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The possibility of radial stabilization of a charged-particle ring beam as a result of the reaction of 
coherent magnetic bremsstrahlung radiation is demonstrated. The stability of a relativistic beam of 
finite thickness is discussed and the growth rates are determined. This is followed by the solution of 
the problem in the nonlinear approximation which yields the size of the focused beam, the maximum 
amplitude of the radiation field, and the characteristic time for the process. 

1. It is well known(ll that in the self-stabilization 
method the radial focusing is produced by radiation 
deceleration force due to the scattering of electrons by 
ions. Since the characteristic time for this process is 
governed by electron-ion collisions, the time necessary 
for the beam to contract is quite considerable (of the 
order of a few seconds or more(ll). The effectiveness 
of the focusing process can be substantially increased 
by the use of the coherent radiation from a charged­
particle beam. In the case of a straight beam, one can 
use the two-stream instability[ 2 l for this purpose, 
which is accompanied by substantial coherent radiation 
from the beam. [ 31 

In this paper we propose a method for the stabiliza­
tion of charged-particle ring beams in cyclic accelera­
tors and storage rings, based on the use of coherent 
synchrotron radiation. 1) The processes giving rise to 
this radiation can be conventionally divided into (1) the 
negative mass instabilityf4- 6 l (when the frequencies of 
the perturbation fields are very different from the 
natural frequencies of the chamber) and (2) the radia­
tion instability which may occur when the harmonics of 
the cyclotron frequency are close enough to the natural 
frequencies of the resonator. The latter effect was 
discovered by Gaponov and Schneiderf7 • 8l and is also 
referred to as induced cyclotron radiation. The collec­
tive instability of ring beams was subsequently investi­
gated in£9- 111, where the instability growth rates were 
determined for different relationships between beam 
and resonator parameters. In particular, it is shown 
in(loJ that the radiation instability will occur in a 
chamber of infinite radius when, in effect, the resonator 
is a vacuum and all the harmonics of the cyclotron 
frequency are resonance harmonics. The basic mecha­
nism for this emission of radiation is synchrotron 
radiation of charged particles which occurs in the 
absence of the resonator.£ 12• 131 

We shall consider radial self-focusing of a ring 
beam which is in the form of a cylindrical layer of 
relativistic charged particles of finite thickness which 
circulates in a magnetic field in vacuum. The radiation 
field due to such a beam is a superposition of H waves 

!)The basic idea of this method, whereby ring beams of charged 
particles are stabilized as a result of collective processes, was first sug­
gested by Ya. B. Fain berg and independently by 0. I. Yarkov. 
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propagating azimuthaly with a velocity equal to that of 
the beam, i.e., a velocity less than the velocity of light. 
This wave does not penetrate the plasma but propa­
gates along the boundary, so that the radiation field 
decreases from the outer beam boundary toward its 
center (surface wave). At the same time, the beam is 
located in the high-frequency radial potential well,(14 l 
whose depth and wall slope increase as the stability 
develops and the field amplitude increases. The net 
result of all this is the focusing of the beam. 2 ) 

In the first part of this paper we shall determine the 
time-independent state of the beam and this will be 
followed by an analysis of its stability. The dispersion 
relation ensuing from this, which takes account of the 
particle energy spread (as a function of radial dis­
tance) and the precise geometry of the radiation fields 
enables us to investigate both the case of a ''thin" 
ring, when the beam is monoenergetic, and the case of 
a beam with an energy spread. In the latter case, the 
instability develops only in a narrow layer on the outer 
boundary between the beam and the vacuum, and the 
growth rate turns out to be much smaller than in the 
case of a monoenergetic beam. In the second part of 
this paper we discuss the nonlinear stabilization of a 
beam by a radiation field. 

2. Consider a charged-particle ring beam in the 
form of a cylindrical layer of thickness a (the radii 
of the bounding surfaces are, respectively, a < b) 
placed in a constant magnetic field Ho which is 
parallel to the axis of the cylinder. The set of equa­
tions describing the state of the beam consists of the 
relativistic equations of motion for the beam with 
velocity v = (vr, Vcp, 0), the continuity equations, and 
the Maxwell equations for the radiation fields 
E = (Er, Ecp, 0) and H = (0, 0, Hz). If we take the 
axis of the cylinder as the z axis of the cylindrical 
set of coordinates, we can determine the time-inde­
pendent state of the beam from the conditions ajat 
= ajacp = vr = 0: 

wHr ( . mH2 r 2 ) '12 _ OOo2 (1) 
v,,=-, y= 1+-c-,- , H,=--. (y-1), 

Y wH· 

where w~ = 41Te 2 n0 /m, WH = eH0 /mc, and n0 is the 

2lThe mechanism of radial focusing due to forces which are quadratic 
in the field amplitude has already been discussed in [3] in the case of 
straight beams. 
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initial beam density. According to Eq. (1), allowance 
for relativistic effects leads to a radial dependence of 
the beam-particle energy, where for y » 1 we can ap­
proximately suppose that y s:::o wHr I c. 

