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A nonlinear equation for drift oscillations of a weakly ionized inhomogeneous plasma in an inhomo
geneous magnetic field is derived in the hydrodynamic approximation. For the case of small super
criticality, a nonstationary solution is obtained, which describes the time variation of the amplitude 
of the nonlinear drift wave. The stationary convection plasma flow across the magnetic field is cal
culated. 

1. INTRODUCTION 

0 NE of the important forms of instability of an in
homogeneous plasma placed in a magnetic field is, as is 
well known, the "gravitational" instability due to the 
curvature of the magnetic force lines (see, for example, 
the reviewlll ). The development of this instability leads 
to convection of the plasma across the magnetic field; 
to describe the convection it is necessary to solve the 
nonlinear problem. The convection of a fully ionized 
plasma in toroidal systems, connected with gravitational 
dissipative instability on trapped drift waves localized 
in the region of the maxima of the magnetic field, was 
investigated by Pogutse and one of the authorsl 2 J • The 
convection of a weakly- ionized plasma, which is connec
ted with instability on perturbations of the flute type, 
was investigated in the quasilinear approximation inl 3- 5J. 

In the present paper we consider "gravitational" 
laminar convection of an inhomogeneous weakly- ionized 
plasma due to the instability on perturbations that are 
inhomogeneous along a magnetic field. Just as inl2 J, the 
stationary state in the plasma is established as a result 
of competition of linear buildup of mode instability and 
nonlinear damping due to generation of its higher stable 
harmonics. Unlike inl2 J , however, in a weakly ionized 
plasma, the stability of the higher harmonics is ensured 
not by ion viscosity but by collisions of the ions with the 
atoms of the neutral gas. 

In Sec. 2 of the present paper we derive, in the hy
drodynamic approximation, a nonlinear equation describ
ing the drift oscillations of a weakly-ionized magnetized 
inhomogeneous plasma. In Sec. 3 the van der Pol method 
is used to find a nonstationary solution of this equation 
under conditions of small supercriticality, when the 
"gravitational" buildup only slightly exceeds the damp
ing due to the atom collisions; this solution determines 
the time evolution of the initially unstable perturbation. 
In Sec. 4 we derive an equation of the stationary state of 
the plasma for arbitrary supercriticality, and consider 
its solution in the limit when the supercriticality is 
small. In Sec. 5 we calculate the convection flow of a 
weakly-ionized plasma across the magnetic field; this 
flow is connected with the "gravitational" instability on 
drift waves. 

2. FORMULATION OF PROBLEM. EQUATION FOR 
DRIFT WAVES OF FINITE AMPLITUDE 

Let us consider a flat layer of a weakly-ionized low
pressure plasma, the density of which varies in a direc-
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tion perpendicular to the external constant magnetic 
field H. The inhomogeneity of the magnetic field, or, 
more accurately, the curvature of the magnetic force 
lines, will be imitated with the aid of an effective gravi
tational field directed along the density inhomogeneity. 
Assuming the plasma to be strongly non-isothermal, we 
shall neglect effects of ion pressure and of the finite 
Larmor radius of the ions. The only dissipative mech
anism to be taken into account is the friction of the 
charged particles against the neutrals. 

Under these conditions we describe the slow quasi
neutral motions of the plasma by using the following 
system of hydrodynamic equations: 

e Vn 
eVcp-- [v,H]-T-- v,mv, = 0 (1)* 

c n ' 

- eV .Lij) + __:__ [ vuH]- v.Mvu + Mg = 0, (2) 
c 

Mav,u I at= -e'v\cp, (3) 
fJnlfJt+divnv,=O (4) 

fJn I fJt + div nv, = 0. ( 5) 

Here cp is the electric potential, Ve i the average veloc
ity of the electronic and ionic components, n the plasma 
density, m and M the masses of the electron and of the 
ion, T the electron temperature, Ve i the frequency of 
collision between the charged particles and the neutral 
atoms, g the acceleration of the effective gravitational 
field (g ~ T/ MRo, Ro is the radius of curvature of the 
force lines), and- e the charge of the electron. In the 
system ( 1 )- ( 5) we have retained the equation of the 
ionic longitudinal motion (3) (in which only the principal 
terms were retained), since, as will be shown later, the 
main nonlinear effects are connected precisely with the 
longitudinal motion of the ions. We note that in Eq. (1) 
we have left out a term with the effective gravitational 
field, since the velocity of the electron drift connected 
with this field is smaller by a factor M/m than the 
phonon drift velocity. We choose a coordinate system 
in which the z axis is directed along the magnetic field 
H and the x axis along the gravitational field g. For 
simplicity we assume that the change of the density n 
along the coordinate xis exponential, i.e., -8ln n/ax 
= K = const > 0, and cp and v e i do not depend on x. 

