1 
F=F+-ED 

4n 

dF = (a,.- F6,. + -1- DE6,.- - 1-E,D.) d!!::., 
4n 4n ax. 

1 
+4;EdD. (10) 

We introduce also the free energy F' in terms of the 
variables Et. Dn, and auifaXk, where the indices t 
and n denote components tangential and normal to the 
interface: 

F' = F-~ E,D, = F +! E,.D., 

dF, ( F' 1 1 ) au. = a,.- 6., + -E.D.6,.- -E,D. d-
4n 4n . ax. 

1 1 
- ~ D,dE, + 4;' E.dD.. (11} 

In elasticity theory it is convenient to introduce the 
free energies corresponding to a specified mass, 
namely, the mass per unit undeformed volume. Such 
quantities we shall mark with a zero subscript: 

( 1 ) au, 1 dF,= a,.-·-E,D. d---(1+uu)DdE, 
4n ax. 4n 

(12} 

( 1 1 ) au, 1 
dF0 = a"' +-DE6,. --E,D. d-+-'-(1 + Uu)EdD, 

4n 4n ax. 4n (13} 

, ( 1 1 ) au, dF, = a, .• +-E.D.6,.--E,D. d-
4n 4n ax. 

1 +-(1 + Uu) (- D,dE,+E.dD.). 
4n (14} 

On the interface there are conserved, besides Et 
and Dn, also the quantities auifaxa and aiknk = ain• 
where the index a numbers the components in the 
plane of the interface. To obtain the condition for the 
coexistence of the phases, it is necessary to construct 
the thermodynamic potential in terms of conserved 
variables. To this end we represent dF~ in the form 

dF , ( 1 1 ) au. ( 1 ) au~ o = a,~+-4 E.D.6,~--EJJ~ d-+ a~.--EaD. d-
n 4n ax~ 4n . an 

au. 1 + a •• d-+-4 (1 + uu) (-D,dE,+E.dD.). (15} an n 

The sought thermodynamic potential, which has a mini
mum at specified Ea, Dn, Oui/axa, and ain is the 
thermodynamic potential 

(16) 

F ' ( 1 ) au. au. = 0- O'a.n--4 E:;.Dn ---O"nn-· 
n an an 

The complete system of boundary conditions is 

3lit is frequently stated in the literature that in an anisotropic body 
the stress tensor aik is not symmetrical (see, e.g., [ 10• 12] ). This state
ment is incorrect. The correct result (see formula (8)) is obtained when 
account is taken of the asymmetrical terms (proportional to Yik) in the 
free energy. 

E.= const, D.= const, au, I ax.= const, a,.= const, (17} 

(17') 

Analogous formulas hold also for magnetic sub
stances. They are obtained from (7)-(17') by making 
the substitutions E - H and D - B. 

3. DEPTH PROPERTIES OF DOMAIN STRUCTURES 

Let us consider first an ellipsoidal sample, the 
shape of which is maintained constant, placed in a 
homogeneous electric field E 0 • In such a sample there 
is possible inhomogeneous deformation (that varies 
from domain to domain), which on the average is equal 
to zero. The depth properties of the domain structure 
are determined completely by specifying nine parame
ters, which do not change on going through the inter
face: 

Here c 1 is the concentration (by weight) of one of the 
two phases, and n is a unit vector normal to the inter
fa,ce. Six more such parameters (oui/axa) are equal 
to zero, since the ellipsoid remains undeformed in the 
mean. These quantities satisfy the three equations 
(2' ), the condition for the coexistence of the phases 
(17'), and three more equations 

<au, I on>= o, 
where 

(/) = ctf, + c,f,. 

