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It is shown that if the energy and momentum conservation laws hold for the phonon +carrier system, 
then the model of scattering of phonons by current carriers cannot explain the experimental results. 
A new model for scattering in the field of a charged impurity in which the conservation laws do not 
hold for this system is proposed. It is shown that such a scattering is effective only in semiconduc
tors with sufficiently large carrier effective masses in the presence of impurities producing an attrac
tion field. Agreement between the calculations and the experimental data is obtained. 

THE thermal conductivity of semiconductor crystals 
after acceptor or donor impurities are introduced into 
them can decrease by several orders of magnitude at 
low temperatures. c 1 J To explain the observed increase 
of the thermal resistance, ZimanC 2 J proposed a model 
of phonon scattering by free carriers. For the scatter
ing processes 

q + k' oo± k" (1) 

(here q and k are the wave vectors of the phonon and 
of the carrier) he obtained the following relaxation 
time: 

-1 tf-tzmzT 

Tp, = 2nfi'Ds (2) 
1 + exp[~- ms'/2T- x'T/8ms' + x/2] 

Xln~~~~--~~--~~~~~ 
1 + exp[1;- ms'/2T- x'T/8ms'- x/2] ' 

where E 1 -deformation potential, m -effective mass of 
the carrier, D-crystal density, s-speed of sound, T
temperature in energy units, [;-reduced chemical po
tential, and X = nsq/T. 

The dependence of T p~ on x in the case of strong 
d7eneracy is shown in Fig. 1. When x > x1 

= 8ms2l;/T the relaxation time increases with increas
ing x like exp [ x2T /8ms 2], i.e., much more rapidly 
than the decrease of the number of excited phonons, 
which is proportional to e-x. As a result, when x >Xu 
the role of the processes (1) decreases rapidly com
pared with the other scattering processes. A similar 
limitation of the interaction occurs as a result of the 
fact that the laws of energy and momentum conserva
tion forbid the processes (1) of phonons with momentum 
nq larger than double the momentum of the carrier on 
the Fermi surface 2llkF. It will be shown below that 
the width of the spectrum of the phonons participating 
in the processes (1) is insufficiently large to make it 
possible for the Ziman model to explain the experimen
tally observed decrease of the thermal conductivity. All 
the estimates that follow below were made for the crys
tal p-InSb, but it can be shown that analogous estimates 
hold also for Ge and a number of other semiconductors. 

In the purest crystal at sufficiently low temperatures, 
the phonon scattering is from the boundaries of the sam
ple. The expression for the thermal conductivity of the 
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crystal c 3 l takes in this case the form 

1,12k,T'L ( 1 2 ) s~ x' dx 
X= -+-

24n'fi' s,' s,' . , sh' (x/2) 
(3) 

(here L is the transverse dimension of the sample, ko 
is the Boltzmann constant, s 1 and st are the speeds of 
sound of the longitudinal and transverse modes of the 
acoustic lattice vibrations). It follows from (3) that the 
contribution of each branch to K is inversely propor
tional to the square of the speed of sound. Therefore to 
find the average values of the sound speeds of each 
branch, which enter in (3), it is necessary to average 
the reciprocal squares of these speeds over the direc
tions, taking into account by the same token the larger 
weight of the phonons with the smallest speeds. The 
table shows the sound velocities along the directions of 
the symmetry axes of the InSb crystal, calculated from 
the elastic constants. C4 J The figure also shows the av
erage values of (s - 2) -l/ 2 , obtained by averaging over 
the fundamental directions of the reciprocal squares of 
the velocities of the sound of each branch with allow
ance for the fact that the cubic crystal has three four
fold axes, four threefold axes, and six twofold axes. 
With such values of the average velocities of sound, the 
contribution of the two transverse branches to K 

amounts to 88%. Therefore to estimate the decrease in 
thermal conductivity it is most important to consider 
the scattering of the transverse phonons. We take val
ues typical of the experimental situations, T = 1. 5o K 
and p = 5 x 1017 em, - 3 • We then obtain for transverse 
phonons with a sound velocity ( s - 2) -l/ 2 a parameter 
x1 = 4.6. 

