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The existence of several stable nonequilibrium distributions of the electrons in the valleys turns out 
to be possible in the case of a rapid decrease of the intervalley transition time with an increase of the 
heating electric field in many-valley semiconductors in a certain range of electric field strengths; 
these correspond to different values of the conductivity tensor of the semiconductor-the multivalued 
Sasaki effect. In this connection it turns out that when the direction of the current is along the princi
pal axes, relative to which the valleys are equivalently arranged (for example, the [100] axis in ger
manium or the [111] axis in silicon), the state with the highest symmetry, in which all of the valleys 
are identically populated, is unstable, but states having a preferential population of one of the valleys 
are stable. In connection with a variation of the electric field, two types of transitions are possible 
from isotropic or slightly anisotropic states to strongly anisotropic states: 1) gradual transitions, 
2) abrupt transitions. In the latter case of an abrupt transition the current through the sample changes 
and current hysteresis exists in a certain range of the field strengths. A magnetic field may stimulate 
abrupt transitions (jumps) from one stable state to another; here the transverse e.m.f. in the crystal 
is changed by the jump. The two-valley model (which can be realized in germanium by achieving the 
regime of short-circuiting along the [ 001] direction) is analyzed in detail in this work, and also re
sults are presented for germanium when the current is directed along the [100] and [110] axes, and 
for silicon when the current is along the [111] axis. The estimates which are made indicate that the 
multivalued sasaki effect should occur in pure germanium at low temperatures. 

INTRODUCTION 

A heating electric field destroys the equilibrium 
distribution of the electrons with respect to the equiva
lent valleys in a many-valley semiconductor, leading to 
a new distribution: 

(1) 

(here n denotes the total concentration of electrons, 
T a is the time for the drift of an electron from the val
ley labelled a -an a -electron-to any other valley). 
The different values of T a, leading to unequal values of 
na , are associated with the different values of the mo
bility tensors JJ.~a > and consequently with unequal heat
ing of the electrons from different valleys. The latter 
property is responsible for the appearance in heating 
fields of an anisotropy in the electrical conductivity of 
homogeneous cubic many-valley semiconductors-the 
Sasaki effect (see the review article£1 1 where a list of 
literature references is given). 

In order to obtain the maximum repopulation of the 
electrons, other conditions being equal, the following 
are required: in the first place, the maximum sharp 
monotonic dependence of T a on the heating power, and 
in the second place, the absence of energy exchange be
tween the valleys (independent energy balance of the 
valleys). The second requirement is satisfied if the 
times T a substantially exceed the intravalley energy 
relaxation times of the electrons and provided that there 
is no intensive electron-electron exchange of energy 
between valleys during collisions without intervalley 
transitions. 

In the majority of situations the Sasaki effect is 
single-valued, that is, for a given orientation of the 

sample, to each value of the applied electric field there 
corresponds a unique redistribution of the electrons be
tween the valleys and, thus, a unique magnitude and di
rection of the transverse (anisotropic) electric field. 
However, situations are possible when in a certain 
range of applied electric field strengths the Sasaki ef
fect is not single-valued, that is, several stationary 
distributions na appear. It was first possible to per
ceive this from figures representing the results of nu
merical calculations in [ 21 • Shyam and Kroemer[ 31 

called attention to this possibility, which indicated the 
identical nature of the multivalued Sasaki effect and the 
negative transverse differential conductivity observed 
in [4 1 (see also the review article [51 ). 

The possibility of a multivalued Sasaki effect is com
pletely related to the existence of a transverse (aniso
tropic) electric field. If a transverse current is not 
present, then this field as a whole does not do any work. 
However, owing to the presence of transverse currents 
of electrons in different valleys, the transverse field 
transfers the energy of the electrons from one valley to 
the others; the energy transfer due to the dependence 
Ta(E) leads to a redistribution of the carriers. 

A detailed qualitative theory of the multivalued Sa
saki effect is developed below. The simplest two-valley 
model is considered in Sec. 1; in Sec. 2 the stability of 
the stationary distributions obtained in Sec. 1 is inves
tigated; the influence of a magnetic field (the Hall ef
fect) is considered in Sec. 3 under the conditions for 
the multivalued Sasaki effect; Sec. 4 is devoted to the 
multivalued Sasaki effect in actual energy structures of 
the type n-Ge and n-Si; estimates of the dependence of 
Ta on the heating power are made in Sec. 5, making it 
possible to reach conclusions about certain real experi
menta 1 situations. 
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FIG. 1. Two-valley model. 