(18) 

(19) 

Thus, the number of equations is equal to seven, two 
less than the number of parameters determining the 
depth properties of the domain structure. In addition, 
it is necessary to obtain the condition for the minimum 
of the volume part of the total free energy 

F.= i_s d'x(F(x)- E,') = (F,)- E,' + <p(((P)},E,), (20} 
V 8ft 8n 

regarded as a function of the nine parameters determin
ing the depth properties of the domain structure, under 
seven additional conditions (2' ), (17'), and (18}. The 
double angle brackets in formula (20}, unlike the single 
ones, denote averaging over of the volume; Pis the 
dipole moment per unit volume. The function rp(((P)), 
Eo) was calculated in[ 1l: 

<p ( ((P)}, E,) = n,.E"((P,)}- ((P))E, 
+ 2n (n,. - nc<~l,.) ((p,)}((P,)). 

(21} 

We shall show now that by minimizing expression 
(20) we obtain only one additional condition 

E.= canst. (22} 

Together with the electrodynamic condition Et = canst, 
the condition (22) denotes that E = canst. 

Let us assume that the following conditions are 
satisfied on the interfaces 

E.= const, D. = const, 

, ( au, 1 ) Cl>o Ea.,Dn'8' cra.n--Ea.Dn, an,_ = const, 
x. 4n 

au, I ax.= 0, a,.= const (23} 

and let us show that under infinitesimally small changes 
of the parameters determining the depth properties of 
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the domain structure, the variation OF n is equal to 
zero. This variation can be represented in the form 

fJF. = (F,<•>- F,<•>)fJc, +<fJF,) + fJcp. (24) 

In formula (24), the averaging is carried out with the 
zeroth-approximation phase concentrations ( c1 and 
c2=1-c1). 

Representing F 0 in the form 

F, = F,- F,' + F,'- IP,' + IP,'; F, -F,' = (4.n)-'(1 + uu)D,E,, 

, ( 1 ) IJue . iJu. F,-$, = ae.--EeDn -+a •• -
4.rt iJn iJn (25) 

and recognizing that 

we obtain 
(!) (2) 1 1 (!) (2) 

F, -F, =-4 E(D,-D2)+-E,(D11u11 -D21u11 ) 
.1t 4.rt 

+ (aan- -1-EaDn) ( i)u~)- iJu~')) +a •• ( iJu~') ~ i)u~')) .. (26) 
4.n iJn iJn iJn iJn 

We further take into account the fact that 

(fJF,) =((a" --1-E,D,)fJ iJu,) +-1-(DEfJuu) +-1-((1 + Uu)EfJD). 
4.n ax, 4.n 4.n 

(27) 
In order to calculate the first term in expression (27) 
for ( 0 F 0 ), we use the relation 

( (a"- :n E;D,) fJ ::.•) + (a;. - 4~ EtDn) 

( au~·> au!') 1 iJu; 
X -a;;---a;;-) fJc, = J dV( a"-TnEtD.) fJ iJx, = 0. 

The integration is carried out here over the "unde
formed'' volume and account is taken of the fact that 
E = const, ain- EiDn/47T = const, aui/axa = 0. Since 

(iJu\'> /iJx,- auf2>/iJx,) fJc, +<Mu;/iJx,) = fJ(iJu;/ax,) = 0, (28) 

it is easily seen that 

( ( 1 _ ) au, ) ( 1 ) a"-l;;tE,D, baz: =- a,.--;;;;:E,D. 

( aul') a U;(2
) ) 

X----- 6c, 
an on 

(29) 

and 
F 1 ( >•> >•> 6 .=4n[E D,-D2)+E,(D11uu -D,.u11 ))6c, 

--4
1 E.D. <6 au. ) + -1-(DEiluu) 
.n an 4.n 

1 + 7;;1< ( 1 + uu) Ell D) + llcp. 

After simple transformations we can represent the 
expression for OFn in the form 

6F,. =_(4.n)-'Eil((1 + Uu)D) + &cp. (30) 

It was shown in [ 11 that 
6cp= -(4.n)-'Eil((D)), (31) 

where, as already mentioned, the double angle brackets 
denote averaging over the volume: 

((/)) = c,'f, + c,'f,, 
(32) 

c,' = _c,(1 + u~'> ). 

