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The surface impedance of metals with a non-ideal boundary is calculated. In the case of an extremely 
anomalous skin effect the impedance tends to a value corresponding to specular reflection of the elec­
trons from the surface. 

1. INTRODUCTION 

T 0 study different surface phenomena in metals, the 
samples are prepared with sufficiently smooth surfaces. 
Usually the surface is given an optical mirror finish, 
and consequently the dimension of the natural rough­
nesses does not exceed the corresponding wavelength of 
light. It can probably be assumed that the roughness of 
the single- crystal samples has an atomic scale, com­
parable with the characteristic wavelength of the con­
duction electrons in the metal. For this reason it is 
customary to assume that the conduction electrons, in 
the main, are diffusely reflected from the boundary of 
the metal. This conclusion was reinforced also by a 
comparison of data on the surface impedance with the 
theory of Reuter and Sondheimerr1J , according to which 
in the case of the extremely anomalous skin effect, when 
the ratio of the mean free path to the depth of the skin 
layer is l/6 - oo, the values of the impedance in diffuse 
and specular reflection differ by a factor 8/9. 

Recently, however, magnetic surface levels were ob­
served in a number of metalsr2 J. These levels cannot 
exist in the case of diffuse reflection. This means that 
at small glancing angles corresponding to the observed 
surface levels, the electrons are reflected spectrally. 
Similar electrons with glancing angles on the order of 
6/l play a decisive role in the anomalous skin effect. 

The noted contradiction has resulted in a more care­
ful attention to the phenomenological boundary condition 
used by Reuter and Sondheimer for the distribution 
function. The boundary condition obtained in[3 J takes 
into account, in the Born approximation, the scattering 
of electrons by the roughnesses and differs appreciably 
from the former. It is valid for sufficiently low tem­
peratures T ~ TD(6/l)11\ where Tn is the Debye tem­
perature. With increasing temperature, processes of 
phonon emission and absorption in collisions between 
electrons and the surface come into play, making the 
degree of diffuseness dependent on the temperature. 

The present article is devoted to the theory of the 
skin effect with allowance for scattering of electrons by 
surface roughnesses. A preliminary report of the re­
sults was published earlier[4 J. 

2. ELECTRIC CURRENT 

Let us find the distribution of the electric field E(x) 
~ e-iwt of frequency win a metal occupying the half­
space x > 0. We confine ourselves for simplicity to a 
quadratic electron dispersion law E = p2/2m. In this 
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case the field and the current are parallel and their 
direction is chosen to be the y axis. 

It is required to solve the Maxwell equation1> 

E" (x) = -4niwj(x) 

in conjunction with the kinetic equation 

v • ..!!+(r'- iw) (!- /o) = v,..E(x) 
dz 

(1) 

(2) 

for the distribution function f, which determines the cur­
rent: 

1 J 3 dfo 1 J v. 
;(z)=- 4n' dpv.J"""ih=lffi' d'pf~· 

The last integration over the tangential components Py 
and Pz (the two-dimensional vector will henceforth be 
denoted by the letter p) is carried out over the Fermi 
surface p2 + p2 = 2mE0 = p~. In the kinetic equation (2) 
the collisfons with the volume defects are taken into ac­
count by means of the time between the collisions T • 

The boundary condition at x = 0 for the equation (2) 
is of the form[3 J 

d' I 

J>(p) = [ 1- p. J :. P.'s.(P- p')] J<<P> 
d' I + p. J :. p.'s,(P- p'Jr(p'). (3) 

Here Px = + (p~- p2) 112 , f > and f < are the values of the 
distribution function for electrons traveling from the 
surface and to it, respectively; ~ 2(p) is the Fourier com­
ponent of the binary correlation function of the rough­
nesses. In the isotropic case b(p) is characterized 
by two parameters (Fig. 1): the correlation radius d-\ 
i.e., by the radius of the region on the p plane in which 
~ 2 differs noticeably from zero, and by the value at 
p = 0: ~ 2(0) ~ a2d2 • ~e parameters a and d h~ve. the 
following meaning: a is the mean squared dev1abon of 

d-1 p 

FIG. l 

1>1n the intermediate formulas c = h = e = l. 
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the surface from the plane x = 0, and dis the average 
magnitude of the flat sections of the surface. 