1. DISTRIBUTION OF THE ELECTRONS IN THE 
VALLEYS IN A TWO-VALLEY SEMICONDUCTOR 

Let us consider a two-valley semiconductor with the 
valleys, lying in the xy plane along mutually perpendic
ular axes, arbitrarily oriented relative to the x axis, 
which is chosen along the direction of current flow in 
the sample (see Fig. 1): 

i,=O. (2) 

In particular, this situation is realized in n-Ge if the 
z axis coincides with one of the fourth-order axes and 
if the short-circuiting regime is realized in the direc
tion of this axis (for example, if the size of the sample 
in the z direction greatly exceeds the size in the x di
rection11 ). (In passing we note that if a short-circuiting 
regime exists in the y or z direction, then the effect 
we are interested in will not exist: for all values of Ex 
and c:p the unique distribution of the electrons between 
the valleys is always stable.) 

Let us assume that independent energy balance of 
the valleys, which was mentioned in the Introduction, is 
realized. Then the average power absorbed by a single 
electron in the field E, 

(3) 

completely determines21 the distribution function of the 
a -electrons and consequently all of their parameters: 
the drift time 

and the principal values of the mobility tensor 

ll!;·'l = ll (p,,,) ( 1 + a cos 2<p), 

~··> = ll (p,,,) ( 1 ± a cos 2<p), 

ll•• <•·~ llv~'·"= +all (p,,,) sin 2<p, 

(4) 

(5) 

where the angle c:p is defined in Fig. 1: 0 s c:p s 1TI2, 
0 <a < 1. (In the general case the anisotropy parame
ter a also depends on p1 , 2 ; however if a single scat
tering mechanism dominates for all values of p or if 
mechanisms having identical anisotropies of their re
laxation times give comparable contributions, then a 
ceases to depend on p.) Let us introduce the angle of 
anisotropy 8: 

tg8 ""'E,/ E.; 
(6) 

then from Eqs. (3) and (5) it follows that 

1Jin this connection, however, the danger arises of a decomposition 
of the sample in the z direction into domains having fields Ez which are 
different in magnitude and oppositely directed. 

2)1t is assumed that in each valley the distribution function is close 
to its- isotropic component. 

ll,,, ""'__!!__( '·' ) = E.'sec' 8[1 +a cos 2(<p- 8) ]. (7) 
ell p,,, 

The parameters ll1 , 2 , just like p1 , 2 (within the limits 
of a single-valued relation between n and p) complete
ly determine T 1 , 2 and JJ. 11 ' 21 • Determining the field Ey 
from the condition (2), we obtain the following trans
cendental equation for 8: 

<l>{E.' sec' 8[1- a cos 2(<p- 8)]} _ asin(2<p- 8) +sinS 

<I>{E.' sec' 8[1 +a cos 2(<p- 8)]}- asin(2<p- 8)- sinS ' ( 8) 

where .P{n} == T(ll) JJ.(TI). 
One can reach certain conclusions about the roots of 

Eq. ( 8) without specifying the form of .p{ n}. For this 
purpose let us rewrite Eq. ( 8) in the form 

a <I> (ll,)- <I> (ll,) = sin a 
<l>(TI,)+<I>(ll,) sin(2cp-8) 

and let us investigate this equation. 
1. A root of Eq. (8) occurs only in the interval 

(8 2, 81 ), where 

a sin2<p 
tg a,,, = ± 1 , 2 ; 

±acos <p 

this follows from the fact that the left-hand side of 
Eq. (8'), L(~ ), lies within the limits -a < L(~) < a; 
here the quantity ~ =tan 8 has been introduced. 

2. It is easy to verify that 

O(E.', ~) = -6(E.', n/2-cp); 

(8') 

(9) 

(10) 

from here it follows that it is sufficient to consider the 
interval 0 < c:p s 1rl 4. 

3. If .p{n} is a monotonic function of n, then L(~) 
is a monotonic function of ~ in the interval (tan 82, 

tan 81); this follows from the fact that ll 1(~) has a mini
mum at ~ =tan 8u and ll2(~) has a minimum at 
~ =tan 92 (R(~) = - n~ I llf ). If .P(ll') is a monotonically 
increasing function, then L(~) decreases monotonically 
in the indicated interval, and since the right-hand side 
of Eq. (8'), R(6), increases monotonically in this inter
val from -a to a, there is a single root of Eq. (8) (see 
Fig. 2a, curve 1'). However, if .P(TI) is a monotonically 
decreasing function, then L(~) monotonically increases 
in the interval (tan 8 2 , tan 8 1), so that the number of 
roots of Eq. (8) can be expressed in general as an odd 
number greater than unity. 