It is easily seen that 

((1 + uu)D) =((D)). 

Thus, I) Fn vanishes if the conditions (23) are sat is
fied on the interfaces. The number of relations re
mains one less than the number of unknowns, i.e., as 
already noted, there is degeneracy in the problem: the 
volume part of the total free energy does not change 
under continuous variation of the parameters in accord
ance with the conditions (23). It should be emphasized 
that in the variation we did not assume that the phase
coexistance condition (17') is satisfied on the changed 
interfaces. Thus, this condition itself can be obtained 
from the condition of the minimum total free energy 
Fn. 

In magnetic substances it is necessary to minimize 
the free energy Fn: 

F.= ; J d'x( F(x)+ :~'). 
Since Fn in dielectrics and Fn in magnetic substances 
can be represented in the form [sJ 

F. =~J dV(F--1-ED-~PE,) 
V 8n 2 

=~JdV(F+-1-ED-~PE,), 
V 8n 2 

F.= ~ f d'x ( F + ~:) = ~ J dV ( F + 8~ HB- : MH,) , 

it is obvious that for magnetic substances we obtain a 
system of conditions analogous to (23): 

H = const, B. = const, a>,' = const, au, I ax. = 0, 

O'in = const. (33) 

So far we have dealt with an ellipsoid whose shape 
was assumed invariant. This means that mechanical 
forces are applied to the body and prevent a change in 
its shape. If there are no such forces, then a body hav
ing the shape of an ellipsoid in the demagnetized 
(unpolarized) state will become deformed upon applica
tion of an external field and, in particular, can rotate 
in the external field under the influence of the purely 
electrostatic (magnetostatic) Maxwellian stresses 

1( 12) 1( 1 ) a,. = 4n E£,- 2 E 6,. ,a,. = 4;' H,H,- z H'll,. . 

The torque may be zero only in definite cases, for 
example in the case of a long cylinder (wire) or else 
a plane-parallel plate in an external field E 0( H0 ) 

parallel to it. It is precisely such cases that are mean
ingful and should be considered. The ellipsoidal shape 
of the sample is conserved in such cases accurate to 
effects connected with the emergence of the domains 
to the surface, which are insignificant in the calcula
tion of the volume energies. This is connected, with 
the fact that the average deformation ( aui/axk) will 
be homogeneous. The same can occur also in cases 
when one applies to the body stresses that produce no 
torque. Such a situation is realized, for example, in 
experiments with stretched wires. In order to investi
gate the depth properties of domain structure in these 
cases, we indicate that in the preceding derivation the 
concept of undeformed state was arbitrary, since it was 
not assumed that in the absence of a deformation 
(auifaxk = 0) and in the absence of a field (E = 0 or 
H = O) the stresses Uik are also equal to zero. We 
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shall henceforth interpret the underformed state in 
precis ely this manner. It is then obvious that in those 
cases when the sample remains ellipsoidal (although 
the ratio of the semiaxes may change) and the sample 
on the average remains homogeneous, we obtained in 
place of (23) and (33) the following system of equations: 

E(H) = const, D.(B.) = const, <I>,'= const, 

iJu, I iJx. = const, a,.= const; (v ... ) = 0. 

The last relation is the condition that the body as a 
whole does not rotate in the external field. 

(34) 

As an illustration let us calculate the magnetostric
'tion of a uniaxial ferromagnet with allowance for the 
domain structure. We first obtain an expression for 
the free energy of the uniaxial ferromagnet with allow
ance for the magnetostriction. In the absence of defor
mation the anisotropy energy in the uniaxial ferromag
net is given by 

U!;!= 'I,~M' sin' 6 = 'I,~(M'- (Ml)'). 

where 1 is the unit vector of the easy magnetization 
axis. 