Neglecting the transverse diffusion and the mobility 
of the electrons, we obtain from (1) and (4) 

(a~- D, a~:) Inn=- ( vctr :Y + D, a~',) 1Jl, (6) 
-----

*[VeHl =VeX H. 
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where lj! = ecp/T; De = T /mve is the electron diffusion 
coefficient; v dr = cTK/ eH is the Larmor drift velocity. 
In deriving (6) we have omitted from the electronic con
tinuity equation the nonlinear term v ezllln n/ llz, since 
its contribution is proportional to the deviation of the 
density distribution from the Boltzmann distribution; 
this deviation in turn is due to friction in the electronic 
component. Assuming the contribution from the dissipa
tion to be small, we shall henceforth take into account 
its influence only with the aid of the principal linear 
terms. For the ions we have from (2) and (5) 

( 
0 g 0 ) ( a {)' ) {)Inn at-Q; oy Inn+ vd:r oy -v,rn' oy' lfl+v,,a;-=0, (7) 

Here Qi = eH/Mc is the ion cyclotron frequency; rH 
= cs/ni is the Larmor radius of the ions at the electron 
temperature; cs = ..jTjM is the velocity of the ion sound. 
The last term in (7) is connected with allowance for the 
longitudinal motion of the ions, and it is precisely this 
term which determines the nonlinear effect in the model 
in question. In the derivation of (7) we have omitted, for 
simplicity, the term llviz/llz from the linear part. 
Physically this means that we take into account only the 
contribution of the longitudinal motion of the ions to the 
amplitude of the drift wave, neglecting its contribution 
to the frequency. 

Eliminating the quantities lj! and ln n from (3), (6), 
and (7), we obtain for viz a nonlinear partial differential 
equation 

{)' [ {) ( g) {) ] D,- -+ 'Vdr--- v,, 
{)z' at Q, oy 

( a' ) 2 {)'v,, 1 {)'v,,' 
- v,D,-+xg rn ~+-D,--=0. 

{)z' oy' 2 iJz' 
(8) 

Here in linear approximation the term with the square 
bracket determines the oscillation frequency, the term 
with Kg the "gravitational" buildup of the oscillations, 
and the term with vi the damping. 

3. NONLINEAR DEVELOPMENT OF UNSTABLE 
PERTURBATION IN TIME 

From (8) it is easy to obtain the frequency and the 
increment for a flat wave of infinitesimally small am
plitude, propagating in a weakly-ionized plasma in an 
inhomogeneous magnetic field: 

Re ·W = (J)., Im w = (xg- v,k,'D,) j.w,, (9) 

where w* = kyvdr is the drift frequency; Ws 

= (k~/k~)(M/m)(nf/ve)· In the derivation of (9) it is 
assumed for simplicity that w* » kyg/Qi· 

According to (9), the condition for the instability of 
the system relative to the buildup of drift oscillations 
in a weakly- ionized plasma can be represented in the 
form L2/aoRo > be/bi> where Land a0 are the charac
teristic longitudinal and transverse dimensions of the 
system and be i are the mobilities of the charged parti-
cles. ' 

Thus, from the expression for the imaginary part of 
the frequency we see that when Kg > vik~De the drift 
mode with given ky and kz is unstable, but its higher 
harmonics, which result from nonlinear distortions, will 
be damped starting with a certain harmonic. Under 
these conditions it is natural to expect a stationary wave 

of finite amplitude to become established in the plasma 
(see, for example, [sJ ). 