In the derivation of (3) it was assumed that the incre­
ments to unity in the right- hand side of the equation are 
small. For roughnesses of atomic scale, this require­
ment is satisfied by virtue of the smallness of the glanc­
ing angle PxiPo ~ Oil « 1 of the electrons that make 
their main contribution to the current in the anomalous 
skin effect. In the normal skin effect, there is no analog­
ous small parameter. However, the tangential compon­
ents of the current are determined predominantly by the 
electrons traveling parallel to the surface, making it 
possible to use the condition (3) for order of magnitude 
estimates. The condition for the applicability of (3) im­
proves for smooth surfaces with large d (see (13 1

) and 
(181

)). 

We introduce the complex length l = vol (T -1- i w) 
(vo = Pol m is the Fermi velocity), which coincides with 
the mean free path for WT << 1, and in the opposite 
limiting case Ill is the path traversed by the electron 
during one period of the field. 

The solution of the kinetic equation (2) 

I I _ s·d 1 VvE(x1
) {(x1 -x)vo} 

- o- x ---exp 
c<•> v. lv. 

is determined, accurate to an arbitrary function C(p), 
which for vx < 0 is determined from the condition that f 
be finite at x -- "": 

S•d 1 v.E(x') { (x'-x)vo} r-Io= X ---exp ' 
oo Vx lux 

and for Vx > 0 from the condition (3): 

S dZpl I SO I P111 I -x'11' + p. --p. sz dx -,E(x )e , 
:n;Z oo -pz 

2 2 1/2 I I I I where Px = +(Po- p ) , 1] = Po lpx, 1] = Po lpx; for the 
equilibrium distribution function f0, which depends only 
on the energy, the condition (3) is satisfied identically. 

We calculate the current 
1 • • 

j(i) = --, Ja'p~( J dx' .!!!!..E(x')e<•'-•>•- J dx' ~E(x')e-<•'-•1'1 ). 
4n P• C(p) P• 00 p. 

We break up the integral from C(p) to x into two (from 
C(p) to 0 and from 0 to x) and use Eq. (4). In the integral 
resulting from the term with unity in the right- hand 
side of (4), we continue the electric field in even fashion 
to the region x < 0. We obtain 

oo a,z' - f dx' E{x1 )e-""J ~' sz(P- p1 ) [p.p.' e-•'•- p:,p.e-•'•']}: (5) 

We change over to Fourier components with respect 
to x, continue the current, just as the field, in even 
fashion. Then the connection between the current and 
the field (5) takes the form 

+•dk1 

j(k) = a(k)B(k) + L 2;"a(kk1 )B(k1 ). (6) 

where 

a(k) = ~s d'p p.' 
2n' P• Po'+ (klp.)' ' 

(7) 

(kkl) = Po'l' sd' d' I p.p.lp.!;.(p- pi) 
a 2n' P P Po'+ (klp.) 2 

X [ p/ 
Po 2 + ( k1lp.')' 

Pv ] 
Po'+ (k1lp.)' . 

(8) 

The integral term in (6) takes into account the dif­
fuseness and is missing in the case of specular reflec­
tion ( ~ 2 = 0). 

3. ASYMPTOTIC FORM OF ELECTRIC CONDUCTIVITY 

Formula (7) makes it possible to obtain known limit­
ing expressions for the electric conductivity in the case 
of specular reflection: 

O"(k) = { e'p0'l/3n'lt', 
e'p.'/4nlt'l k I, 

lkll<1, 
lkll>-1. 

(9) 
(10) 

Substituting these expressions in (1), we obtain the 
characteristic distance over which the electric field in 
the metal changes. Formula (9) leads to the usual depth 
of the skin layer: 

- c 13nlt' ,.,, 
li--- -- • 

ep. · 2lro (11) 

and (10) to the depth 
ll=.!!_(_c )''', 

ro'l• epo 
(12) 

corresponding to the anomalous skin effect. In the latter 
case, as seen from (7), the electric conductivity a(k) at 
k ~ 0-1 is determined by electrons with small glancing 
angles PxiPo ~ Ol Ill « 1. 

