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The nature of the discrete spectrum for an electron in the Coulomb field of a bare nucleus with charge
Z close to 137 is investigated. In this region of Z values the level spectrum significantly depends on
the cutoff of the Coulomb potential at small distances. Equation (6) is obtained for the determination of
the energy levels €p. In the logarithmic approximation (i.e., provided that L =1n (i/mcR) >> 1, where
m is the electron mass and R is the nuclear radius), this equation can be solved in explicit form and
the simple expressions (24), (25), and (28) are obtained for €.

1. INTRODUCTION

IT has recently been shown!!~%1 that the relativistic
Coulomb problem possesses a number of interesting
properties. The ‘‘collapse to the center,’”’ which is well-
known from quantum mechanics,t®%? appears in the Di-
rac equation for a point charge Ze with Z> 137; as a conse-
quence the energy levels, the S matrix, and the other
physical quantities become sensitive to the cutoff of the
Coulomb potential V(r) = —a/r at small distances. The
introduction of cutoff in the region r < R (i.e., taking
the finite size of the nucleus into account) enables us to
follow the movement of the levels for Z > 137.[%1 With
an increase of Z the critical value Z = Z¢p(R) > 137

is attained, at which the ground level 1S, /2 Sinks down
to the boundary of the lower continuum, € = —mc2,

For any cutoff model it is relatively simple to cal-
culate the value of Z¢r (see Eq. (8) in article [37), It is
more difficult to obtain an idea about the nature of the
entire discrete spectrum in the region of Z values close
to 137 because the equation for the energy levels €
=€, (o) has a rather cumbersome form (see Eq. (6) be-
low). For this reason, the case of a very small cutoff
radius R is considered in the present article, namely,
the case when R is not only small compared to the
Compton wavelength of the electron, but the more strin-
gent condition (10) is also satisfied. In this approxima-
tion, which we shall call the ‘‘logarithmic approxima-
tion,”’ the problem can be solved in analytic form and
the simple formulas (24) and (28) are obtained for the
energy levels. It is found that the dependence € =ep(a)
has a steplike nature: at that instant (@ =ag} ) when
the levels nS,; /2 and (n+1)P, /2 disappear into the lower
continuum, all of the levels lying above them abruptly,
almost discontinuously, decrease their energy (for more
details, see Sec. 3, in particular, Fig. 2).

The question of the accuracy of the logarithmic ap-
proximation in the region R ~ 107*2 cm (Sec. 3) and the
Coulomb problem for a scalar particle (Sec. 6) are also
discussed in this article. In Sec. 4 several remarks are
made about the application of Case’s general method!®!
of investigating singular potentials to the present prob-
lem. A brief discussion of the obtained results is given
in Sec. 7. The Appendix contains a summary of the
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basic formulas for the Whittaker functions W jg(x)
which are used in the article.

At the present time there is a great deal of interest
in work in the area of the synthesis of superheavy ele-
ments. In a number of laboratories searches are being
made for elements with Z =110, 114, and 126; certain
isotopes of these elements possess (according to theo-
retical calculations) a rather large degree of stability
with respect to spontaneous fission, o -decay, and S3-
decay (see the review articles!”81), The detection of a
nucleus with Z =110 in cosmic rays was reported in
article 1, There are certain indications!”? of the pos-
sible existence of stable nuclei near Z = 164. In this
connection, it appears to us that the discussion of the
properties of the discrete spectrum for Z ~ 137 is
rather urgent.

2. THE COULOMB PROBLEM FOR LARGE
VALUES OF Z

Let us consider the Dirac equation with the potential®

—a/r for r>R
V(r>={ i tor 1)
_Ff(i) for 0<r<R

(R denotes the nuclear radius). In the external region
r > R we have the exact solution:

—_—

1 —_
G=V +8(X1+X2)7 F”=V1 e(x‘—xz), (2)

r r

where yx, and X, are expressed in terms of Whittaker
functions (see formulas (12)~(14) in '®)), In the interior
region we change to the dimensionless variable p =r/R
and we take into consideration that R << 1. Discarding
terms of order R, we obtain the following equations for
the radial functions G and F:

G
S =—Leta()F, T=—afe)+ZF  (3)
p o dp [
(0 < p < 1). Here, as usual, 0]
x="F(+ ")) for j =1 @)

DHere and in what follows, a = Ze?/hc = Z/137. The system of units
is used in which h= ¢ =m = 1, where m denotes the electron’s mass. The
remaining notation is the same as in article [3].
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In order to determine the spectrum of the levels, it
is sufficient to find from (3) only a single constant,
which we choose to be the logarithmic derivative of the
function G(r) at the edge of the nucleus:

§=[?7]T=R . (5)

We note that ¢ depends on a, k, and on the form of
the cutoff function f(p) (but it does not depend on the
energy). The energy level € is found by matching the
wave functions at r =R. In addition to ¢, the quantities
F/G and F’/G for r — R — 0, which can be expressed
in terms of ¢ if p is set equal to unity in (3) and it is
taken into consideration that f(1) = 1, appear in the con-
dition for matching. Finally we obtain®

g£+z

1
W, ig(z) [ Wi, i5(z) = 7+ C—m. (6)

where x = 2AR, A =V1 —€?, g =Va?—k?, and for the
quantities k and t one can take either the values:
k=£l—-__1 t= A — 1—e
! 1+¢ Vi—i—s !

A 2
corresponding to the continuity of x!/x ., or else the
values

(7a)

[1—¢
14e’
corresponding to the continuity of x}/x,. One can show
that for R << 1 both of these equations are equivalent.
We emphasize that Eq. (6) refers to any arbitrary level
of the discrete spectrum (with arpitrary values of j, «,
and of the principal quantum number n). For the levels
nS,,, (k = —1) it goes over into Eq. (16) of article t37 if
we set ¢ = a cot a, which corresponds to a square cut-
off: f(p) = 1.