The quantity Hz is the addition to the constant mag­
netic field due to the beam current. We shall restrict 
our attention to low-density bea~s with yw~/wj1 « 1, 
which will enable us to neglect Hz in comparison with 
H0 and to ignore the beam space charge. 

We shall now investigate the stability of the beam 
against high-frequency perturbations. To do this, we 
shall write the beam thickness in the form n = n( r) 
+ n1(t, r) and v = Vo(r) + v1(t, r). We shall then 
linearize the equations of motion and will seek the 
solution in the form exp (is cp - wt). The result is 

. eE, e [ snE0 , d (rnE"}] v -~-- n1=-- i--+- --
'- my3L.\.' mr~8 j'3~. dr V3L\, ' 

(2) 

where as = w - sv0 /r. Calculating the high-frequency 
current components with the aid of Eq. (2), we obtain 

. _ e' r. ronE0 , + v, d ( mE,.}] 1•·-- z-- ---- --- ' 
m y'A,' rA, dr y'A, 

e"nEr. 
ira=i~., 

my "• 

and if we substitute these into the Maxwell equations, 
we obtain the Bessel equation for the function Hzs: 

(3) 

~_c:_(r~}+ (ro' -.!..)n .. = ~[tsj,. -~ (rj.,)] = g,(r).(4) 
r dr dr c' r' cr dr 

The solution of this equation is finite at the origin, and 
has the form of a diverging cylindrical wave at infinity. 
It can be written in the form 

{ A/,(ror/c), 
H,. = BH!'l (ror/c), 

r<a 
r> b' (5) 

where Js is the Bessel function and H~1> = Js + iNs is 
the Hankel function of the first kind. In the region 
a< r < b, occupied by the beam, we can use the method 
of successive approximations to solve Eq. (4), and this 
yields 

' 
H,.=CI,+DN,+ ~ J£N,(r)/,(s)-/,(r)N,(6)]g,(S)6dS. (6) 

The function gs(~) in this result must be expressed 
in terms of the field for n = 0. 

From. the continuity of the tangential components of 
the radiation field Hzs and Ecps = -i(c/w)dHzs/dr 
across the inner boundary of the layer ( r = a) we have 
D = 0, and the boundary conditions at r = b yield the 
following dispersion relation: 

!t _ J n!'> ( :s) g.(S)Sds = o. (7) . 
If we express gs( 0 in terms of the field, using Eq. (3), 
and integrate by parts subject to n(a) = n(b) = 0, we 
can transform Eq. (7) to the form 

2i 4ne' • { 1 s• 1 [ v s ( s' ro' } ] 
--;;---;;-[ --;;;1'H,I,+~ H.'l.'+ ;s ""f-7'" H,l, 

-~H'J }nsds =O 
A.'s' ' ' y'A, . 

{8) 

In the analogous results obtained in [lo], the deriva­
tion was based on an expansion in terms of the eigen­
functions of the resonator (Bessel functions), and the 
fields were assumed averaged over the beam cross 

section. In contrast, Eq. (8) takes into account the 
change in the geometry of the field associated with the 
presence of the beam. Formally, this leads to the ap­
pearance of the imaginary part in the Hankel function 
(Neumann function) on the right-hand side of Eq. (8). 
It is well knownr 15 l that the asymptotic form of this 
function increases for the higher harmonics s 2:' y 3, 

and this exponential part exceeds the real part: 

J,:::: ~ (__.::__) ''• exp (- sw') • 
n ~sw 3 

( 2 )''• (sw') n~•l :::: iN, = - i --;;,;; exp "3 , (9) 

where w2 = 1 - (wr/sc)2 > 0. Physically, the presence 
of this field geometry can be explained by the fact that 
the phase velocity of the radiation wave is less than the 
velocity of light, so that we are dealing with a surface 
wave that can propagate only along the beam boundary. 
For r < b, where w2 > 0, the field decreases mono­
tonically with decreasing radius (energy build-up). For 
b < r < sc/ w the field decreases with increasing 
radius, and for r > sc/w we have radiation (volume 
wave). It is important to note that the term propor­
tional to a83 appears as a result of the integration by 
parts because of the dependence of as on r [according 
to Eq. (1 ), this is equivalent to a radial energy depend­
ence]. 