To calculate the asymptotic forms of a(kk1
) we turn 

to Fig. 2. The circle with radius Po shows the region of 
integration with respect to p 1 in (8). On the dashed peri­
phery p~ = 0. The circle of radius d-1 with center at the 
point p bounds the region· in which the function ~ 2(p- p1

) 

differs from zero, and its value here is of the order 
of a2d2 • 

For a sufficiently smooth surface, the parameter d 
is large and ~ 2 is a rapidly decreasing function. In this 
case the integrand in (8) must be expanded in powers of 
p- p1

• The first- order term vanishes because ~ 2 is 
even, and formula (8) reduces to 

I - p.'l' I s z p.p. ll p.p. 
a(kk ) - 2n' ' d p Po'+ (klp.) z • Po'+ (k'lp.) z • (13) 

where the integral 
d'pl 

1' = J 2n' (p1 -p)'!;,(p1 -p) ~(a/d)' (13') 

depends only on the properties of the surface; AP is the 
two- dimensional Laplacian. 

I 
f-Po 
-~~~'"1-''="~:--- P; 
\ 

' 
...... _ 

FIG. 2 
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The main contribution to the integral (13) is made by 
small Px· Therefore, integrating in (13) by parts, it is 
necessary to differentiate only Px: 

(kkl) = ~ p,'l' Is d' p,'p'[po'- (klp,)'][po'- (kllp,)'1 . (14) 
u 2n' 1 p p.'[Po'+(klp,)'1'[po'+(k1lp,)'1' 

Integration with respect to the angle (14) entails no diffi­
culty, and on changing over to the variable Px there 
arises an integral that diverges logarithmically at the 
lower limit. The minimum value of Px is determined 
from the condition that the circles be tangent (Fig. 2): 

Pxm<n= [2po(Po -p)1m<n%= (2po/d)%. 

Under conditions of the normal skin effect, interest 
attaches to small k, k' ~ o-1 « lll- 1• In this case we ob­
tain with logarithmic accuracy 

kk, ( Pol ) 2 I Ill t ( ) u( )=- 2n I,lnp0d, p,d~1, k,k ~ -. 15 

In the anomalous skin effect, the characteristic values 
are k, k' ~ o- 1 » 1 W1 and the integral (14) is determined 
by small PxiPo that lie in the intervaljkll 2 , jk'lj 2 »pod 
» 1. It is therefore necessary to replace p in (14) by Po, 
and the upper limit with respect to Px must be set equal 
to infinity. After integration we obtain 

, __ (~ )' [ k'(k'- 3k"- 6k'k") n~ 
u(kk)- 2n I, (k'-k'')' 1 lkll' 

k' + k" 2 

- (k'-k") +(k "+ k') ]. 
(16) 

p,d~ lkll', !k'll'~1. 

When k = k', formula (16) simplifies: 

( pol)' pod 
u(kk)=- ~ I.Inlkll'' p,d~lkll'~1. (17) 

With decreasing parameter d, the region of appli­
cability of (16) and (17) becomes narrower, and when 
lkll 2 , lk'll 2 »pod » 1 the function ~2 is smoother 
than the pole factors in (8). In this case the principal 
role is assumed by the second term in the square 
brackets of (9), since the absence of the pole factor 
with p~ extends the region of integration with respect 
to the primed variable. Formula (8) reduces to the form 

kk' - po'~' r J d'pp.p,' 
u( )-- 2n' ' [po'+(klp,)'][po'+(k'lp,)'1 ' (18) 

where only the integral 
d' I 

I,= J ~px'£,(p- p1 ) ~ a'(p0/d) 'I• 
n' 

(18') 

depends on the quality of the surface when Px « Po and 
pod » 1. 

The integral (18) is determined by the values PxiPo 
~ o/ Ill « 1. In view of its rapid convergence, the 
upper limits of integration with respect to Px can be set 
equal to infinity, and we get 

u(kk') = -Po' I 
4nlkk1 (k+k 1 ) '• 

lkll', lk1l/'?pod?1, k, k 1 > 0. (19) 

Finally, at sufficiently small Fermi momenta p0d 
« 1 the conductivity a(kk 1

) in the region of the anomal­
ous skin effect is determined by expression of the type 
(19), in which there appears in place of h 

d'p' 
I,= £,(0) J -;:;z px' ~a' d'po', 

and in the region of the normal skin effect 
l' l'p 3 

u(kk')= ---I,J d'PPxPi ~--'-I,. 
· 2n'po' 2n' (20) 

4. SURFACEIMPEDANCE 
In the experiment one measures the impedance 

Z=E(O} j Ji(x)dx. 
0 

(21) 

With the aid of Maxwell's equation, the definition of the 
impedance can be rewritten in the form 

4niw ·sdk 
Z = 4niwE(O)/E1 (0) = E 1 (0) --;:l!(k), 

0 

(22) 

and the last equality takes into account the fact that /!(k) 
is even. 