One can solve Eq. (6) by numerical methods if one
uses the integral representations given in the Appendix
in order to calculate the Whittaker functions. In the fol-
lowing section we shall analyze this equation qualita-
tively in the limiting case R — 0, Here we only indicate
what happens for € ——1. In this case t — © and on the
right-hand side of Eq. (6) one hag left ¢ +',. Using for-
mula (A.8) from [2), we find

2K/ (2) [ Kiw(2) = 28

ea 1
h=—S oy b= (7o)

S (6)
(V=2g1 Z=V8O-R1 @ = ucr)-

We still need to discuss one question of a methodo-
logical nature. As follows from (2), as r — « the wave
functions with energy e have the following asymptotic
form for -1 < e <1:

G = AVI F ee>rah,  F— —AJ] — se-*roh, (8a)

and at the boundary of the lower continuum, € = -1,
they have the asymptotic form

(80)

(the constants A and A’ are determined from the nor-
malization). At first glance it is not clear how the
asymptotic form (8a) changes into the form (8b). In or-
der to exhibit this, we note that the quasiclassical solu-
tion is valid for r >> 1:

G=A'(2r[a)~he"V, F=—A"(2r]a)"he "

DWith regard to the properties of the Whittaker function with an
imaginary index, Wy ;o(x), see the Appendix.
k, ig
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G, Foexp{iS(r)}, S(r)= j:dr
o r

where S(r) is the classical action for the radial motion.
Let € <0, then (r, = 2a|e|/(1 —€?))

G(r) exp {—A ['Vr_(r—-_—i-ro)-}- roln (VT—%—+V1+;’;—)]}

_ {GXP(-VsaIBIr) for r<r
e (r/r)=*  for ren’ 9)

From here it is clear that the usual asymptotic behavior,
e~AT, which is characteristic for bound states,® is es-
tablished only for r > r,. When € — —1, then the point
r, goes off to infinity and the opposite condition, r <r,
is satisfied; therefore G and F are proportional to

exp (—V8ar).

3. THE LOGARITHMIC APPROXIMATION

Equation (6) for the level spectrum has too compli-
cated a form and requires numerical calculations. In
order to simplify the situation, let us suppose that
R — 0; then the ‘‘large logarithm’’

(10)

appears in the problem. We shall call this approxima-
tion the logarithmic approximation, or, more briefly,
the L-approximation. First of all let us present some
qualitative arguments in favor of the fact that the ex-
pansion parameter is L.

1) Firstlet a < 1. For the ground state of an elec-

tron in the field of a point charge Ze we have (y
=vV1-aZ%, x =a)

=—InR>1.

e=71—da,

(11)

G(r) =AYVl +ee™™'r", F=—AY1 — ee~*r".

Using perturbation theory to calculate the levelshift due
to the cutoff of the potential in (1), we obtain (for
R K1)

Ae=%{1—zyjf(z)fvdz}.

The correction Ae ceases to be small when R2Y~1,
ie,, yL~1l or 1—a S L2,

2) Let us estimate the energy of the ground state for
a =1 (this value of @ is critical for a point charge). In
this case the functions G and F have logarithmic singu-
larities at the origin:

(12)

G(r)cor*=1+celnr for r—0,
from which

t=[rG’'/Gl.ex=e/ (1 +elR). (13)

" Since L >>1 and ¢ =0(1), then €(18,,) ~ L™* for

a=1,

3) For a >1 the wave functions in the problem in-
volving the Coulomb potential of a point charge have a
singularity of the following type at the origin (r << 1):

G Fosin(glhr'+35), g=7Ya—1. (14)

3The factor r %€/ is due to the interaction of the electron with the
nucleus, which (just as in the nonrelativistic case) significantly distorts
the wave function at arbitrarily large distances from the nucleus.
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For the solutions which decrease at infinity, the phase

6 =0(g) for @ — 1. With the cutoff taken into account,
formula (14) is valid in the external region r > R.

Since the wave function of the ground state does not have
any nodes, then the 18,,, level may exist only for gL

< 7. The maximum possible values of g and o corre-
spond to the disappearance of this level into the lower
continuum:

ga=n/L, ac;=1-l;n‘/2L’. (15)

From what has been said it is clear that the param-
eter L determines both the width of that region around
the point @ =1, in which it is essential to take the finite
size of the nucleus into account, as well as the depend-~
ence € =¢€(a) in this range of values of a.

Upon fulfillment of condition (10), by using the
asymptotic form (A.2) for the Whittaker function, one
can simplify Eq. (6) to the form:

(6 +ig) (at + % +ig) T (1 + 2ig)T (/. — k — ig)
(C—ig)(at +x —ig) T(1—2ig)T(*) — k + ig)

Here the specific form of the cutoff enters in a very
simple way (only in terms of ¢).

