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The relativistic rotation of the spin S = t of particles taking part in a binary reaction and moving arbi­
trarily with respect to the observer is considered with the aid of :Lobachevski1 geometry. It is shown 
that in general relativistic rotation of spin should be taken into account not only in the final but also in 
the initial state of the system. 

IN Stapp's paper[ll he shows that when the non-relativ­
istic formalism is used in the relativistic region to de­
scribe the polarization of particles with spin S = t, it is 
necessary to take into consideration an extra rotation 
of the spin (the so-called relativistic or kinematic rota­
tion). 

A lucid description of relativistic spin rotation is 
given in [2-4l by Smorodinski1, who employs ideas from 
Lobachevski1 geometry and proposes a convenient 
method for solving problems in relativistic kinematics 
with the aid of kinematic diagrams. These diagrams de­
scribe the kinematic states of the particles in terms of 
four-velocity space, several interesting properties of 
which were established by Chernikov. [6l 

The four-velocity of each particle is represented in 
kinematic diagrams by a point, while the kinematic char­
acteristics of the relative motion of the particles or the 
characteristics of the motion of the particles in differ­
ent reference frames are numerically determined with 
the aid of various hyperbolic functions of the distance 
between the corresponding points. 

The binary reaction A + B - C + D is described by 
the kinematic diagram shown in Fig. 1. The points A, 
B, C, D represent the four-velocities of the particles 
taking part in the reaction while the point U, lying at 
the intersection of the lines AB and CD, corresponds 
to the four-velocity of the center of mass (c.m.) of the 
colliding particles. The distances AU, BU, CU, DU de­
termine (through the corresponding hyperbolic func­
tions) the motion of the particles in the CM system or 
the motion of the CM system with respect to the rest 
frame of the corresponding particle. Thus, for exam­
ple the velocity of the relative motion of the particles 
A and B is given by f3AB =tanh (AB); cosh (AB) deter­
mines the relativistic factor of the relative motion of 
these particles, and so on. 

The main formulas necessary for computations with 
kinematic diagrams are given in the already cited papers 
[2' 3l and in our more detailed exposition. [7J 

The relativistic rotation of the spin of a particle is 
determined by the rotation of the vector as it is parallel­
transferred along the perimeter of the triangle with ver­
tices at the points characterizing the four-velocities of 
the 1·eference frames of the observer, the center of mass 
of the colliding particles and, of the particle under con-
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FIG. 1. Kinematic diagram of the binary reaction A+ B-+ C +D. 

sideration. The angle of relativistic rotation is numeri­
cally equal to the area of this triangle. 

Notice that in the case where the system of the ob­
server coincides with the rest frame of one of the par­
ticles, the spin orientations in the initial state do not 
undergo relativistic rotation since the areas of the tri­
angles determining these rotations are then equal to 
zero. There is also no relativistic rotation when collid­
ing beams of particles of equal mass are used, for in 
that case the state of the observer is described by the 
point U and all the triangles which determine the rela­
tivistic rotations degenerate into the corresponding 
segments. 

Let the particle B with mass m B be incident on the 
particle A of mass rnA and, as a result of the reaction, 
let the particles C, D having masses me, mo respec­
tively be produced (see Fig. 1). Then the relativistic 
rotation of the spin of the particle C in the rest frame 
of the particle A is given by the area of triangle AUC 
and can be found by means of the formula 

sin'( ~c)=~ sin'8.(ch(AU)-1][l'1-p'+p'ch'(AU)~1] 

X { 1 + ~ cos x (1) 

l'"71---p7' +--,---P:-, c-:ch,:-:-(A-:-cU:::)-::[ch(AU)- y1- p' + p' ch'(AU)] } 

+ p'[ch'(AU)-1] . 

Here Oc is the value of the relativistic rotation of the 
spin, 

p = m .... /mc, 

m .... +msch(AB) 
ch (AU) = -:==========i;=:=:~==~~ 

· ym .... ' + ms' + 2m .... msch(AB) 

BL, K are the scattering angles of the particle C in the 
rest frame of the particle A and in the c.m.s. of the 
colliding particles respectively. In order to compute 
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' FIG. 2. Kinematic diagram of the binary reaction when the observer 
represented by the point L is moving. 