Let us estimate the maximum possible scattering by 
the carriers, assuming that all the phonons with the pa
rameter x < x1 are completely scattered. Under this 
assumption, thermal conductivity will be determined by 
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FIG. I. Reciprocal relaxation 
times r-1 r-1 , rb-1 and also the 

pe' pte 
function f(x) = x4/sinh2 (x/2) 
against the parameter x. 

expression {3), but with the lower limit in the integral 
replaced by x1• Figure 1 shows a plot of the integrand 
f(x) = x4/sinh2 (x/2), from which it is seen that x1 falls 
in the region of maximum values of this function. There
fore calculation gives a decrease of the thermal conduc
tivity by a factor of approximately 2, whereas experi
ment gives a factor of about 30.£ 1 J Consequently, inter
action of the phonons with the carriers cannot explain 
the experimental results when the momentum and ener
gy conservation laws are satisfied. 

Cases are possible, however, when the conservation 
laws "do not hold" for the carrier-phonon system. One 
such possibility was considered by Pyle. £5 l He took into 
account processes of second order of perturbation the
ory, namely, virtual absorption and emission of phonons: 
k' + q'- k''- k"' + q". Since the energy of the interme
diate state is not conserved, the previous limitation 
q < 2kF is lifted. However, such scattering turns out 
to be not very effective. £5 J 

There exists one more possibility of "violation" of 
the conservation laws, discussion of which is the object 
of the present article. 

Let us take into account the field of the ionized im
purity, in which the interaction of the phonon with the 
carrier takes place. This violates the condition for the 
closure of the carrier-phonon system, and again leads 
to a lifting of the limitation q < 2kF. 

A physically analogous situation is known in optics: 
absorption of light by free carriers in semiconductors 
within the limits of one band is possible only in the 
presence of interaction of carriers with phonons or im
purities.£ 63 

Let us consider the scattering of phonons with 
q > 2kF by carriers in the Coulomb field of an individ
ual impurity. The experimental situation is character
ized by the condition kFRB < 1 (here RB is the Bohr 
radius), in which the Born approximation is not valid. 
In addition, the Born approximation describes poorly 
the behavior of the wave function near the impurity cen
ter, which, as will be shown below, is important for the 
given problem. Therefore the behavior of the carrier 
will be described by the exact wave function of the at
tracting Coulomb center l 7 l 

11'• = (2n)-%e• 1''"•f ( 1- _;_)eik•F (-t-, 1, i(kr- kr)) {4) 
kR. kRn 

(r is the radius vector with origin at the point of loca
tion of the impurity ion, F is a hyper geometric. func
tion). The wave function of the repelling center is ob
tained from {4) by replacing RB by -RB. The charac
teristic dimensions for the given problem (RB, 1/q, 
1/kF) have values much larger than the lattice con
stant; therefore it is possible to use the approximation 

FIG. 2. Dependence of the func
tion <l>(y) on the argument y = qRB. 

The straight line shows a plot of the 
linear function x = 0.23y. 
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of the effective mass and the usual theory of the defor
mation potential. We take the interaction potential in 
the form 

e, L ( ) { ••• + -•••} U., =-= qe. a.e -a. e , yG 
q 

(5) 

where G is the number of atoms in the crystal, eq is 
the vector of polarization of the phonon, aq and aq are 
the phonon creation and annihilation operators. In a 
crystal of cubic symmetry the scalar product (q • eq) for 
an arbitrarily directed vector q of the "transverse" 
phonon differs from zero..:. 

The matrix element ( 1/Jk'l Upe 11/Jk'') is calculated 
analytically using the inequalities q > 2kF and kFRB 
<< 1 (see the Appendix). The square of the modulus of 
the matrix element, averaged over the directions of the 
vectors k' and k" is equal to 

_ , _ e1'(qe.)'liN.<D(qR.) (1- e-'"1'"n•)-' 
1<¢•~1Up,I1Jl•,>l- 2DVk'k"(q/2)'Rn'(1-e-'"fk'R•)CiJ (6) 

(here w = sq, V is the volume of the crystal, <l>(qRB) 
is the function represented in Fig. 2, and Nq is the 
number of phonons having an energy n w ). 