If a<|k|=j +Y%, then g— iy (y =Vk%Z—= a?). Pro-
vided that yL >>1 the roots of Eq. (16) are close to the
poles of the function I' (—ea/A +7v), appearing in the de-
nominator. This leads to the usual expression for the
energy:

(2AR)¥ = (16)

ey = [1+L]_'f' ne=n—|x|=01,2..., (17)

(nr +v)*
which is characteristic of the Coulomb problem with a
point charge.
Taking the logarithm of (16) and taking into consider -
ation that g << 1 according to (15), we obtain
.
at + %
(n’ is an integer). As g— +0 the function w(x, g)
=T'(x +1ig) experiences abrupt discontinuities near the
points x = —n at which the poles of the I' function are
located. Namely, if |x +n|>> g, then to within terms
of order g? one has
 gv(a) for z>0
—(n+1)n+gP(z) for —(r+ )<z < —n

In20R -+ —arg P(—k + ig) = o+ +20() === (18)

o(#8) = { (19)
where P(x) denotes the logarithmic derivative of the
IT'-function. In the immediate vicinity of the pole

X = —n one has

z+n

oz, g)=— (nn+arcctg p ) . (19")
In the region 1 >> |x +n| >> g formulas (19) and (19)
are matched to each other, and both expressions give

oz, ) =—[(n+v)n+g/(z+n) +..1], (19")
where v =0 for x >—n and v =1 for x < —n. We fur-
ther note that w(x, g) is a monotonically increasing
function of x (for arbitrary g > 0) since

o'(z,g) = Imﬂ)(z+ig)=g2[ (z+k)*+ g’] —l>,0. (19™)

h=0

Now one can write down the solution of Eq. (16) in
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explicit form. First let us assume that € = —1, Then
Y, — k — o (see Eq. (7)) and from Eqs. (18) and (19)
we obtain

n'n
e T @+ Drov() e (20)
i 1 (n'n)* s
Qe =j+ 2 +——_—(2]’+1)L’+0(L ) (21)

Here n’ =1, 2, 3, ...; ¥(1) = —0.5772 (Euler’s con-
stant). In what follows we shall relate n’ with k and
with the principal quantum number n. We note that a¢p
depends on the sign of k¥ only by means of {. Since we
are interested in the region a ~ 1, then it is sufficient
to consider states of the type S,,, and P,,, (k =¥1)
since for all remaining levels ac¢yp is too large and for
a < 2 one can use formula (17) for them, this formula
referring to the Coulomb potential of a point charge. In
the field of a point charge with <1 the states nS,,,
and nP,,, are degenerate with respect to the energy;
as a —1

n—1

S —mtn T

—+0®K). (22)

¥
(n*—2n+2)

For n =1 this formula describes the nondegenerate
ground level 1S, ,,, and for n = 2 it describes the states
nS,,, and nP,,,. Expression (22) has a square-root sin-
gularity at the point a =1, and therefore it cannot be
directly continued into the region a > 1.

If quantities of the order of unity*’ are neglected in
comparison with quantities of the order of L, and if we
do not yet consider the case € ——1 (when In A cannot
be neglected in comparison with L), then the equation
for the energy levels takes the following simple form:

o(—e/A, g) =gL —nn for » = —1, (23a)
o(@—e/h g)=gL— (n—1) n for »=+1, (23b)

where n denotes the principal quantum number, and
w(x, g) is the function defined above. In this connection,
the number n’ appearing in Eq. (20) is given by
n’ =n- (1 +«)/2. With (19’) taken into account, from
here we obtain the following result for the ground state
energy:

yethyL fora <<1 '
AgetggL for a =1~

We recall that ¥ =v1— @2 and g =va2—1. In con-
trast to (22) the point o =1 is not singular for €,(a).
In the region @< 1 (i.e., up to the ¢‘collapse to the cen-
ter’’ coth yL — 1 and even for L3(1 — a)>>1 the en-
ergy €,(a) essentially does not depend on the cutoff of
V(r) (see Fig. 1), and (24) goes over into the correspond-
ing formula for a point charge, ¢,(a) —V1 — a2,

For a> 1 the function (24) has a pole for g = ger
= /L. Indeed, it is clear that €,(acr) = —1 but not
— o, The point is that the approximation (23) ceases to
be valid when ¢,(a) is not small. For g— gey ~ L2
there exists a region of rapid decrease of the energy €,
from values close to zero to the boundary € = -1, We
shall investigate it a little bit later on (see Eq. (28)).

81(!1) =

(24)

“1In this connection we automatically neglect the splitting of the
levels nSy, and nPy, which is of the order of (¢, —¢_)L™2. In this approxi-
mation the energy levels do not depend on the shape of the cutoff of
the potential inside the nucleus.
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FIG. 1. The ground state energy
€, (o) for values of « close to unity.
Curves 1, 2, and 3 correspond to
L=3.5, 5, and 10 (the correspond-
ing values of the cutoff radius R
are equal to 12, 2.6, and 0.018F).
The limiting curve for R = 0 (the
point Coulomb potential) has a
4  square-root singularity at @ =1, and

then goes vertically downwards.

\'M
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€

1= n=4 FIG. 2. The energies of the lower
levels of the discrete spectrum near
a =1 (the qualitative form of ep(a)
for L3 1);an =1+ n%n?/2L2 de-
notes the critical value ag; for the
levels nS,, and (n+ 1)Py, .

/= )]

l 25 N_ I 45
0/ N3
u”\ %

Let us summarize. An electron in the state with
j =Y, begins to ‘‘experience”’ the singularity of the
Coulomb potential as r — 0 when a approaches the
critical value acr(O) =1 (for a point charge, R =0) at
a distance of the order of L~? (see Fig. 1). We note that
the difference acp(R)—1 is also of the order of L2,
that is, all phenomena associated with the ‘‘collapse to
the center’’ take place in the region Aa ~ L% around
the point a@ =1. In this connection, as long as ger — &
>> L™ (or, what is the same thing, acy — @ >> L"),
the energy of the ground state is'described by formu-
la (24).

Now let us go on to the excited levels (n = 2, k = +1).
For them one will have ¢/A —n~1 as o — 1. There-
fore the approximation (19’) is valid for the w -function
in (23), and this gives

n—1
(n*—2n+2)%

getggL
(n*—2n + 2)"% .

