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An analysis is given of the kinetic equation for gases with rotational degrees of freedom without as­
suming the simplest form of the principle of detailed balancing-the equality of the probabilities of 
direct and inverse transitions, in particular when molecular stereoisomerism is present. An analy­
sis is given of the general form of the solution of the kinetic equation which demonstrates, in par­
ticular, the existence of new nonvanishing mixed correlators of the velocity and the rotational angular 
momentum. It is shown that the switching on of an external field when the probabilities of direct and 
inverse processes are equal leads only to a decrease in the kinetic coefficients. The principle of de­
tailed balance in the general form gives rise to the possibility of either sign for the variation of the 
kinetic coefficient with the field. An analysis is given of the general form of the solution in this case. 
It is found that so- called cross effects can exist when the lack of equilibrium of one kind of tensor 
quantities leads to fluxes of another kind of tensor quantities. Particular attention is paid to effects 
associated with molecular stereoisomerism. A generalized variational principle is analyzed which 
takes into account the nonselfconjugate nature of the collision operator in the case under consideration. 

1. INTRODUCTION 

IN preceding papers by the present authorsl 1- 31 the 
kinetic theory of gases with rotational degrees of free­
dom was discussed. The principal feature which dis­
tinguishes this theory from the classical kinetic theory 
of a monatomic gasl4 J was the introduction along with 
the velocity vector v, of the pseudovector of the rota­
tional angular momentum of the molecule M as indepen­
dent vectors on the basis of which any microscopic ten­
sors have to be constructed. Another essential feature 
was the taking into account of the effect on the probabil­
ity of collision W of the relative position of the vectors 
v and M of the colliding molecules. It is this taking into 
account of both circumstances that enabled us to explain 
and to predict a series of kinetic phenomena, particu­
larly those associated with the behavior of molecular 
gases in external fields ( cf., for example, the reviewl 51 ). 

In analyzing specific phenomena in these papers an as­
sumption was made for the sake of simplification that W 
is an even function of the angular momenta of the collid­
ing molecules. This led to the simplest variant of the 
principle of detailed balancing-to the equality of the 
probability of direct and inverse transitions ( cf., for 
example, l 61 ): 

wcr,, r,-+ r.', r,') = wcr.', r,'-+ r,, r,), (1.1) 

where r = (v, M). 
All the effects that have been observed until recently 

were insensitive to the simplification of the collision 
integral resulting from (1.1 ). However, recently a dis­
covery was made experimentally of the effect of an in­
crease in the heat conductivity in an external fieldl 7- 91 

instead of the usual falling off, and Levi and McCourtllOJ 
and Waldmannl111 saw the possibility in principle of the 
appearance of such a rise based on an analysis of the 
quantum kinetic equation. 

It can be shown that an increase in the heat conduc­
tivity in an external field can occur in principle only if 
relation (1.1) is violated (cf., below Sec. 5, subsection 
C). From this there arises in a natural manner the 
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problem of a complete analysis of the picture of kinetic 
phenomena in a gas with rotational degrees of freedom 
in the case of the most general nature of the interaction 
between the molecules including also the case of mole­
cular stereoisomerism. 

The present paper is devoted to such an analysis. 
The whole discussion in this case is conducted on the 
basis of the classical kinetic equation. It seems to us 
that under the condition T »i12/2I (I is the moment of 
inertia of the molecule), which is fulfilled practically 
always, with the exception perhaps only of hydrogen and 
of deuterium, the use of the classical kinetic equation is 
completely adequate for the problem. In particular, it 
will be shown that the appearance of a positive effect is 
by no means associated with the quantum nature of the 
rotational degrees of freedom. For the simplicity of 
discussion we will assume that a given rotational angu­
lar momentum M completely determines the internal 
state of the molecule, and the rotational energy is given 
by Erot = M2/2I. The necessary refinements will be in­
troduced as required. 

2. GENERAL PROPERTIES OF THE COLLISION 
INTEGRAL 

A. We consider the properties of the collision inte­
gral arising in the general case when one gives up the 
conditions (1.1). From the symmetry of the equation of 
mechanics (or of quantum mechanics) with respect to 
time reversal we have in the most general form (cf., 
for examplel 6 J) 

W(f,, f,-+f.', f,') =\V(f,", f,"-+r,r, r,r); (2.1) 

here rT = Tr = (-v, -M). 
If the interaction and, consequently, the transition 

probability is not altered when I is inverted, then W is 
an even function of the velocities and (2.1) can be trans­
formed into the form 

Finally, if in the general interaction between the 
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molecules the terms of the rotational- orbital type are 
negligibly small, then W will be an even function of the 
angular momenta and (2.2) reduces to (1.1). 