Substituting Eq. (9) in Eq. (8), and transforming to 
the variable y under the integral sign, we obtain 

•• 
2ne's J ( 1 ro 1 ro' ) ndy 1+-- -+-w'+--. -,-=0, 

mro w A. s A,- y A, 
(10) 

where Ya = WHa/ ~·. Yb = wHb/ c, and the derivatives 
of the asymptotic functions are J; = wwJs/c and 
N~ =- wwN /c. Assuming, as a rough approximation, 
that s ~ y 2,r12• 13l we arrive at the conclusion that, when 
as < WH, the last term in Eq. (10) is the dominant 
term, whereas for as> WH the first term predomi­
nates. We shall consider Eq. (10) in these two limiting 
cases which, respectively, correspond to a narrow and 
a broad beam. 

Before we solve Eq. (10), let us define the skin-
layer depth and the beam-energy spread. To do this, 
let us expand w/r and as(r) into a series at the point 
b (y = Yb- ay): 

1 
w::::- (1 + 2y.Ay)''•, 

Y• 

$(J)B S(J)B 
A,= ro ------Ay. 

'I'• 'I'•' 
(11) 

It follows from this expression that w and as are 
independent of energy, and can be taken out from under 
the integral sign when the following inequalities are 
respectively satisfied: 

sroR I sroa I y.Ay~i, --, Ay~ ro--- . 
'I'• 'I'• 

(12) 

The first of these inequalities may be interpreted as 
the ratio of the beam thickness a to the skin layer 
depth o = c/WHYb· In fact, since differentiation of the 
asymptotic function given by Eq. (9) results in multi­
plication by WHr/c, we obtain yay = a/o. The second 
inequality is stronger, and is a measure of the extent 
to which the beam is monoenergetic. Assuming that 
Eq. (12) is satisfied, we findthat •• 

srox · 1 + i l'3 ( 4ne'roxs J d ) 'I• ro=--+--- --- n y _ 
'I'• 2''• mv.' .. (12') 
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Substituting Eq. (12} into Eq. (12'), we obtain the maxi­
mum energy spread in the monoenergetic beam, and 
the maximum growth rate: 

,.:::: Wo 
J,Lma:.:""C-,-1 • 

Y.' 
(13) 

Let us now consider the case of a diffuse beam 
whose linear dimensions exceed the skin-layer depth: 
y~ y > 1. In this case, ~s > wH and it is sufficient to 
retain only the first term under the integral sign in 
Eq. (10). Substituting w = U + ij..Ls in Eq. (10}, and 
separating the real and imaginary parts with the aid 
of the formula 

1 1 y• SWx 
-= in--ll{y-y,), Yo=--
!J., Q,- SWn/Y SWK Q, 

(14) 

which automatically takes into account the phase of the 
logarithm, we find that 

n Wo2 

fl• = 2 WKYo ' Y• ,.;;;; Yo ,.;;;; y,; 

(15) 

In deriving the second equation, which determines the 
radiation frequency Us, we have used the condition 
~ y « 1 and retained only the function ( y - y 0 t 1 

under the integral sign. Since on the right-hand side 
of this relation we have a small parameter (beam 
density), and according to the first equation in Eq. (15) 
the instability develops only for frequencies such that 
swH I Yb < Us < swH I yo, it follows that this equation 
is satisfied only for Yb - y 0 « 1 when the value of the 
logarithm is sufficiently large. Hence, it follows that 
only the thin charged-particle layer on the outer bound­
ary ( r = b) with the vacuum is unstable. It would ap­
pear that this can be explained by the fact that the 
boundary between the beam and the vacuum is, in fact, 
a waveguide for the radiated wave and, therefore, the 
radiation condition is not satisfied for the interior of 
the beam. The reduction in the growth rate by the 
factor y-112 WHiwo ~ 1 in comparison with the maxi­
mum value [cf. Eq. (13)] can be explained by the fact 
that the phase velocity of the perturbation wave Vph 
Rj wHblyb exceeds the velocity of all the particles in 
the interior of the beam and, therefore, the energy of 
this wave should be efficiently absorbed by the non­
resonance region of the beam as a result of the accel­
eration of the nonresonance particles. 