the relativistic rotation of the spin of particle D, we 
must put p = mA/mn in this expression and assume 
that the angle BL corresponds to the scattering angle 
(in the rest frame of particle A) of the particle D, and 
change the sign of cos Kjp. It is easy to see that for 
elastic scattering of particles of equal mass (mA = mB 
=me =mn) formula (1) takes the form 

sin (Qc I 2) =sin (xI 2- eL) (2) 

and coincides with the well-known Stapp formula. [ll 

Let us consider the case (Fig. 2) when the system 
of the observer (point L) does not coincide with any of 
the points A, B, C, D, U of the kinematic diagram of 
the reaction and, generally speaking, does not lie in 
the plane ABCD. Note that under these conditions, in 
contrast to the previous case when the system of the 
observer coincided with the rest frame of one of the 
particles, it is also necessary to take into account the 
relativistic rotations of the spins of the particles in the 
initial state. These rotations are given by the areas of 
the triangles LUA and LUB. 

The relativistic rotations of the spins of the reaction 
products (C, D) are given by the areas of the triangles 
LUC and LUD. Spin rotations in all cases take place 
around the normals to the planes of the triangles that 
determine these rotations. By solving the correspond­
ing triangles, we determine the kinematic diagram pa­
rameters necessary for further computations. [71 

The relativistic rotations of the initial state spins 
are given by the area of triangle ALU for particle A 
and by the area of triangle BLU for particle B:m 

QA 
sin-

2 

= { 1 + 2ch(LU)ch(AU)ch(AL)- ch'(LU)- ch'(AU)- ch'(AL) }.,,, 

2[ch(LU)+ 1] [ch(AU)+ 1] [ch(AL)+.1] 
(3) 

The corresponding formulas for sin (OB/2) and 
sin (Oc /2) are obtained from (3) by making the sub­
stitutions A - B, A - C respectively. Putting AL = 0 
{the frame of the observer coincides with the rest frame 
of the particle A), we obtain sin (OA/2) = 0, which con­
firms the assertion made above that no relativistic ro­
tations of the initial spin states take place under these 
conditions. 

In order to analyze the final states we consider the 
relativistic rotation of the spin of the particle C-which 
requires the solution of triangle LUC. The hyperbolic 
function of the length of the side LC of this triangle can 
be determined uniquely only in the case when the scat­
tering angles of particle C are known in both the system 
of the observer and the system of the center of mass. 
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If, however, the scattering direction of this particle is 
given in the system of the observer only, then, generally 
speaking, cosh (LC) may have two non-coinciding values 
corresponding to two different scattering angles in the 
c.m.s. which lead to one and the same direction of the 
motion of the particle with respect to the observer. Evi­
dently, to each of these values of cosh (LC) corresponds 
a definite value of relativistic rotation of the spin. 

The formula for calculating the relativistic rotation 
of the particle C may be written in the form of (3) with 
the substitution A- C. Similarly, the relativistic rota­
tion of the spin of the particle D may be found. It is 
easy to show that when the point L coincides with the 
point A (with the rest system of A), the formula for 
sin (Oc /2) takes the form of (1). 

For illustration we give in the table numerical values 
of the angles of relativistic rotation of spins in elastic 
pp-scattering for K = 90° in the case when L lies in the 
plane ABCD and the angle between the initial velocities 
of the protons is 90°. 

The first row of the table corresponds to the scatter­
ing of a proton with energy T = 600 MeV on a proton 
initially at rest, and, consequently, the angle of rotation 
of the spin of the particle in this row coincides with the 
Stapp rotation. 

As is well known, the matrix element of the elastic 
scattering of particles with spin S = ~ has, in the non­
relativistic approximation, the form 

(4) 

Here A is the scattering amplitude, [Sl Pin-the density 
matrix of the initial spin states and Sc n-the spin op­
erators acting on the wave function of the final state. 

The generalization of this formula to the scattering 
of relativistic particles on stationary targets which has 
in it the operators Rc D of the relativistic rotation of 
the spins of the particles C, D, is given in [91 : 

(5) 

In the general case of scattering of a relativistic 
particle on a moving target, it is, as has been noted 
already, necessary to take into consideration relativ­
istic rotation of spins in the initial state. The structure 
of the matrix element then takes the form 

(6) 

which differs from (5) by the appearance of RA and RB 
on the density matrix of the initial state. 

A more detailed exposition of the subject considered 
in this article may be found in the preprint [71 • 

The authors express their gratitude to L. I. Lapidus 
for a discussion of the subject touched upon in this 
paper and to Ya. A. Smorodinskil for valuable advice 
and for looking through the manuscript before its pub­
lication. 
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