We note that the transition from (2.1) to (2.2) is im­
possible only in the absence of invariance of the inter­
action between the molecules with respect to the trans­
formation of inversion, i.e., in fact only in the presence 
of molecular stereoisomerism. In the latter case in 
principle one can introduce an additional parameter- the 
pseudo scalar a, which changes sign under inversion 
(but Ta = a) and distinguishes between the right handed 
and the left handed states of stereoisomeric molecules: 

r = (v, M, u), fT' = ffr = (v, -M, -'a), 

and one can utilize the relation between the probabilities 
in the form (2.2) in the general case. 

B. Usually the general properties of the Boltzmann 
equation (in particular, the H-theorem) are proved on 
the basis of condition (1.1). Stiickelbergl12 J derived the 
H-theorem within the framework of a quantum mechan­
ical discussion without utilizing (1.1). By a method close 
to that ofl12 J we will analyze the general properties of 
the classical equation for gases with internal degrees 
of freedom. 

We utilize the usual local form of the collision in­
tegral: 

J(r.) = Jar, art' ar,' {Wfd,- W'f,'f,'}; 

w = W(r,, r,-+r.', r,'), W' = w(r.', r,'-+ r,, r,). 
(2.3) 

As usual, we transfer the index characterizing the 
argument to the corresponding function. 

Taking into account the obvious symmetry of W with 
respect to an interchange of the colliding molecules and 
utilizing a change of notation of the variables of integra­
tion we easily find that 

J dfAl=4-J ar,ar,ar,'dr,'W'f.'f,'(A,·+A,'-A,-A,). (2.4) 

From this it follows that ( draJ vanishes when A is one 
of the integrals of the motion conserved in a collision 
(property 1). We see that this property which lies at the 
basis of the derivation of the hydrodynamic equations 
from the Boltzmann equation is preserved in the gen­
eral case1 >. 

We shall utilize the identity which follows from the 
unitary nature of the scattering matrixl 12 J : 

Jar,' ar,' w =Jar,· ar,' W'. (2.5) 

In fact this identity means that for conservative sys­
tems the total transition probabilities from and to a 
given state are equal to one another. Taking this result 
into account one can transform the collision integral 
(2.1) to the form 

J(f,)=J df,dP,'df,'W'(f,j,-j,'j,'). (2.6) 

!)In deriving the hydrodynamic system of equations in the case of 
polyatomic molecules in order to take into the account the exchange 
between the translational and the rotational degrees of freedom it is 
necessary to take into account the nonlocality of the collision integral. 
In this case (2.4) does not vanish identically for the integrals of the 
motion. However, the corrections associated with the nonlocal nature 
of J are very small for all the kinetic phenomena which are of interest 
to us, and we shall in future neglect them. Cf., the detailed discussion 
in [ 13]. 

The vanishing of this expression for the equilibrium dis­
tribution (property II) is obvious. 

We now demonstrate how the H-theorem can be 
proved in the case of the most general form of the 
probability of collisions. The change of entropy due to 
collisions is determined by a quantity whose explicit 
form follows from (2.4), (2.6): 

s dr lin/=-+ s dr, ar, df,' df,' W"f,f,[xlnx + 1- x], 

X= j,' /z'ffd,. (2. 7) 

From the nonnegative nature of the expression ap­
pearing in square brackets Boltzmann's H- theorem 
follows immediately (property III): 

J dflln/;;:. 0. (2. 8) 

Thus, all three general properties (I, II, III) which 
are generally proved for a monotonic gas are a conse­
quence of the general structure of the collision integral 
and are completely preserved when condition (1.1) is 
dropped. At the same time no limitations arise on the 
form of the scattering probability with the exception of 
(2.5). 