3. Let us now consider the nonlinear focusing of the 
beam by the radiation field. 3> While the instability is 
developing, the beam experiences the radial force 
Fr = -m (v1 Vyvd, which is quadratic in the field 
amplitude.4 > Using Eq. (2), we can rewrite this in the 
form 

3 e'~1 d F, = --4 -, -, exp(2f.t,t) -d jE.,j' 
my , fl• r 

(16} 

3lSince the field inside the beam decreases exponentially with radial 
distance, at a distanceS from the outer boundary r = b, effective focus­
ing can occur only for a< S. 

4>we note that this expression loses its meaning near resonance, i.e. 
when eE/mcw $ p./w. [ 16 ] However, in our case, eE/mcw- (p./w) 2 

[ cf. Eq. (19)] , so that the gradient approximation is still valid. 

where, as before, we are assuming that s >> 1, and 
retain only those terms which are proportional to s. 

Focusing ends when the beam leaves the state of 
resonance with the radiation wave. Denoting by ~rs 

the maximum field amplitude, and equating Fr to the 
defocusing force -(Tin)dnldr, where T is the beam 
temperature, we obtain the following radial density 
distribution in the focused beam: 

( 3 e• ~1 ) n(r)=Aexp ----- --j.g'.,l' , 
4 m2ys Vrz ' J.l•z 

(17) 

where A is an arbitrary constant. We shall determine 
the width of this focused layer by expanding ~rs in 
Eq. (17) into a series at r = a, where the field reaches 
its minimum. Retaining only the first expansion terms, 
and expressing A in terms of the particle density 
nmax on the inner beam boundary, we find that 

( :z; } 1 e• -~ 1 dj.g'.,l' 
n(:z:) = nm .. exp <-- -- , -- == ---.--- (18} 

Gmin Omin m2y,/ Vr3 
1 J.t12 da • 

Let us estimate the order of magnitude of amin· It 
follows from the Maxwell equations that for the higher­
order harmonics fS rs ~ y ~cps and, consequently, 

d I I' SWH I"' I' -8u ---eJ., · 
da c 

At the same time, the quantity ~cps is determined by 
the condition 

(19} 

which presupposes that the particle shift relative to the 
wave under the action of the longitudinal field compon­
ent t1 cps is comparable with the resonance wavelength 
at the end of the instability process. Substituting Eq. 
(19) into Eq. (18), we obtain 

' 1 z v7 ron ~-i Vx lffiH I _1 
O'min .-.., --- - ~ ---- n Smll%t 

CVa3 J.12 ' s roo2 c 
(20) 

Since the compression of the beam is one-dimensional, 
we have nmax ~ n0 alamin• where n0 is the initial 
beam density. 

When the beam dimensions exceed the skin-layer 
depth, we can only speak of the stabilization of the 
outer boundary of the beam. 

4. We have noted that the maximum radiation-field 
amplitude is restripted by the nonlinear shift of the 
beam in phase relative to the wave. This effect is de­
termined only by the azimuthal motion of the beam. In 
this section, we shall develop a nonlinear theory which 
allows for this effect in the case of a modulated beam 
in the form of a sequence of q charged-particle bunches 
distributed at equal distances on a circle of radius R. 