In the case of an infinitesimally small rotation of 
the body as a whole ( 1il = w x 1) the form of this 
energy, written relative to the old axes, changes: 

u!~ = 'I,MM' -(Ml)' + (Ml) (l,M, -l,M,)v,.]. (35) 

The free energy Fo is given by 

F <•> H' 1 o = U an+ ViA!mUikMIM m - MH - 8;" + Z i.,.1mUikUim· (3 6) 

The second term here is the change of the anisotropy 
energy, connected with the deformation, and the last 
term is the usual elastic energy. The quantities Yiklm 
are of the order of {3. The contribution made by the 
magnetostriction to the total energy is small in a uni
axial ferromagnet. In cubic ferromagnets this, gen
erally speaking, is not the case, because the term 

can be comparable with the anisotropy energy in the 
absence of deformation, which is proportional to M4 • 

The dependence of M on H and auifaXk should be ob
tained from the condition of the minimum of the free 
energy F 0 , regarded as a function of M at specified H 
and auifaXk. For O"ik we obtain the relation 

a,.- (8n) _, (H,B, + H,B,) = 'Y<klmM,M m + i.,.,mu,"'. 

Averaging this relation over the domain structure, we 
obtain 

(a,.)- (8n)-'(H,(B,) + H,(B,)) = 'Y<Rim(M,Mm) + i.,.,m(u,m). (37) 

We recall that 

H, = ~(M,), II,= ~(M,), H, = 0, 
(M,M,) = (M,)(M,), (M,M,) = (M,)(M,), 

(M,M,) = (M,)(M,), (M.') = M'- (M,)'- (M,)', ~38) 

and the quantities ( Mi) are equal in this approximation 
to (( Mi)), which are determined from relations (5). 
Thus, we have obtained a connection between the mean 
values ( O"ik) and ( Uik) in a homogeneous external 
field Ho. 

4. OPTICAL PROPERTIES OF DOMAIN BOUNDARIES 

Let us consider here the simplest 180-degree 
domain boundary in a ferroelectric: 

E=O, E!u,IE!x,=O, a .. =O, P,=-P,; (39) 

the plane of the boundary is parallel to the vectors P 1 

and P 2• We choose the z axis along the direction of 
P1. 

We write the phase coexistence condition (17') for 
the case when the conditions on the boundary deviate 
little from the conditions (39) and, in particular, the 
slope of the boundary relative to the z axis is small. 
Since in the zeroth approximation the condition Dn = 0 
is satisfied in addition to (39 ), we can readily see that 
in the first approximation 

<I>,' = F, = - 4~ DE = - PE. 

Therefore in the first approximation the condition for 
the coexistence of the phases takes the form 

E, + E,,= 0. 

We emphasize that this conclusion is not connected 
with any model. 

(40) 

Let us consider now the problem of the reflection of 
an electromagnetic wave from the 180-degree boundary 
(39). We shall assume here that this boundary separates 
two half-spaces. In addition, we assume that the fre
quency w is small compared with the reciprocal re
laxation time 1/T (wr « 1), so that there is time for 
thermodynamic equilibrium to become established on 
the boundary. We shall assume the plane of the bound
ary to be the zy plane, and the axes x, y, and z to be 
the principal axes of the tensor E:ik = a Di/a Ek. The 
magnetic properties of the medium will be neglected: 
J..Lik = 1iik· For simplicity, in addition, we shall assume 
that the crystal is uniaxial: E:xx = E:yy = t:: 1 . In this 
case in an unbounded homogeneous medium there can 
propagate waves of two types: 

a) ordinary wave 

E,=O, H,=f=O, -cu=ckiVe.c; 

b) extraordinary wave 

H, = 0, E, =t= 0, {!)2 = c'(k.' I e.c + k.c' I e.,). 