C. We shall carry out the further analysis of the 
properties of the collision integral in the linear ap­
proximation with respect to a small deviation from 
equilibrium when 

I= f'l(1 + x), I xi~ 1. (2.9) 

The collision integral in this case reduces to the linear 
integral operator ft., operating on the function X : 

l(f,)=/;•>gx, = J ar,ar,'ar,'W"f,<•>t:•> [x.+x,-x.'-x,']. (2.10) 

The behavior of the collision operator n is com­
pletely determined by the properties of its matrix 
elements 

(2.11) 

Without restricting generality the complete set of state 
functions can be assumed to be orthonormal and pos­
sessing definite spatial (I) and temporal ( T) parities: 

/'i'm(f) ='ljlm(f') =T]m1'\jlm(f), T]m 1 =±1; 

T'\jlm(r) ='\jlm(f•) =1]m•¢m(f), T]m•= ±1. 

(2.12) 

First of all it is obvious that the matrix elements 
Umn differ from zero only if 1/Jm and 1/Jn have the same 
tensor properties. This follows from the invariance of 
the scattering probability with respect to rotations of 
the coordinate system. 

Another important property of the operator U re­
flects the temporal symmetry of the probability of a 
collision. utilizing (2.1) and (2.5) we find that for any 
two functions cp and x we have the equation 

(2.13) 

For functions which have a definite temporal parity 
(2.12) this equation takes on the form 

(2.14) 

From this it is clear that the operator ft. is naturally 
separated into two parts: 

Q = Q<+l + QH; Q~"';! = Q!~, Q~:> = - Q~-;;!, (2.15) 
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where n (+) is a symmetric operator which does not 
alter the temporal parity of a function on which it oper­
ates, while {2<-> is an antisymmetric operator which 
brings about transitions between states with different 
temporal parity. These operators have the form (2.10) 
where the role of W' is played by the quantities 

W\±J = '/,(W' ± W). (2.16) 

Expanding the nonequilibrium part of the distribution 
function (2.7) in terms of the complete system of func­
tions: 

(2.17) 

we obtain taking into account (2. 8) 

S ~ ~ (+) 
df lIn f = (x~2x) = "'-.~ Qmn XmXn ;:, 0. 

(+) 

(2.18) 

Thus, the matrix n <•> is positive definite. At the same 
mn 

time the law of increasing entropy does not impose any 
restrictions on the matrix elements of the operator n <-J 

In the absence of stereoisomerism, when the scat­
tering probability is not altered by inversion and, as a 
consequence, relation (2.2) is valid, the matrix elements 
nmn vanish if the functions 1/lm and 1/ln have different 
spatial parity. But if relation (1.1) holds, then n <-J = 0, 
and nmn differ from zero only if both the spatial and 
the temporal parities of 1/Jm and 1/ln coincide ("selection 
rules"). 

3. TRANSPORT PHENOMENA IN THE ABSENCE OF 
EXTERNAL FIELDS 

We consider how the suppression of relation (1.1) 
alters the nature of the general solution of the linear­
ized kinetic equation in the absence of an external field 

Qx+N=O. (3.1) 

The inhomogeneous term of this equation is equal to 

N = N;•> (V In T); + N,~l{V.V.}+ M'>divV, (3.2) 

where 
<•> ( e } (') m N, = v, T- Cp , N,, = {v,v,} T' 

mv2 e 
N<">=-----, 

2T CvT 
e = '/,mv' + E,p, {a,b,} = '/ 2 (a,b, + a,b,- '/,8,,(ab)). 

Writing the nonequilibrium part of the distribution func­
tion in the form 

X= X,<•> (V In T), + x.~'> {V.V,}+ x<'>divV, 

we can separate (3.1) into three independent equations: 

Qx<"> + 1\'1"> = 0, a= 0, 1, 2. (3. 3) 

The functions x (a) uniquely determine the kinetic coeffi­
cients: the coefficient of heat conductivity 

(3.4a) 

the first viscosity coefficient 

(3.4b) 

the second viscosity coefficient 

~ = -T(N<'>x<'>). (3.4c) 

Below we shall give the name of a kinetic equation to 
one of equations (3.3) and the name of a kinetic coeffi­
cient to a quantity of the form (3.4) 0mitting the indices 
in this case. 

We represent the function x in the form of the ex­
pansion (2.17). Then the integral equation (3.3) goes 
over into the infinite system of algebraic equations 
equivalent to it 

l:QmnXn+Nm=O, Nm=('¢mN). (3.5) 

If the relation (1.1) holds, then n = n<+) and nmn 
differs from zero only for transitions with the same 
T- and !-parities. But then it immediately follows from 
(3.5) that the coefficients Xn differ from zero only if 
the functions 1/ln and N have the same T- and !-parities. 