Accordingly, let us consider the solutions of Eqs. (8) 
under conditions of small supercriticality, when the 
buildup of the fundamental mode only slightly exceeds 
its damping, i.e., 

R == (xg- v,k,'D,) I v,k,'D, «f. 1. (10) 

In this limiting case it turns out to be possible to estab
lish the time variation of the amplitude of the fundamen
tal mode and of its harmonics. It is natural to assume 
(as will be confirmed by the result) that the main con
tribution to the formation of the profile of the wave of 
finite amplitude is made by the first several harmonics. 
Pursuing further in the spirit of the van der Pol method, 
we seek a solution of Eq. (8), confining ourselves for 
simplicity to two harmonics, in the form 

v,, = v,(t)exp{i(k.y+k,z-w,t)} 

+ v,(t) exp {2i(k.y + k,z- w,t)} + c.c., (11) 

where v1,2 are slowly varying amplitudes; ky and kz are 
the average wave numbers. Strictly speaking, it is 
necessary in the van der Pol method to write the quan
tity w(t), which is a slowly varying function of the time, 
in the expansion (11) in place of w*. This would corre
spond to allowance for the influence of the nonlinear 
effects on the frequency, which, as already noted, we 
neglect for simplicity. Substituting (11) in (8) and equat
ing the coefficients of the corresponding exponentials to 
zero, we obtain 

aw, I fh- w, + iR-'w,'w, = 0, 

Rdw, I dr + 3w, + iw,' = 0, 

(12) 

(13) 

where w = wskzV/Kg, T = y1t, Y1 =(Kg- vik~De)lws is 
the linear increment of the fundamental mode (9); the 
asterisk tow denotes the complex conjugate. Omitting 
for simplicity the small term with the derivative from 
(13), we obtain from (12) and (13) the following equation 
for the square of the amplitude of the fundamental mode: 

1 dA, 1 
----A +-A'=O 
2 dr 3R ' ' 

(14) 

where A1 = w1wf. The solution of this nonlinear equa
tion is well known: 

A,ir) = A,~A,.e'' I [A,~+ A,.(e" -1)], (15) 

where A10 = A1(T = 0) is the initial value of the square 
of the amplitude of the fundamental mode, and the sta
tionary value of A100 with allowance for (10) is 

A,~=3R. (16) 

As expected, the amplitude of the fundamental mode of 
the nonlinear drift wave in the stationary state turns 
out to be proportional to the square root of the super
criticality, which in turn is proportional to the linear 
increment. For the square of the amplitude of the sec
ond harmonic A2 = w2wt we obtain 

A,(r) = 'I,A.'('r), 

whence we get for the stationary value 

A,~ =R'. 

(17) 

(18) 

Taking (15) into account, we can readily show that 
the term with the derivative, which was discarded from 
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(13), is smaller by a factor K 1 than the second term. 
It is seen from (15) that as t-oo, the stationary 

value of the amplitude is reached for any (nonzero) 
initial value of the wave amplitude- a result typical for 
self-oscillating systems. Thus, the obtained stationary 
solution (16), (18), describes a stable state, which the 
system assumes as a result of the temporal evolution 
of an unstable perturbation. 

4. STATIONARY DRIFT WAVES 

In the preceding section, for the case of small super
criticality, we considered the time variation of the 
amplitude of the drift oscillations. However, from (8) 
it is easy to obtain a nonlinear equation describing the 
stationary state of the plasma and valid for any super
criticality. Indeed, fort- oo we shall seek a solution 
of Eq. (8) in the form of a stationary traveling wave 

v,, = v(£), s = k.y + k,z -(JJt, (19) 

where w is an unknown real frequency. Then, substitut
ing (19) in ( 8), we obtain 

where 

1 d'w dw 
----(~+w)-+w=O, 
R+ 1 d'S' d'S 

w = IUJ,k,v I xg, ~ = (JJ,(ro,- ro') I xg 
ro' = (JJ + k.g I Q,. 

For the case of small supercriticality, putting 

(20) 

we obtain from (20) a system of three algebraic equa
tions for the determination of the amplitudes w1 , w2, 
and W3 (see (12) and (13)): 

(!1 + iR)w, + w,w,• + w,•w, = 0, 
(2.1.- 3i) w, + w,' + 2w,w,• = 0, 

(3!1- 7i) w, + 3w,w, = 0. 

(21) 

From (21), taking into account the fact that w1wi is real, 
we obtain 

{1), = ro., (22) 

lwd'=3R, jw,I'=R', jw,I'="/,.R'. (23) 

We note that the result (22) is in general exact for Eq. 
(20) and is not connected with the assumption that the 
supercriticality is small (seel7 J, where it is shown that 
an equation of the type (20) has a periodic solution only 
if the coefficient of the linear term with the first deriva
tive vanishes). From (23) we see that the amplitudes of 
the harmonics of the fundamental mode are quantities 
of higher order of smallness with respect to the super
criticality R: 

lwd': jw,j': jw,j'· ~ 1: R :R'. 