The problem of determining the impedance consists 
of solving Maxwell's equation (1), which in terms of the 
Fourier component is given by 

I 

k'/!(k)i+2E1 (0) =4niwj(k), (23) 

with the connection b~tween the current and the field 
determined by (6). We shall solve it by iteration with 
respect to a(kk1

) in t\l.e sense of the expansion in terms 
of p~, which was used in the derivation of the boundary 
condition (3). 

In the zeroth approximation we obtain the field 

/!0 (k) = 2E1 (0) [4niwu(k)- k'1-' 

and the known expression for the impedance in specular 
reflection -

Z, = 8iw Jdk[4niwu(k)- k'1-'. (24) 
0 

The main contribution to the integral (24) arises on 
going around the poles. The values of ko at the poles 
give the previous definitions (11) and (12) of the skin­
layer depth o ~ lkor1 • 

With the aid of the asymptotic forms (9) and (10) we 
obtain the well known limiting values for the impedance: 

The impedance increment linear in o(kk1
) is 

- dk dk1 (J ( kk1 ) 

L\Z = 2'w' J . 
0 [k'- 4niwu(k) 1 [k"- 4niwu(k1 ) 1 

(25) 

(26) 

(27) 

The asymptotic expressions obtained in the preceding 
section enable us to estimate the integral (27). Breaking 
up the integral into regions in which the asymptotic 
forms of a(kk') are valid, we can verify that the main 
contribution is always made by the vicinity of the poles 
of the integrand (27). 

In the case of the normal skin effect (f) » Ill) 

AZ = - 1/zZo'u(OO), (28) 

where a(OO) is given by formulas (15) and (20), and Zo 
by (25). We note that when w; » 1 the imaginary parts 
of l and Z0 are larger than the real ones by a factor w;, 
whereas the increment t:. Z is the main real. An order 
of magnitude estimate yields 
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'I L\Z I { (Po'ad)'lll/li, p,d « 1, 
Z. - (a'lll/d'O)lnp,d, p,d';:P 1. 

(29) 
(30) 

The factor zfa arises here simply as the ratio of the 
depth l, to which the electrons carry information on the 
surface, to the thickness 6, within which the current 
flows mainly. 

In the anomalous skin effect, the relative increment 
to the impedance, due to the diffuseness, is (li « Ill) 

-- (polz)'lS!(p.d)'l•l, 
L\Z { (p01ad)1lS/l, 

Zo {al/dlS)"ln I PodlS"fl"l, 

Pod<1, (31) 
1 < (Pod)'l•< lll!lS, (32) 
lll!lS < (Pod)'l•, (33) 

where we have left out complex coefficients of the order 
of unity. 

A plot of ~Z/Z0 against l/fJ at p0d » 1 is shown in 
Fig. 3. As l- oo we have ~Z- 0, i.e., the impedance 
tends to its specular value. This is explained by the fact 
that with increasing l/ fJ there decreases the glancing 
angle of the electrons that determine the value of the 
current, and at the same time the influence of the rough­
ness also decreases. In the theory of Reuter and 
SondheimerllJ, the "specular" and "diffuse" values of 
the impedance differed by a numerical factor, since the 
phenomenological boundary condition used by them did 
not depend on the glancing angle. 

With decreasing ratio l/fJ, the increment increases, 
reachi~ a maximum (~Z/Zo)max ~ (apo)2/pod at l/fJ 
~ (p0d) 1 2 (if p0d » 1), and then again begins to de­
crease. The latter is connected with the fact that the 
glancing angle li/l of the effective electrons that make 
the main contribution to the current becomes here large 
compared with the angle interval ~PxiPo ~ (~px/Po) 1 ;a 
~ (p0dt112 , in which the electron can be scattered by 

.<IZ 
z, p,d»l 

(;f}lz 
P• 

l/8 

FIG. 3 

collisions with the surface, and the effective electrons 
turn out to be inside the skin layer after the scattering. 

The results (29)- (33) are valid in the approximation 
linear in a(kk'), i.e., if ~Z/Zo « 1. Since ~Z/Zo de­
creases with increasing l, the approximation in question 
is sufficient in the region l/fJ » (ap0) 2/(p0d)112• How­
ever, the maximum value (~Z/Zo)max can be calculated 
in this manner only for smooth surfaces for which 
(apo)2/pod « 1. 
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