When the relation (1.1) is violated and an operator 
fi <-> different from zero arises, the collision operator 
connects functions of different parity, as a result of 
which there appear in the general solution of (3.3) terms 
with parity which does not coincide with the parity of N. 

Let the temperature gradient be different from zero. 
In accordance with what has been stated above, and tak­
ing into account the explicit form of (3.2), we can assert 
that the vector x< 1 > will be determined by the set of vec­
tor functions of the following form: 

a) in the case (1.1) 

v, M(vM); (3.6a) 

b) in the case (2.2) (the temporal parity of X <1> need 
not coincide with the T-parity of N< 1 >) to the functions 
(3.6a) there is added the function 

[vM]; (3.6b) 

c) in the general case (2.1) (when there is no "selec­
tion rule" with respect to the spatial parity) additional 
functions appear in the form 

M, v(vM), ["iM] (vM). (3.6c) 

Naturally all these quantities are assumed to be 
multiplied by scalar functions of scalar arguments v2 , 

M2 and (vM) 2 • 

Thus, in the absence of stereoisomerism X( 1 ) is de­
termined by three independent polar vectors (3.6a), 
(3.6b), (cf.,l21 ; specific calculations in the present 
paper were carried out on the assumption (1.1) in ac­
cordance with which the coefficient of the function (3.6b) 
was set equal to zero). It is interesting that in the pres­
ence of a temperature gradient an average flux of rota­
tional angular momentum can arise of the form 

[vM]= C,VT, A= J dffA j Jart. (3.7) 

In the case of stereoisomerism the vector X <1 J begins 
to depend also on three independent pseudovectors (3.6c). 
In this case the temperature gradient can lead even to 
the appearance of an average angular momentum 

M=C,VT, (3.8) 

and at the same time, in principle, also to a rotation of 
the gas (cf./131 ). We note that the kinetic coefficient C2 

is proportional to the pseudoscalar a and the polariza­
tion induced by the temperature gradient has a different 
sign for left- handed and right- handed stereoisomeric 
molecules. 
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In polar gases there can also arise the effect of 
polarization of the dipole moment of the gas 

ii = C, VT. (3.9) 

We now let the divergence of the microscopic velocity 
be different from zero. In the case of such an inhomo­
geneity in addition to the usual solution corresponding 
to a scalar function of scalar argumentsl 21 there ap­
pears a pseudoscalar solution of the form 

(vM)F(v',M', (vM)') 1 (3.10) 

if the gas consists of stereoisomeric molecules. In this 
case there arises a flux of rotational angular momentum 
of the form 

(vM) =C,divV. (3.11) 

We now examine the nature of the solution of the kinetic 
equation (3.3) with the inhomogeneity N< 2 >. In this case 
in the expansion of x< 2 > nonvanishing coefficients can 
appear only multiplying the following irreducible tensors 
of the second rank (the scalar functions have been omit­
ted): 

{v,v,}, {M,M,}, {v,M,} (vM); 

{v,[vM],}, {M,[vM],} (vM); 

(3.12a) 

(3.12b) 

{u,M,}, (v,v,} (vM), {M,M,} (vM), {M,[vM],}, {v,[vM],} (vM). 

(3.12c) 
In the absence of stereoisomerism x< 2 > is determined 
by tensors corresponding to (3.12a) and (3.12b) (cf.,U21 ). 

In this case the three tensors (3.12a) which form a com­
plete system when condition (1.1) is fulfilled have the 
same parity as N< 2 >. If we give up temporal parity (con­
dition (2.2)) the two tensors (3.12b) are added to this 
system. But in the case of stereoisomerism there ap­
pear five more independent pseudotensors (3.12c). 

Thus, the inhomogeneous motion of a gas with rota­
tional degrees of freedom when the tensor {vivk} ;e 0 
can lead to the appearance (in addition to the usual vis­
cous flux of momentum (m{vivk})) of nonvanishing 
average values of a number of correlations enumerated 
in (3.11). 