5. CONVECTION FLOW OF WEAKLY IONIZED PLASMA 

Knowing the amplitude of the drift oscillations, we 
can easily calculate the convection flow of a weakly ion
ized plasma in the direction of the inhomogeneity. For 
its calculation it is convenient to introduce a general
ized potential Q by means of the relationl 2 J 

v,, = c,' (!....-n,.!:...)!!!... at az' az . 
(24) 

We then have from (3) and (6) 

Inn= (n.~+ vctr~) aQ 
az' ay at ' 

"'= (n .!:..__ !....) aQ 
'az' at -at· 

(25) 

(26) 

By definition, the convection flow in the direction of the 
inhomogeneity is equal to 

I= (n'v/), (27) 

where the angle brackets denote averaging over the 
time and n' and v~ denote the perturbations of the den
sity (n = 11o + n', where n0 is the unperturbed density), 
while x denotes the component of the ion velocity. From 
(27), (taking (2), (22), (25), and (26) into account as well 
as the stationarity (19)), we obtain 

I= n,gk,'rH'.ro,'k,'D,<(d'Q I d£')') 

or, using the definition (24) 

I= n,.!!... ( ro,~g, )' (w') 
Ws (t)skz Ca 

or 
I= (n,g I ro,)((n' I no)'). 

Comparison with the Bohm flow yields 

(28) 

(29) 

(30) 

I k.g ((n')') 1 (31) - = 16-- - I 8 = -16 noVctr. 
Ia ro.w. no ' 

We note that the expressions obtained for the convec
tion currents (28)-(31) do not depend on the assumption 
concerning the magnitude of the supercriticality of the 
system. In our case of small supercriticality, substitu
tion of the amplitude (23) in (29) yields 

_!_=96~(~)'k,'c.'~.( x,g,-~). (32) 
Is x b, IUJ, k, c, b, 

The theory developed in the present paper can be 
used to interpret experiments on anomalous diffusion in 
a weakly ionized plasma using sufficiently short dis
charge tubes in the form, say, of a section of a torus, 
on the ends of which are placed electrodes (see, for ex
ample, lBJ ). Under these conditions, when the presence 
of the electrodes leads, generally speaking, to a weak
ening of the flute instability, a decisive role will be 
played by the "gravitational" instability on the drift 
waves. To identify the mechanism of convection it is 
necessary, simultaneously with the measurement of the 
current, to carry out an analysis of the spectrum of the 
oscillations, the presence of which can offer evidence of 
the development of the instability in question. 

In the present paper, the solution of Eq. (20) was ob
tained under the assumption that the supercriticality of 
the system is low. The limiting case of large super
criticality will be considered by us in a different paper. 

6. CONCLUSION 

Let us note certain features of the results obtained 
in this paper. 

1. The oscillatory system considered by us is not 
conservative: energy builds up at wavelengths with wave 
vector k satisfying the condition for linear buildup, and 
energy is dissipated on smaller scales. As already 
noted in the Introduction, the existence of a stationary 
wave under these conditions is ensured by the mechan
ism of competition between the linear buildup of the 
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mode with given k and the nonlinear damping due to the 
generation of its higher harmonics. In this sense we 
can speak of our system as being self- oscillating. 
Because of the linearity of the dispersion law, the mech
anism of generation of higher harmonics corresponds 
exactly to the mechanism of nonlinear distortion of the 
profile of a sound wave with finite amplitude in ordinary 
gasdynamics. We see that the picture indicated here 
differs significantly from the process of formation of a 
stationary wave in a collisionless plasma (see, for ex
ample, the review[ 9J), for which the decisive factor is 
the deviation from the linear dispersion law. We recall 
that oscillations in a collisionless plasma are conserva
tive. 

2. Equation (20}, which describes the stationary state 
of the plasma, has in the case under consideration 
(w' = w*) a continuum of periodic solutions. We have to 
choose one of them that corresponds to the state as
sumed by the system as a result of the evolution of the 
initial perturbation. Such a solution will obviously be a 
solution having the same period as the initial perturba
tion (i.e., period 2JT/k in terms of the spatial variable 
or period 2JT in terms of the variable ~ ). The solution 
obtained in Sec. 4 corresponds precisely to this condi
tion. As expected, it coincides with the asymptotic solu
tion of the temporal problem in Sec. 3. 
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