Expression (6) is given for the case of an attraction 
field, when the exponential functions in the parentheses 
can be neglected. The matrix element calculated for a 
repulsion field turns out to be small because of the pos
itive arguments of these exponentials. Thus, for the 
considered scattering mechanism only the attraction 
field plays an important role. Physically this is ex
plained by the fact that in the given scattering, the prob
ability of absorption of the phonon q is determined by 
the probability of finding the carrier near the impurity 
at a distance 1/q; the latter probability, however, is 
lr..rge in attraction fields and small in repulsion fields. 

The phonon relaxation time is calculated in the usual 
manner:l 2 J 

-r,;;; = 2: f 1 <ip., 1 up.I1Jl•,> l'(n,,- n,,) 

X ll(e,, + liw- e,,)d'k' d'k" = 

= ne,'(qe.)'m'N,tD(qR.)T In 1 + et (7) 
/i'DCiJ(q/2)'Rn' 1 + et-x 

(here nk is the distribution function with respect to the 
carrier energy Ek, Ni is the concentration of the at
tracting centers). In the case of strong degeneracy, 
when {; >> x, the logarithmic function in (7) is close to 
x. If qRB < 3, then, as is seen from Fig. 2, the func
tion <1> is close to a linear function of x and the expres
sion for the relaxation time of the phonons greatly sim
plifies: 

li'DR.'q' 
Tp;, = 59:rte.'(qe.)'m'N, (8) 

Since RB ~ m-1 , it follows that Tpie ~ m-5 • Therefore 
in semiconductors with small effective mass, for exam-
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ple n-InSb, the considered mechanism of scattering is 
not effective. 

From a comparison with experiment we can estimate 
the product of the constant .::: 1 by the cosine of the angle 
between q and eq, quadratically averaged over the di
rections q: 

e,( (qe,)')V• I q >:::: 0.3 eV. 

The dependence of Tple with such a parameter on x is 
shown in Fig. 1. We see that Tpie complements Ziman's 
Tpe for x > x1 • The same figure shows, for compari
son, the relaxation time Tb for the scattering of the 
phonons by the boundaries of a sample with transverse 
dimensions 3 x 3 mm. With increasing x, the time 
Tpie increases rapidly and becomes equal to Tb at the 
point x2 = 14. The total relaxation time 

( -1 -1 )-1 • 
T = Tb + Tpie at x > x2 IS close to Tb· Therefore 
only phonons with x < x2 are important for the dis
cussed scattering mechanism. The condition qRB < 3, 
which is used in (8), is satisfied for these phonons both 
at T = 1.5 °K and at higher temperatures. 

Thus, phonons in the entire region of the maximum 
of the function f(x) are effectively scattered by the car
riers. The considered phonon scattering mechanism 
makes it possible to explain the experimental results 
and gives a reasonable estimate of the deformation po
tential in p-InSb. 

In conclusion I take the opportunity to thankS. S. 
Shalyt for suggesting the topic and L. E. Gurevich for 
very useful discussions. 

APPENDIX 

We introduce a polar system of coordinates with a 
radius vector r and polar angles J. and cp in such a 
way that the origin coincides with the point of location 
of the impurity atom and x is directed parallel to the 
vector q. Then the vectors k' and k 11 are specified by 
the polar coordinates (k', a', {3') and (k 11 , a" , (3"). We 
introduce also the parabolic coordinates 

s = r(1 +cos tt), T) = r(1- cos tt). (9} 

The calculation of the matrix element of the operator 
Upe (5) with the wave functions 1/Jk (4) for the absorp
tion of a phonon q reduces to the calculation of 

(~k~~leiqr 11/Jk'): 

(10) 

When kRB << 1 we can use the transition to the limit 
from the hypergeometric function which enters into 1/Jk 
to the Bessel function: [8 J 

lim F(i/kR.,1,ik;)}=l,(l/4TJJR.). (11) 
kR 8 -+0 

The argument of these functions ij == r- rk/k is given 
in parabolic coordinates by 