We note in conclusion that in constructing functions 
of tensor dimensionality l from polynomials in v and M 
of tensor dimensionalities l 1 and l 2 the correspondingly 
independent tensors are only tensors with l 1 + l 2 = l and 
l1 + l2 = l + 1. The remaining tensors with l1 + l2;;::: l + 2 
reduce to a linear combination of tensors with l 1 + l 2 = l 
or h + l2 = l + 1. It is evident that the coefficients of 
this linear combination may depend on scalar expres­
sions v2 , M2 and (vM). 

4. REMARKS CONCERNING THE VARIATIONAL 
PRINCIPLE 

In finding an approximate solution of the linearized 
kinetic equation in the case of monatomic gases a sig­
nificant role is played by the so- called variational prin­
ciple which is a consequence of the law of increase of 
entropy and of the symmetry of the collision operator 
iJ. But on suppressing condition (1.1) the second condi­
tion is violated and the variational principle cannot be 
utilized in its ordinary form. 

For kinetic problems with a nonselfconjugate opera­
tor, and also in the general case in obtaining the non-

diagonal kinetic coefficients it is convenient to utilize 
the variational principle which is close to the method 
developed by SchwingerlHJ (cf., alsol151 ). For this we 
introduce the functional 

(4.1) 

Independent variation of this functional with respect to 
the functions cp and x gives at the extremum 

(4.2) 

where the first equation coincides with the kinetic equa­
tion. In this case the extremal value of (4.1) 

(4.3) 

is equal to the value of the kinetic coefficient (up to a 
nonessential factor) corresponding to the flux of P under 
the condition that the inhomogeneity of the kinetic equa­
tion is equal to N. 

In the case of a small deviation from the extremum 
we have 

(4.4) 

For diagonal kinetic coefficients (P = N) and under 
the condition that the operator fi is selfconjugate both 
equations in (4.2) coincide and we arrive at the usual 
form of the variational principle, when (4.4) together 
(2.18) guarantee that the approximate value of the kinetic 
coefficient cannot exceed the exact one. This assertion 
is removed for nondiagonal kinetic coefficients in the 
general case, while for the diagonal ones it is removed 
in the case when (1.1) is suppressed. In this case the 
extremum of the functional (4.1) turns out to be a saddle 
point. But if the approximate value of the kinetic coeffi­
cient is evaluated by means of formula (4.1), then (4.4) 
gives us the possibility of asserting that the error in 
evaluating the kinetic coefficient is a quantity of the 
second order of smallness in terms of the deviation of 
the approximate solutions of equations (4.2) from the 
exact expressions XN and cpp (cf., the analogous remark 
inll5l ). 

A search for an approximate solution of (4.2) in the 
form .. .. 

X= 1)•1Jl•, <P = .E <P.,P.' (4.5) 
t=t 3=1 

within the framework of the variational problem for the 
functional (4.1) leads to the system of equations 

to •o .E Q,,X, + N, = 0, .E 'f!,Q,, + P, = 0, ( 4. 6) 
8=1 

where the same notation has been adopted as in (3.5). 
Generally speaking the set of functions lf!t and lf!~ is 
different. 

One can easily see that the system (4.6) will be com­
patible only under the conditions s 0 = t 0 • In this case 
there arises a distinctive generalized method of mo­
ments. It is of interest that in each of systems (4.6) 
only matrix elements n st between functions of different 
sets appear, and this reflects the internal connection of 
the two systems of equations (4.6). 

We note that the approximate functions (4.5), just as 
the exact solutions of equations (4.2), satisfy the equa­
tion 

(qJRx) + (rpN) = 0, (qJQX) + <Px> = 0, ( 4. 7) 
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and therefore the problem of the unconditional extre­
mum of the functional (4.1) is equivalent to the problem 
of the condi!ional extremum of the functionals (Px), 
(cpN) or (~x), when the role of the subsidiary condi­
tion is played by one of the equations (4.7). 

The function cp does not have a direct physical mean­
ing. However its temporal reflection cp~, as follows 

from (4.2) and (2.13), represents a perturbation of the 
distribution function due to the inhomogeneity of pT, In 
this case the value of the dissipative flux is character­
ized by the kinetic coefficient 

(4. 8) 

This expression together with (4.3) yields 

(4.9) 

We see that the Onsager principle follows directly from 
the kinetic equation. 