This expression remains valid even for @ <1 pro-
vided we make the substitution g — iy. Taking the cut-
off of the Coulomb potential into account changes formu-
la (22) for a point charge only with regard to y
— v coth yL. This correction rapidly becomes unim-
portant as the value of @ decreases; however in the
region |a@ — 1|~ L2 around the point @ =1 ithas a
decisive value. According.to Eq, (25) the energies of
all levels decrease monotonically with increasing a.
For g =ger =7/L the 1S,,, and 2P,,, levels disap-
pear into the lower continuum, and the remaining levels
undergo a shift: n — n — 1, after which the level spec-
trum is again described by formula (25). The next
abrupt change in the spectrum occurs for g = 27/L,
when the levels 2S,,, and 3P,,, disappear into the
lower continuum, and so forth. With an increase of «,
such abrupt changes may be repeated many times (see
Fig. 2) as long as, finally, we do not escape from the
region g < 1.

The entire region @ > 1 is subdivided into regions
corresponding to slow and rapid changes of the level
spectrum. The ‘‘slow’’ regions correspond to
(n-1)7/L < g < nn/L, where g is separated from the
end points of this interval by an amount 2 L~% here

e, (a)=

(25)
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formulas (24) and (25) are applicable. The “rapid’”’ re-
gions consist of the intervals Ag ~ L% around the
critical points g = gg}) =nn/L. In order to obtain the
equation for €(a) in this case, it is necessary to return
to Eq. (18) and to take into consideration that the I'-
function is not close to a pole, and therefore one can use
formula (19) for w(’, —k, g). Ultimately we find (for
€>0)

Y(—&/A) =a-'L(gL — nx). (26)

The curve € =e¢e(a), determined by this equation,
joins smoothly with (25). Let us demonstrate this for
the example of the 2S,,, level, whose energy is given by

2-%[1 —n/2L(n—gL)] for gL <n
getggL for n < gL < 2=x

Under the condition 1 >> |gL — 7| >> L™, from here
we find

es(a)={ (27)

g
{2-’/x[1+7ctgxlz] for 0<gL<nm

e2(0) = { (27)
gctg gl for n<gL<2n

On the other hand, the argument of the y-function in
Eq. (26) changes from —1 to 0, and if it is taken into

consideration that near the pole (z — —n)

P(2) =—(+n)~"+v(r+1) +0i+n),

then from (26) we obtain the same expression as above
for e,(a).

We still have to investigate the behavior of the levels
in the region € =—1, which is immediately adjacent to
the lower continuum. Here in Eq. (18) it is necessary to
retain the In A, which is important as € — —1. With the
aid of (20) we can eliminate from (18) the terms which
depend on £, after which the equation for € takes the
form

fe(e) =L(1 — g/ gu), ga =n's/L.

(28)
For the nS,/, levels we have: k = -1, 0> ¢ = —-1,
n’ =n, and

o) =—[matv (-5) +

1+¢
14+e42 1"

and for the nP,,, levels one has: k= +1,n'=n—1,
271/2> ¢ =—1, and

(29a)

_ _e\ _ 1+e
po==[mrte(t-3) o] o)
We note that as ¢ — -1
fo(@) =t +e)+..., f-(e) ="s(1+e)+... (30)

From here it follows that as o — a¢y the levels disap-
pear into the lower continuum, having a finite derivative
(0e/0a):
£(q) = — 1 452

ef(0)=—1+—-(ea—0) (31)
(c, =3/2n%, c_ =3/57%). For L >>1 and for small val-
ues of n the curve € =€(a) becomes very steep: almost
all of the change of € from 0 (or 27%/2) to —1 takes
place in the region Aa~ L73 near acp. For highly-
excited states (n >> 1) this sharp decrease is smoothed
out. At the other end of the interval under consideration,
expressions (28) and (29) join smoothly with (25). For
example, for n =1 (the ground state) under the assump-
tion that gop >> gep — g >> gar both (24) and (28) give
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&(a) =;_gcrz/n(gx»_g)r_—'—JT/L(H—'EL) (32)

(here gop =7/L, 1>> |, 3> L™), The dependence

€ =€(a) which is determined by Eq. (28) is shown in
Fig. 3. For purposes of comparison, the corresponding
curve for a scalar particle is also shown.

In addition to the spectrum of the levels, it is also of
interest to determine the form of the wave functions as
a — 1. In order to not have to present cumbersome for -
mulas, we shall confine our investigation to the ground
state. In analogy with (11) we assume

G = }’ﬁ——ee"‘/‘x'[i — @+ +...],
F=—Y1—cez*[1 — (&"+ g")%a(2) +...]

(33)

(x = 2ar; €, g — 0). Substituting these expansions into
the Dirac equation, we obtain the following equations
for the corrections £, and &,

(L1 1
2 —(g+) G—8 =5,
R I 1
o (g-g) G-t =—gp.
The solution of this system (vanishing at infinity) has
the form

(34)

_" _fIn{14+1) 1
§i.z(x)—-z‘.dte { P 2(1+t) }, (35)
where
E2(z) =10’z + O(lnz) as z—0, (36)
36

GB=12z+..., EL=32z+...