- a a - a a 
TJ = s sin' 2 + TJ cos' 2 - 2l'sTJsin 2 cos 2 cos(<p- ~). (12) 

The matrix element (10) is calculated with the aid of the 
theorem for the addition of Bessel functions: [8 J 

lo(l'4'ii/Rn) = L/•(2l's/R. sin(a/2))1.(2l'TJ/Rn cos(a/2))e'•<•-~l,. (13) 

After integrating with respect to cp from 0 to 2, only 
terms with n' = n 11 remain in the double sum over 
n' = n 11 , which appears when (11) and (13) are substi
tuted in (10). The integrals with respect to ~ and rr re
duce to tabular forms. Then the series is again summed 
with the aid of the theorem (13) and we finally obtain 

<iii•" I e'•' I ¢•· > 

=~ [2i(cosa'+cosa")]{ (4l'i) .- (4l'[;,)} 
A exp R I, -R + •l'I!J, - ' (14) q B q 0 qR. 

A = 4n(q I 2)'l'k'k"R.'[1-exp( -2n I k'Rs) ]V• [1-exp (-2n 1 k"R.)]I>, 

where the parameter 1-f., which contains the entire de
pendence on the angles a and {3, is equal to 

It= sin' (~)sin' (a;')+ cos' ( ~,)cos' (a;') 

1 
+--zsina'sina" cos(W'- W). (15} 

Thus, in the expression for the square of the modulus 
of the matrix element, the only function that depends on 
the angles is 

J ,(4l';) '(4l';) 
'P = o qR. + ftl, qR. . (16) 

This function is positive and changes little when the 
parameter 1-L changes from 0 to 1 upon integration with 
respect to the angles. Therefore the averaging over the 
directions k' and k 11 can be approximately replaced by 
averaging over the parameter 1-L: 

J 'P(It)dQ' dQ" >:::: 16n' j'P(~t)d~t 
" 

= 16n'{J,' (-4 ) +~J,' (__i_) +_!_-J,'(-4 )}. 
qR. 3 qR. 3 qR. (17) 

where ctn =sin a da d(3. The function in the curly 
brackets is denoted by cl>(qRB), and its plot is shown in 
Fig. 2. 

1 E. Fagen, J. F. Goff, and N. Pearlman, Phys. Rev. 
94, 1415 (1954); J. A. Carruthers, T. H. Geballe, H. M. 
Rosenberg, and J. M. Ziman, Proc. Roy. Soc. A238, 502 
(1957); L. J. Challis, J.D. Cheeke, and D. J. Williams, 
LT-9, Bll45 (1965}; S. S. Shalyt, P. V. Tamarin, 
V. S. Ivleva, Phys. Lett. A32, 29 (1970}. 

2 J, M. Ziman, Phil. Mag. 1, 191; 2, 292 (1956). 
3 C. M. Bhandary and G. S. Verma, Phys. Rev. 140, 

A2101 (1965). 
4 L. S. Slutsky and C. W. Garland, Phys. Rev. 113, 

168 (1959}. 
5 J. C. Pyle, Proc. Cambr. Phil. Soc. 53, 508 (1957}. 
6 A. Sommerfeld, Ann. of Physik 11, 257 (1931); N. N. 

Fan, Usp. Fiz. Nauk 64, 315 (1958); V. A. Yakovlev, Fiz. 
Tverd. Tela 2, 1624 (1960); 4, 1046 (1962) [Sov. Phys.
Solid State 2, 1471 (1961}; 4, 770 (1962}]; I. Z. Kostadi
nov and Ya. G. Proikova, Vestnik Moskovskogo univer
siteta 2, 61 (1967). 

7 L. D. Landau and E. M. Lifshitz, Kvantovaya me
khanika (Quantum Mechanics), Fizmatgiz, 1958 [Addi
son-Wesley, 1963]. 

8 G. N. Watson, A Treatise on the Theory of Bessel 
Functions, Cambridge, 1944. 

Translated by J. G. Adashko 
161 