5. PROPERTIES OF THE SOLUTION OF THE KINETIC 
EQUATION IN THE PRESENCE OF EXTERNAL 
FIELDS 

A. We now analyze the manner in which the suppres­
sion of (1.1) affects the nature of the general solution the 
kinetic equation in the presence of an external field act­
ing on the rotational degrees of freedom. If we denote 
the external field by B, then the kinetic equation in the 
general case can be written in the formrr-JJ 

(Q + QB)xN + N = 0, (5.1) 

where the differential operator n B has the form 

!i.x == Ml7x /oM= y[M'B]Ox /oM. (5.2) 

Here y is a quantity which has a definite value for each 
definite case and which is a scalar when B is a mag­
netic field, and a pseudoscalar when B is an electric 
field. 

From the definition of the operator QB it follows 
directly that this operator is an antisymmetric operator: 

(5.3) 

Moreover, the operator nB is not changed on reflection 
and changes sign under time reversal. But from the 
point of view of the expansion of the function x (2.18) 
in terms of a complete system of functions having a 
definite tensor dimensionality and parity the operator 
fiB mixes states lfi m of different tensor dimensionality, 
and this is associated with the presence of the external 
vector B. If the coefficient y does not depend on B, then 
the operator fiB does not alter the spatial and the tem­
poral parities in the case of the magnetic field and 
changes both parities in the case of the electric field. 

From this we see that the kinetic coefficient in an 
external field 

K,N(B) = --<PxN> = (P(Q + 6.)-'N), (5.4) 

generally speaking differs from zero even if the in­
homogeneity N and the flux P have different tensor 
dimensionality and parity. 

The functions Nand P are, generally speaking, com­
ponents of corresponding tensors, and therefore the 
quantities KpN are elements of a tensor constructed 

from one select vector-the vector of the external field. 
We note that the variational principle formulated in 

the preceding section is preserved also in the case of 
an external field if we replace the operator n by the 
operator n(B) = f2 + fiB. For this operator the prin­
cipal property (2.13) is replaced by 

(<pQ(B)x) = <xTQ(BT)<pT), w = ± B (5.5) 

(the upper sign corresponds to the electric field, the 
lower sign to the magnetic field). In this case the rela­
tion (4.9) assumes the form of the generalized Onsager 
principle in an external field 

(5.6) 

B. Let first the external magnetic field be different 
from zero. In this case y for the most interesting cases 
either simply represents a constant (nonparamagnetic 
gas in a magnetic field), or it is proportional to a dis­
crete variable a, which takes on values from - S to + S 
(S is the spin of the molecule) and which is a true scalar 
(a paramagnetic gas in a magnetic field). If we now take 
into account the properties of the operators fi and fiB' 
then this turns out to be sufficient in order to formulate 
certain general properties of the solution of equation 
(5.1). 

We assume that the condition (1.1) is fulfilled. Then 
the solution of equation (5.1) will have the same tem­
poral and spatial parity as the inhomogeneity N (we are 
speaking everywhere about parity with respect to the 
variables v and M). Again the subspace of functions with 
parity noncoincident with N is split off and does not par­
ticipate in the construction of the nonequilibrium func­
tion XN· Within the framework of conservation of T­
and !-parities the expansion can contain along with 
(3.6a) or (3.12a) terms of arbitrary tensor dimensional­
ity with respect to v and M. 

If the principle of detailed balance is fulfilled in the 
form (2.2), then as a result of the action of the operator 
n (-) temporal parity is not conserved and the action of 
the operator fiB leads to the appearance in the expan­
sion of terms of arbitrary tensor dimensionality, but 
with spatial parity coincident with N. 

In those cases when the principle of detailed balance 
is fulfilled only in the form (2.1), terms of arbitrary 
parity and tensor dimensionality can appear in the ex­
pansion for XN· 

Thus, on violation of condition (1.1) the simultaneous 
action of operators f2 and fiB leads to the appearance 
of "cross" effects, i.e., the microscopic nonequilibrium 
of definite tensor dimensionality and of definite parity 
N(a) gives rise to fluxes of different tensor dimensional­
ity, which for B = 0 or n <-> = 0 are brought about by an 
inhomogeneity of the kinetic equation of other parity 
(the other "a"). The only thing for which we have to 
watch out is the possibility of constructing (for the des­
cription of the flux) of the corresponding tensor from 
the given external macroscopic tensor and the axial 
vector B. In the case of stereoisomeric molecules no 
problems arise in general, since in the problem there 
always exists the pseudoscalar 01. 