This distinction becomes meaningless at k1 = 0. 
The thermodynamic boundary condition (40) is un

usual for electrodynamics. The presence of such a 
condition is connected with the fact that the problem 
contains an additional variable, namely the displace
ment of the boundary /;(y, z, t). The usual electrody
namic conditions Et = const and Ht = const should be 
satisfied in a coordinate system moving together with 
the boundary. In a resting coordinate system, these 
conditions are (seers]) 

[n, E,- E,] = (B,- B,)v.l c, 

[n, H,.-H.]=- (D, -D,)v. I c, 

where n is the normal to the boundary and vn = a,;at 
is the rate of displacement of the boundary. In the 
linear approximation, these boundary conditions can be 
written in the following form: 
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H,, - H,, = 8nPv.l c. 

(41) 

(42) 

The complete system of conditions determining the 
reflection problem is the set of equations (40) and (41 ). 
It can be rewritten in the form 

(43) 

and Eq. (42) determines the rate of displacement of the 
boundary vn. 

It is easy to see that the ordinary wave is insensi
tive to the boundary condition Ez 1 = Ez 2 = 0; this wave 
passes through the domain boundary without "noticing" 
it (the reflection coefficient is equal to zero), whereas 
the extraordinary wave is completely reflected from 
the boundary (the reflection coefficient is equal to 
unity), leading to oscillations of the domain boundary4>. 

Let us consider now a cylindrical domain of an 
arbitrary cross section that is constant along the 
cylinder. The side walls of the cylinder are parallel 
to the z axis and are 180-degree boundaries. We shall 
show that such a domain represents a wave guide for 
waves with Ez ;" 0, Hz = 0, i.e., there exists a solu
tion of Maxwell's equations 

rotH o= -i(w I c)eE, rotE= i(w I c)H, 

different from zero only inside the domain and satisfy
ing the boundary conditions 

(E,)b =0. 

Eliminating from Maxwell's equations the vector H, 
we obtain 

~E + w: B'E = V divE = ( 1-~) V iJE, . 
c ~ ~ 

Further, putting 

E = E,(x_,_) exp (ik,z), 

we obtain the boundary-value problem 

~,E, + x'E, = 0, (E,),p = 0, 

0 < x' =e., (~-3!__), 
c2 e.L 

where 6. 2 is the two-dimensional Laplacian. From 
Maxwell's equations we can easily find E 1 and H 1 : 

(44) 

(45) 

H, = .!:!!:=_E"' H, =-we_,_ E., (46) 
ck, ck, 

where E1 satisfies the necessary boundary condition. 
When such a wave propagates along the domain, the 
domain boundary will oscillate. 

In a flat domain of width a we have 

x = nn I a, n = 1, 2, 3, ... (47) 

In a flat domain the wave can propagate at an angle to 

4>we are considering the case of low frequencies. In the opposite 
limiting case ( wr ~ I) there is no time for thermodynamic equilibrium 
to become established, the condition ( 40) is not satisfied, and the wall 
is not displaced, i.e., the problem can be regarded within the framework 
of ordinary electrodynamics. 

z axis (ky"' 0). In this case 

x' = ku' + (mt I a)'= e,.(w'l c'- k.' / e_,_). 

In a flat domain, just as in a domain that is not 
singly connected, there can propagate the so-called 
"principal" wave: 

The field E1 
potential cp : 

E H ck, 
,= ,=0, w=-- k =0 

"}'e_,_ -· ' . 

can be found by introducing the scalar 

(48) 

(49) 

satisfying the Laplace equation 6. 2cp = 0 with the 
boundary conditions cp = cp 1 and cp = cp 2 on the domain 
boundaries, where cp 1 and cp2 are specified constants 
( cp 1 "' cp 2 ). The principal wave cannot propagate at an 
angle to the z axis. 

All the results obtained in this section are applica
ble also to the case of ferrodielectrics in which, how
ever, the satisfaction of the condition wT « 1 is diffi
cult, since the relaxation times are usually quite large. 
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