The condition for the applicability of the expansion
(33) is (2 + g £(x)| << 1, or x >> x, = exp{—(e®+g?)~*/2}.
Here € =g cot gL; therefore x, ~ R for a > 1, but for
a <1 the quantity x, = exp {~y~? sinh yL} rapidly tends
to zero, and the difference between the wave functions
(33) and expressions (11), which are characteristic of a
point charge, becomes small for all values of r. We
further note that in the region x, << x <<'1 (when
glhr >>1)

as z— o0,

G~ —F=1-4¢elnz — .88 Inz+... (37)

In concluding this section, let us say a few words
about the accuracy of the L-approximation in the actual
domain corresponding to the radii of heavy nuclei,

R =~ 1072 ¢cm (L =3 to 4). For this purpose let us com-
pare the critical values agy obtained by the numerical
solution of Eq. (6’) with the asymptotic formulas (20)
and (21). As always happens in such cases, the problem
arises about the choice of the best asymptotic form,
since expressions which do not differ among themselves
in the limit L — = give different numerical results for
small values of L. For example, the calculation ac-
cording to formula (21) leads to an error ~ 40% in the
value of aer — 1. On the other hand, the more fundamen-
tal (with regard to its derivation) relation (20) has bet-
ter accuracy. Let us introduce the notation

o= (L—1n2+29(1) + ) ger/n

(the deviation of the quantities ¢, and ¢, from unity
characterizes the accuracy of the L-approximation).
From Fig. 4 it is seen that the simplest formula gy
=7/L gives gor with an excess, but taking account of
the correction terms in (20), which depend on the cutoff,

U|=Lgcr/ﬂ, (38)
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FIG. 3. The dependence of the energy level € on « in the region of
“rapid collapse” associated with & = a¢r. Curves 1 and 2 refer to the
levels 1515 and 2Py, and curve 3 refers to the 1S level for a particle with
zero spin. The quantity y = L(g—gcr)/gcr is plotted along the axis of
abscissas.

FIG. 4. The question of the accuracy of the L-approximation. The
curves refer to the lowest level 1Sy, for model I (a square cutoff, see [2]).
The values of the cutoff radius R are given in fermis.

improves the accuracy in the region of small values of
R and gives an approximation with a shortage. On the
whole (20) determines gey with an accuracy ~10%.

The small differences between the values of agy for
the nS,;, and (n + 1)P,,, levels are also described by
formula (20), but with worse accuracy:

Aa, = acr((n + 1)Pl[,)-— Qcr (nS.b) zM)
gt

One can show that ¢, is always greater than ¢_, and
therefore Aapy > 0. Numerically, for R =10 F and

n =1, expression (39) gives A, = 0.20, which exceeds
the true value Aa, =0.11 by almost a factor of two.

(39)

4. COMMENT ON CASE’S METHOD

In addition to the explicit introduction of a cutoff for
r <R, there is another method for investigating singu-
lar potentials in quantum mechanics, which is based on
the choice of the boundary conditions at the origin (see
[5, 111, The Dirac equation with the potential V(r)
= —a/r is now considered over the entire space 0 <r
<, For r — 0, by neglecting the nonsingular terms we
obtain the system of equations

rG’ = —xG + aF, rF = —aQG -+ %F, (40)

whose solutions have the form r*?, As long as o
< |k |, one can choose the less singular solution from
these solutions and, by following [43, it is not difficult
to show that it is precisely this solution which is of
physical significance.

For a = |k| the regular solution is finite at the ori-
gin:

G(0) /F(0) = signx, (41a)

but the singular solution has a logarithmic singularity:

1 1 i
G(r)=lnr——27+..., F(r)=(1nr+g‘+...) signx. (41b)
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Finally, if o> |k |, then ¥ =ig, and both solutions
are identically acceptable. In this case (r — 0)
F=sin (glnr+p+v), (42)

where 3 is an arbitrary constant, but the phase shift
between F and G is quite definite:

G =sin (glnr 4 B),

v — %+ ig

, b= a’rccost— (g= Yot — ). (43)

The physical meaning of 8 consists in the fact that
it is the phase of the wave which is reflected from the
singular point r =0 (see article f!!], in which this con-
stant is denoted by y, for more details). The choice of
the boundary condition at the origin reduces to the
choice of 8 in (42). After this the spectrum of the en-
ergy levels ¢ is uniquely determined, the wave func-
tions for different points €, # €, of the spectrum are
mutually orthogonal, and the system of eigenfunctions
is complete.[®?

The parameter 8 contains all the information about
the nature of the cutoff of the potential at small distances
which is needed in order to determine the energy level
spectrum, In fact, from Eqs. (5) and (42) we find

t=gotg (¢lmR+p), B=egL+arctg(@/l).  (44)

In order to determine the discrete spectrum, we note
that a solution which vanishes at infinity (see Eq. (2))
exists for any value of € in the interval —1=<e<1.
For r — 0 it has the form (42) with a definite phase
B =B(e, a, k) which one can find by solving the Dirac
equation:

B =glIn2i —-arg{ (a E-}-K-f—ig)

X I‘(i-{—Zig)/F(i—-(—;i—{-ig)}‘

(this expression simplifies somewhat for € = —1:

B =gln 2a —arg I'(1 + 2ig)). Equating expressions (44)
and (45), we obtain the transcendental equation which
determires the discrete spectrum. Let us consider it
in the L-approximation for ¥ = +£1. Then (N = (n®— 2n
+ 2)1/2)

n—1 +gctgﬁ

wl0)="% N

+e (46)

If here 8 is formally regarded as a quantity that does
not depend on «, then €, as a function of @ will have a
singularity for a =1, and also for @ >1 the energy ¢,
may either decrease with increasing values of o or
else increase depending on the sign of cot 8.

Such an ambiguity was considered earlier®! as a
definite difficulty of the given method. However, in any
cutoff model, 8 ~ gL for ¢ — 1 and L >> 1, and (46)
goes into (25). This indicates that for R <<1 Case’s
method leads to the same results as the direct cutoff of
the potential in the region r <R. It is only necessary
to take into consideration that the phase 8, which has
been introduced in a formal manner, is in fact uniquely
associated with ¢ and R. We note that one can also ob-
tain formula (20) for g¢r by using this method.