The appearance of "cross" effects can be traced in 
a very clearcut manner by considering a gas with an 
inhomogeneous temperature. In the case of stereoiso­
meric molecules the action of the operator n (-) leads 
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to the appearance in x <1> of terms even with respect to 
v (cf., (3.6c)), while the operator ns "builds up" their 
tensor dimensionality to {vivk} and v2 • This immediately 
leads to the appearance of the tensor of the flux of mo­
mentum- quantities of the form {vivk} and V2":" Naturally 
these are not the only effects. One can easily trace that 
in the presence of stereoisomerism the average corre­
lators of all functions of the form (3.12) differ from 
zero. 

In the converse case, when vi Vk ;.< 0, in a gas con­
sisting of stereoisomeric molecules a heat flux arises 
which is associated with the appearance of a nonvanish­
ing correlation of the form vi(E- cpT). 

Within the framework of the present analysis one can 
easily point out the conditions under which the existence 
of effects odd in the field is possible. Taking into ac­
count the fact that the corresponding term of the expan­
sion of x will contain y to an odd power, and in the ex­
pression for the corresponding flux there will be con­
tained a summation over the additional variable a, it 
can be easily established that odd effects take place in 
a nonparamagnetic gas in the general case, and in a 
paramagnetic gas in the case of a consistent taking into 
account of the state with a = Oc1sJ or of taking into ac­
count the change in a in a collisionc3 J . 

One of the most interesting manifestations of the 
suppression of conditions (1.1) is the appearance of the 
"positive" effectc7-9'17l. The possibility of the existence 
of this effect and the reason for its appearance can be 
understood without resorting to a quantum discussion of 
the rotational degrees of freedomcw,nJ. In order to do 
this we make use of the fact that the operator n B is an 
antisymmetric operator. 

Multiplying the kinetic equation (5.1) by XN and inte­
grating over f< 0 >di', we arrive at an equation of the form 
(4.7) 

<xQx> + <xN> = o, (5.7) 

which turns out to be valid both in the absence and in the 
presence of an external field. But, as we know (cf., 
above section 4), for fi <- > = 0 of all the functions sati s­
fying (5. 7) the maximum value is given to the quantity 
KNN = -(Nx) by the solution of the kinetic equation 
without a field (3.3). From this it follows immediately 
that when the principle of detailed balancing in the form 
of (1.1) is satisfied the kinetic coefficients KNN (which 
for B = 0 are in fact a contraction of the corresponding 
tensors) are always diminished when an external field 
is switched on2 >. This is the usual "negative" Senftle­
ben effect. Naturally this applies also to the diagonal 
elements of the kinetic tensors of heat conductivity 
and viscosity. 

When condition (1.1) is replaced by (2.1) or (2.2), then 
the sign of the change in the kinetic coefficients in an 
external field in accordance with (4.4) becomes arbi­
trary. The sign of this deviation and, consequently, the 
sign in the change of the kinetic coefficient in an ex­
ternal field depends on the nature of the change genera­
ted by the operator n8 in the relative weight of the 
functions of different parity in the expansion (2.17). If 

2l An analogous conclusion can be drawn for the coefficient of elec­
trical conductivity in metals with a center of inversion if the spin-orbit 
interaction is small. 

fi 8 acts primarily on a state of the same parity as N, 
then the switching on of the field leads to a reduction in 
the kinetic coefficient. In the opposite case when fiB 
alters primarily states of opposite parity, the kinetic 
coefficients in an external field increase and we arrive 
at a "positive" Senftleben effect. Since, as we have 
seen, the operator fi 8 does not alter the temporal par­
ity of the function, the appearance of a "positive" effect 
is associated in a decisive manner with the scale of the 
operator fi <-> and always occurs in competition with the 
"negative" effect. From this, on the one hand, arises 
the difficulty of predicting a priori the sign of the change 
in the kinetic coefficient without a detailed knowledge of 
the nature of the interaction between molecules, and on 
the other hand there appears a possibility of a change in 
the sign as the magnitude of the field is varied. 