We shall suppose that the current produced by the 
beam is 

' j0 =eNv.~ll(r-R) ~ll[cp-cp(t)-s~]. (21) 
~~~ q 

where R is the mean beam radius.[lo,uJ. Moreover, 
we shall suppose that the beam is placed in a conduct­
ing chamber of radius b, so that the oscillation spec­
trum is discrete. Let us substitute Eq. (21) in Eq. (4), 
and seek a solution of the form 

H,=H(t)l.(1-.• ~)e-•... (22) 

Integrating with respect to cp between -1rlq and 1rlq, 
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and with respect to r between 0 and b, we obtain the 
following ordinary differential equation for H(t): 

d;: + w/H = -4rr env.w.J.' ( '"• ~) e'"'('l. (23) 

where rp ( t) is the running coordinate of each bunch, 
Jq = 0, wp = c;\.p/b, and n is the mean density 

n = N ..'i.p..;- q')-' Jq-'(-..)l:;-
:r b-

Equation (23), together with the equation of motion for 
each bunch 

d e 
--,-yv. = -ReE.[t,R, rp(t)], 
at m 

drp 
v =R-
• dt 

(24) 

form a set of nonlinear equations with time as the in­
dependent variable. We shall seek the solution in the 
form 

H(t) = -i8(t)exp(iw.t + i'&), 

where ¥: and J vary slowly during the period of the 
high-frequency field, and the modulation frequency 

(25) 

qrpo = qwHIYo is close to one of the natural frequen­
cies of the resonator wp = n, which allows us tore­
strict our attention to the resonance harmonic. Substi­
tuting Eq. (25) in Eqs. (23) and (24), and recalling that 

E0 (r,t)= i_!!_J,' (A•~) H(t). 
OJ b 

we obtain 
d e 

dtyv. = --,:;;0 l/ (R)cos(ljl --&), 

iff= -2nenuoJ/(R)cos(~: -0), 
. 1 

\)' =- 2nenv,Jq'(R) 8 sin(ljl -tl), (26) 

where 1Ji = q rp ( t) - m. The first and second equations 
in Eq. (26) lead to the conservation of momentum in 
the beam-field system: 

0' WnR 
mv0 y + -- = mv,y,, v0 = -- == v.(O). (27) 

4:tnv, Yo 

If we now transform to the variable ~ = J - 1Ji with the 
aid of Eq. (27), we can reduce the order of the set of 
equations given by Eq. (26): 

8 = ---2rrem•0J,/ (R) eos cD, 

iD = 2nenv,J,'(R) ~sin!D + Q {1- . :'- w' . , ]"} (28) 
0 [l + v,-(yo- w·)'/c' 1' 

Integrating this subject to the initial conditions ;\ ( 0) 
~(0) = 0, we obtain ~ as a function of ": 

w c' { [ v ' ] •;, } ----'-wsin!D=w'+-, 1+--';-(y,-w')' -y, , 
Q V0 C 

(29) 

where w~ = 4JTe 2n/m and w2 = 0' 2/4JTnmv~. 
Expressing cos ~ on the right-hand side of the first 

equation in Eq. (28) in terms of ;g given by Eq. (29), 
we obtain the equation for the field amplitude according 
to which ¥: varies periodically between 0 and ll'm, 
where /1: m satisfies the condition 

' ' 2 

Wm'+2~yo'~wm'-~y02~Wm-2y03 <uo=O. (30) 
c' Q c' Q' Q 

The solution of Eq. (30) for y 0(w 0h~)213 ;S; 1 can be 
written in the form 

( Wo ) '!. [ 2 ( W0 ) '"] 
Wm::::; Yo Q 2'h-3yo Q · 

According to this result, the maximum radiation 

(31) 

energy density is 

/8m2 2 2 ( '•.'' ) h 
--=nmv0 y0 2-

4rr Q 
(32) 

and, when y 0 (w 0 /0)213 :s: 1, it is comparable with the 
beam energy density. 5 > The characteristic time for the 
process turns out to be 

1 -'/, T ~ - ·~ y,Q-'/, Wo • (33) 
f.tp 

It follows that the presence of the resonator enhances 
the beam radiation, and hence the growth rate becomes 
a cubic function. The maximum field amplitude is then 
proportional to the square of the growth rate, and this 
agrees with (19). 

Substituting Eq. (33) in Eq. (20), and retaining only 
one term in the sum, we obtain 

O'min ~ VT,~H __!!_,. (34) 
CJ.tp Y• 

In conclusion, let us consider two numerical expres­
sions. For a proton storage ring with y 0 = 2, 
R = 300 em, T 1 = 25 x 10-6 Mc 2 y 0 , and a = 1 cmr 17l 
we find that; WH = 1.7 X 10 8 sec-\ wp = 1.7 x 10 3n~2 , 
vT = 2 x 10 16 cm 2/sec 2• According to Eq. (20), we 
then have amin = 3 x 10 7/np em. Therefore, an ap­
preciable focusing of the proton ring (amin S 0.1 em) 
can occur for np ;2; 3 x 108 cm-3 , and the beam con­
traction time is r S 10-6 sec, 

For the electron storage ring at the Physico­
technical Institute of the Ukrainian Academy of 
Sciencesr 181 for which y 0 = 200, R = 50 em, T1 = 4 
x 10-4 mcy 0 , and a = 1 em, we find that: WH = 12 
x 1010 sec-1 w = 5 x 104 n 112 v2 = 8 x 10 19 cm 2/sec 2 , e e • T · 
Hence, it follows that: amin = 4 x 10 10/ne em, i.e., 
effective focusing occurs for ne ;;::; 4 x 1010 cm-3, and 
the corresponding time is T S 10-6 sec. 
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