5. CONCERNING THE POSITRON LEVELS

Usually the levels of the discrete spectrum emerge
from the upper continuum. The specific Coulomb prob-
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lem is then such that in this case for € = —1 there is

always a wave function which is decreasing at infinity:
G(r) = aK.(Y8ar),

= e T (47)

F(r) = (% 4 y)K.(V8ar) — Y2arK...(V8ar)

(here 7 =2y =2Vk?2— o?; for o> |«| wehave 7 =iv

= 21ig). For r — = the functions G and F decrease as

indicated in (8b), but for r — 0

FlG=(—v)/a (47)

For y < Y%, (that is, for @ >Vj(j + 1) ) the normaliza-
tion integral

Goor,

f@+mar

0

converges, and the question arises as to the possible
existence of positron levels, Such levels would emerge
from the lower continuum and would correspond to
bound states of the positron.’” Even though V(r)
= a/r > 0 for positrons, the effective potential Uggs(r)
gives an attraction at small distances due to the term
—Y%,V?, and therefore such levels may arise in principle.
It is impossible to clarify the question about the exist-
ence of positron levels by working with the point Cou-
lomb potential. Just like earlier we cut off V(r) for
r < R and only in the final answer do we let R tend to
zero, For the determination of those values of « at
which a bound state of the electrons exists with € = —1
(i.e., a positron level with zero binding energy), we
have Eq. (6) in which iv=17.

First let @ < |k|. Then 7 is real, and therefore for
z>0

K/ (z) _ [z K. .(z)

- i ko) +’]<_’<O'

On the other hand, one can show® that & >vk2 — a2 >0,
Hence it follows that for @ < |k| Eq. (6") does not have
any solutions. However, if @ > |«| then solutions ap-
pear for the critical values o = a¢y of the coupling
constant, In connection with a small change « = acp

+ Aa the energy level is changed by the amount A€

= —BAa, where B > 0 (see formula (29) in £27), There-
fore, for @ > acr the level under consideration with-
draws into the lower continuum (a positron level would
move upwards, i.e., it would correspond to 8 < 0).

One can make an even more general statement about
the behavior of the curve € =¢€(@) for an arbitrary
level. Namely, let V(r) = —av(r) where o is the cou-
pling constant, and v(r) = 0 is any non-negative func-
tion (the cutoff Coulomb potential (1) belongs to this
type). Calculating the level shift by using perturbation
theory, we find

de

== [v() (G, e)+ F(re)}dr <0 48)

5 The Dirac equation is invariant under the substitutions: € ~ —,

V() = -V(1), k = —«k, G = F; therefore the level with e = —1 for an
electron corresponds to a positron level with zero binding energy. A. B.
Migdal called our attention to the necessity of investigating the question
of positron levels.

6)The logarithmic derivative ¢ at the edge of the nucleus decreases

with increase of the function f(p). For an arbitrary distribution inside
the nucleus f(p) < p!, and Egs. (3) for f(p) = p~! have the exact solu-
tion: G = p7, F/G = (k + v)/a for which { = vy = /k?—aZ.
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(here G and F are the exact wave functions of the level
with energy €). From here it is seen that with increas-
ing « the curve € =e€(a) falls monotonically, which
corresponds to an electron level but not to a positron
level. For Coulomb potentials V(r) with a Coulomb tail
at infinity, F? + G® is quadratically integrable not only
for —1 <e< 1 but also for € = —1; therefore the level
€(a) moves off into the lower continuum, having a finite
derivative de/da.

Thus, bound states of positrons are not present in the
Coulomb field (1) (at any rate, not within the framework
of the single-particle approximation).

6, THE COULOMB PROBLEM FOR A SCALAR
PARTICLE

Let us consider a particle with zero spin in a Cou-
lomb field. For a < ¥, the Klein-Gordon equation has
the solution (for a point charge)

Xo(r) = e7*'r%,
A= (—V6I—a)% o='.+V/—d.
This wave function? corresponds to the lowest level
n =1, 1 =0; its energy is given by €, =Vo. For a>7Y,
it is necessary to introduce a cutoff of the potential
V().

As long as a < ¥%,, only the s-states, which we there-
fore consider, experience a strong perturbation. The
energy level is determined from the equation!3?

Wiis(2) [ Whss(@) =
(z = 21R, g="Va*—"/)
Hence in the L-approximation k — ¥, = g cot gL, and
for the energy of the ground state we find
eo=[' 4 getggl]% ~ 2% [1 4 gctggL]. (50)

When g — gop =7/L (@ — a¢p =% + 7°L~?%) the low-
est level rapidly falls to € = —1. Its motion in this
range of values of o is determined by an equation of
the type (28), in which it is necessary to replace f,(¢)
by

49
k=cea/A, ( )

fo(e)=—[ 122+ *2;"’)] .

See the corresponding curve in Fig. 3. From a compari-
son with Section 3 it is obvious that the nature of the de-
pendences of € on o are identical for spin 0 and spin
1/2 (the relativistic Coulomb potential does not distin-
guish between bosons and fermions).

Finally we note that Eq. (49) simplifies considerably
for € =0 and € = —1. In the first case, according to
Eq. (A.9) we obtain

RK:/(R) = (§ — '2) Kig(R)
and for € = —1 we have
2K/ (2) = (20 — 1) Ki(2)

(£=0)7 (51)

(v=28=V4a* —1, z=78aR); (52)

In Eqs. (51) and (52) the quantity « is unknown.