The whole picture described above is manifested 
very clearly if we utilize the general formulas obtained 
inc3 J on the assumption of weak nonsphericity. Thus, 
for example, in the case of a nonparamagnetic gas the 
change in the kinetic coefficient in an external field is 
determined by the expression ( cf., formulas 
(5.12)-(5.15) inc3 J} 

(5.8) 

Here nNN and Onn are the diagonal matrix elements of 

the operator fi corresponding to Nand 1/Jn, Czl~ z m 
1 1 2 2 

are the Clebsch-Gordan coefficients, n = (lm, l 1l2, ••• ). 
We see that in agreement with (2.14) the terms of the 
sum with respect to n, for which the temporal parity of 
1/J n coincides with N always enter with a negative sign. 
For small fields the common sign is determined by the 
sign of the sum 

and for large fields by the sign of the sum 

..L, QNnf.!nN/Qnn• 

(5.9) 

(5.10) 

It is essential that the signs of (5.9) and (5.10) need 
not coincide. This manifested itself clearly in referen­
cesc9'17J where it was found that a change in the coeffi­
cient of heat conductivity of CH3CN in electric and mag­
netic fields changes sign in going from weak fields to 
saturation fields. 

C. We now proceed to the case when the electric 
field differs from zero. We consider a gas of polar 
polyatomic molecules. In this case y ~ a where 
a = (Md)(M2d2f 112 is a continuous variable taking on 
values from -1 to + 1 (d is the dipole moment of the 
mole_pule)c 3J. In this case r = (v, M, a), with Ia =-a 
and Ta = -a. From this it can be seen that in the ab­
sence of stereoisomerism the probability of scattering 
is an even function with respect to the simultaneous re­
placement v --v and a --a (cf., (2.2) riT 
= (v,- M, a)). Now let the set of functions in terms of 
which the function XN is expanded have definite T and 
!-parity, including also the variable a. Then it follows 
from (5.2) that the operator fiB in the case of the elec-
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tric field differs from zero only for transitions between 
states with different temporal and spatial parities. It is 
clear that for effects even in terms of the electric field 
the analysis remains the same as in case of the mag­
netic field. But for effects odd in B the picture requires 
special consideration. 

In the heat conductivity tensor Kik and the viscosity 
tensor 7Jiklm terms odd in the electric field are always 

absent. This is associated with the fact that in accord­
ance with (5.6) these tensors are symmetric while the 
terms odd in the field lead to antisymmetry. 

It is of interest that in the case of the electric field 
the "cross" effect can exist when the principle of de­
tailed balance is realized in the form (2.2) or (1.1). 
This can be easily traced if we take into account the 
fact that in order to find the "cross" effect we must 
calculate an expression of the form (5.4) with P which 
differs in its symmetry properties from N. Considering 
again the phenomena of heat conductivity and of viscous 
momentum transfer and taking into account the fact that 
N< 1> and W 2> have just the opposite temporal and spa­
tial parities we find that there wil} exist a cross effect 
odd in the electric field even for n <-> = 0. For example, 
in a weak field ( cf. / 18J) K ik ~ Bi (VT )k. We note also 
the possibility in principle of the appearance of polar­
ization in an electric field in the presence of a tempera­
ture gradient(14 J : 

M = [BVT]. (5.11) 

In the remaining details the reconstruction of XN under 
the influence of an electric field when (1.1) is dropped 
has qualitatively the same character as in the case of a 
magnetic field; in particular, there is manifested to the 
full extent the possibility of the existence of a "posi­
tive" effect[7- 9J. 

If the polar molecule is diatomic or linear[3 J , then 
y ~ (ME) and no additional variable arises. In this case 
the operator fiB (5.2) connects functions of different 
temporal and coincident spatial parities. Consequently, 
in the expansion of the solution XN terms will appear of 
temporal parity which differs from N even when condi­
tion (1.1) is satisfied. But conservation of spatial parity 
leads to the fact that, for example, "cross" effects 
generally cannot be observed in this case (there is no 
stereoisomerism); as regards the "positive" effect, it 
is possible if fi <-> ;.o 0. An analogous analysis can also 
be carried out for any more complicated case when the 
internal state of the molecule is described in addition to 
M by more than one parameter. The corresponding 
generalization can be carried out directly. No new 
characteristic features differing in principle arise in 
such a case. 

In conclusion the authors express their indebtedness 
to I. K. Kikoin, L. L. Gorelik and V. D. Borman for dis­
cussion of the work. 
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