7. DISCUSSION OF THE RESULTS

Let us make several concluding remarks.
1. For a =1 the Coulomb problem for a point charge

DFor the ground state in the Coulomb potential with a point charge,
we have k = 0, ig = 0—(%), and the wave function Wy jg(2Ar) simplifies
appreciably as a consequence of the identity (A.4).
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loses its meaning since the energy levels with k = +1
have a square-foot singularity at the point @ =1 and
upon formal continuation into the region o > 1 they be-
come complex. Therefore, it is necessary to introduce,
by one method or another, a cutoff of the potential V(r)
= —a/r for r < R; after this is done the problem be-
comes mathematically ‘‘proper,’”’ and one can investi-
gat()a the motion of the levels with increasing values of
al

"2, Although values R~ 107*2 ¢m (R ~ 0.03 in units
of 1i/mc) have a direct physical significance, in princi-
ple the radius R of the cutoff may be arbitrarily small.
This makes it possible to seek the level spectrum in
the L-approximation (see condition (10)). Numerically,
the parameter L™ is still not very small in the region
R ~107*2 ¢m, but such an approximation is sufficient to
obtain a qualitative picture of the motion of the levels.

3. The situation associated with the ‘‘collapse to the
center”’ in the relativistic equations for spin 0 and
spin ¥, particles differs from ordinary quantum me-
chanics in two respects. If V(r) = —ar™as r — 0,
then a ‘‘collapse to the center’’ arises in the nonrela-
tivistic case!*! for n = 2 and for positive values of «
(more accurately, for o> Y,), whereas in the relativis-
tic case it is sufficient to have n = 1 and the sign of «
may be arbitrary. Formally this is accounted for by
the fact that Uggf(r) ~ — 2, V2 as r — 0, and the physi-
cal reason is that the Dirac and Klein-Gordon equations
with vector coupling simultaneously describe particles
and antiparticles. Therefore, the introduction of a cut-
off radius R into the Coulomb field with Z > 137 is
necessary not only for electrons but also for positrons
(in spite of the fact that the latter are repelled by the
nucleus).

4. An electron in the state with total angular mo-
mentum j =Y, begins to experience the singularity of
the Coulomb potential when 1 — @ becomes comparable
with L~2, This is true not only for the lowest level
18, /, but also for all of the higher excited states nS, ,
(k = —1) and nP,;, (k = +1) whose energies for n >>1
still lie in the nonrelativistic region:

1 _ 1—gectggl +

Gf=1——
2n? n®

(53)

It may seem strange that the levels with n >>1 for
a — 1 are sensitive to the cutoff of the potential for
r <R < 1. The reason is that for all states with
j =Y, the effective potential in the Dirac equation be-
haves like (%, — a®)r 2 as r — 0, that is, the ““collapse
to the center’’ begins for a > 1. Since €, . ;— €p
~ n~%, then the level shift due to the finite size of the
nucleus is much smaller than the distance between
neighboring levels so long as gL, < 7. When g — gey
= /L, the energies e, rapidly change with increase of
«. In this connection the 18,,, and 2P,,, levels disap-
pear into the lower continuum, but for all remaining
states with ¥k = ¥1 the picture seems to be as if the
principal quantum number were decreased by unity:
n — (n—1). With a further increase of «, these phenom-

8 Actually we have everywhere regarded « as a continuous variable.

This is permissible since according to Eq. (21) the difference Z(R)—
137 becomes smaller than unity only for R < exp {—my/hc/2e2} ~ 10722
cm.
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ena are repeated, The energy of each separately taken
level monotonically falls with increasing «, and the dis-
crete spectrum as a whole changes periodically together
with g (with the period Ag =n/L).

The step-like shape of the curve € =e(a) with the
division into segments corresponding to rapid and slow
variation is preserved so long as g =va?2—1 < 1, With
a further increase of « this curve is smoothed out. The
levels nS,,, and nP,;, remain almost degenerate so
long as g < (n— 1)n/L; however, the values of g¢p for
them are different (see formula (20) and Fig. 2).

5. Taking the finite size of the nucleus into account
gives corrections to the energy levels which are essen-
tial for @ — |k |. The structure of these corrections is
the same in all of the cases which were considered
(compare formulas (24) and (25) for spin s =%, and for-
mula (50) for s = 0).

6. The disappearance of levels into the lower contin-
uum raises a number of questions of both a mathemati-
cal and physical nature. The mathematical question is
whether the system of eigenfunctions remains complete
for g> ger (and all the more for g > gty =nn/L,
when n levels have disappeared into the lower contin-
uum). Although this question certainly deserves a more
detailed investigation, it appears to us that one can pre-
sent arguments in favor of a positive answer. In fact,
as is clear from (44), upon an increase of g by an
amount 7/L the parameter B increases by 7 (so long

g << 1), i.e., the boundary condition at the origin
takes its previous form.?’ This can be explained by the
above-noted periodicity of the spectrum with respect to
the variable g. Since the assignment of 3 determines
the self-adjoint expansion of the Dirac Hamiltonian
(which up to this point has only formally been an Her -
mitian operator), then for arbitrary real values of 8
the property of completeness must be conserved.
Thanks to the Coulomb clustering of the spectrum near
€ = +1, the total number of levels does not decrease
with increasing values of € (in the sense that the car-
dinal number © — n =),

The preservation of the completeness properties of
the functions serves as an additional argument (even
though of a formal order) indicating the consistency of
the single-particle description for o> acp.

7. The disappearance of each level into the lower
continuum leads to the creation of two positrons.!!? For
L >>1 the values a¢y become rather dense and the
number of positrons created may be comparatively
large.!® If the bare nucleus Ze created 2n positrons

91f B, —B, = nm, then these two values of § are equivalent since one
can always multiply the wave function by a constant (see Egs. (42)).

10 Here we wish to correct an error which was made in article [3].
In [3] the critical charge Z¢; is called the “electrodynamic boundary of
the periodic system of elements,” which would be correct if a bare
charge with an initial charge Z > Z.r always created Z—Z¢y positrons,
thereby reducing its effective charge (for an external observer) to the
value Z¢y. In actual fact the number of positrons created is smaller than
Z—Z¢r. For example, [2] Z¢r = 170 for R ~ 10°!2 cm, but the nearest
excited level 2Py, reaches the boundary € = —1 for Z = 185; therefore,
for 170 < Z < 185 the Coulomb field only creates two positrons. There-
fore, in principle electrodynamics does not prohibit the existence of
atoms and ions with nuclear charge Z > Zr, but the critical charge is an
upper limit only for the existence of bare nuclei which are not sur-
rounded by an electron cloud.
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then its charge as r — « would effectively be equal to
Zeff =Z — 2n (the reduction of Zeff is due to 2n elec-
trons localized near the nucleus). The following ques-
tion arises: in what state are these electrons found?

A very plausible answer based on physical considera-
tions (due to Ya. B. Zel’dovich) is that the density of
this electron cloud is formed out of perturbations of
the wave functions in the continuous spectrum (in an en-
ergy band Ae ~ y near € =¢, < —1, where ¢, —iy/2
denotes the energy of the quasistationary state to which
the discrete level has passed after its intersection with
the boundary ¢ = —1; see [?1), It would be of interest
to verify these qualitative considerations by a more
rigorous calculation. The analogous situation in the
nonrelativistic case is investigated in article £'%1,

In conclusion the author wishes to express his sin-
cere gratitude to Ya. B. Zel’dovich and A. B. Migdal
for interesting discussions during the course of this
work and for a number of valuable comments, and he
also thanks V. P. Krainov and A. M. Perelomov for a
discussion of the results of this research.

APPENDIX

Certain properties of the Whittaker function
(x) are enumerated below. We give special con-
s1dera.t1on to the case of a purely imaginary index u
=ig, which is most important for the Coulomb problem
with o > 1, but is not discussed in the existing refer-
ence books.!2 141 The function y = Wy, jg(x) is real,"?
even with respect to the index g, and sat1sf1es the equa-

tion
N y=o. (A.1)

Its behavior at the ends of the interval (0, «) is as fol-
lows:

g +‘/‘)

Wi, «(z) = aYz sin (gln (1/z) + 6),
Whw(z) = e (1 +ci/z+eclz*+...).
where

(A.2)
(A.3)

z—0,

Z —> 00,

o _ T'(1+2ig)

L=t gL [ =ty 4 ],
It is not difficult to verify by direct substitution that ,
(A.4)

ae

Cp ==

Wi vy, (2) = 2>,
for any value of k. We also mention the formula
Winrs () = ez [e=(1 + 1) dt. (A.5)

[

One can carry out the numerical calculation of the Whit-
taker functions according to the formulas'®

2e~*yz
IT(f—k+ig)|® J)
(this relation is valid for k <),

Whi(z) = I e Kug(2Vat)t-0+ gt (A.6)

D1t is understood that the variables k, g, and x have real values, and
also x > 0.

12)The usuat integral representation (see formula 9.222 in [*?]) is not
convenient for u = ig since it expresses the real function Wk _jg(x) in
terms of a complex integral.
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o=/ ght %,

Wi(z) = Ta

e F(h—k+ig ' fi—k—ig;v;— t)r—"dt

(A.T)
(here 7 is an arbitrary parameter).

From physical considerations the values k = + Y, 0,
corresponding to the energy € =0 for particles with
spin s equal to ¥, and 0, have been isolated. In these
cases one can expect a simplification of the wave func-
tions. In fact, by selecting 7 = %, and %, in Eq.(A.7)
and taking the following equalities into consideration

F (iv, —iv; '/;; —sh*x) = cos 2vz,

cos 2vz
F 1 s 1) gaged ;__ hz p— s
(‘2 iv, s —iv; 'fz; — sh®z) P (A.8)
sin 2vz
F . — e 3. o ch? —
(14 iv, 1 —iv; *[; —sh?z) b2z’

we obtain formulas which are much more convenient
for numerical calculations:

F4 t
Wy ao(z) = —-:-.S e~ Bt ch — cos vt dt,
VY= 2

z t
_j.e“'/f" °* ! sh —sin vt dt,
F1 204 2

W_vz,,-v(z)= Y (A.g)

‘ "z z z
w. iv =V— —thxcht =V_ (_...)
o.iv(Z) ~ J; e cos vi dt nKN 3)

In particular, v =0
Wiol@)=e=Yz, Wono(e)=e™z [Sat,  (A.10)

which agrees with Eq. (A.5).

The case g =0 in the Coulomb problem corresponds
to a = |k|,i.e., it corresponds to the critical value of
the coupling constant a for a point charge. In this con-
nection

Wi o(a) = e~z W(—Fk 1; ), (A.11)

where ¥ denotes one of the forms of the degenerate
hypergeometric function:f!3?
1 3 tpx—1 -
¥l tin) = s [ ettt + ty=a.

(A.12)

As x— 0 the function Wy, o(x) has, in general, a
logarithmic singularity. Values of the subscript
k =n + %, are an exception, when the poles of the I'-
function in Eq. (A.12) cancel this singularity. Then we
have

W, o(2) = (—)™n! e="YzL.(z), (A.13)

where Ly(x) is the Laguerre polynomial (n =0, 1, 2,
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