4. If .P(TI) is a monotonically increasing function, 
then the only root of ( 8) is negative for c:p < 1T I 4, equal 
to zero for c:p = 1TI4, and positive for c:p > 1TI4 (this fol
lows from the fact that R(O) = 0 and L(.J) = 0 for 
8 = c:p - ( 1TI4)). Thus, in the case of the ''anomalous" 

L R L R 
a 

rJ.r+J if{!/ rJ.f~> -a lfo/...f 1Jf1.J 

FIG. 2. Dependence of the left-hand (L) and right-hand (R) sides of 
Eq. (8') on{} for'{!= 7r/4 and for different values of Ex. 
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Sakata effect [ 6 l there exists a unique and, as shown be
low (Sec, 3), stable solution of Eq. (8). 

Let us return to the case of a monotonically decreas
ing <I>(II): <I>'(II) = d<I>/dii < 0 (which corresponds to the 
"normal" Sasaki effect). Let us consider the cases 
<fJ = 1T/4 and <fJ < 1T/4 separately. 

1) <fJ = 1T/4 (Fig. 2). In this case R(.J) = .J, L(O) = 0 
so that the root is always .J = 0, which is an inflection 
point of L(.J). The condition for the tangency of L(.J) 
and R(.J) at .J = 0, 

- 2a'Ex'(<1>' /<D)n~E', = 1, 

determines a certain critical field Ec at which a 
change in the number of solutions of Eq. (8) by two 
occurs. Two types of these changes are possible. 

Type I occurs for 

(11) 

A (E,) s= [ (<!>') 2 - <!><!>" + 2a'E!(<1>'<1>"- <!><!>'" /3) ]n~E~ < 0, (12) 

when at the point .J = 0 the curvature of L(.J) changes 
from positive for .J < 0 to negative for .J > 0 (Fig. 2a). 
In this case for 

(13) 

two more solutions of Eq. (8), .J\-> = .J1+ > (8\-> =-8\+>) 
supplement the solution .J = 0 in the neighborhood of 
this point, where these solutions are not present for 

-2a'E.'(<1>'/<1>)u~E',< 1. (14) 

We have the following expressions for these roots for 
small deviations of I Ex I from Ec (as long as I.J I <<a) 

e<!> = R(K) <IE. I-K), (15) 

where 

Type II occurs for 

A(E,) >0. (12') 
when at the point .J = 0 the curvature of L(.J) changes 
from negative (for .J < 0) to positive (Fig. 2b). In this 
case for field strengths close to Ec, one solution ex
ists in the vicinity of the point .J = 0 if (13) is fulfilled, 
and three solutions exist if (14) is satisfied, 

For the actual dependences of <I> on II, several so
lutions of Eq. (11) exist, that is, several critical fields. 
We shall call the one for which 

[ a(II)+ II ~~ L~e',> 0, (17) 

the lower critical field E 1~ >, and the field for which the 
opposite inequality (opposite to (17)) holds will be 
called the higher critical field E~h>. As long as one ex
cludes the situation when there are no critical fields at 
all, i.e., the case when Eq. (1) does not have any solu
tions, then the simplest and most realistic situation is 
the case when only two critical fields exist-one lower 
and one u¥per, and also, as it is not difficult to verify, 
E~h> > E~ > (here the case of such idealized depend
ences <I>(II) for which only one critical field E~ > exists 

is included because one can assume E~h> - oo ). We 
shall only discuss this situation. The following special 
cases are possible. 

a) The point .J = 0 is the only inflection point for 

FIG. 3. Possible dependences of{} 
on Ex for <P = rr/4. 

L(.J), where A(Ex) < 0 everywhere (Fig. 2a). Then for 
both critical fields there is a change of the number of 
solutions of type I, and the dependence 8( I Ex I) has the 
form shown in Fig. 3a. 

b) In addition to the inflection point associated with 
.J = 0 there are two more inflection points, where A(Ex) 
> 0 everywhere (Fig. 2b). In this case at both critical 
fields a change in the number of solutions of type II oc-

curs, and in addition to the critical fields E~ • h> two 

more characteristic fields E~' h > exist, in which the 

number of solutions changes by 4, where necessarily 

Etf> < E~l> < E~h> < E~>. The dependence of 8 on 

I Ex I for this case is shown in Fig. 3b. 
c) The sign of A(Ex) changes with increasing mag

nitude of the field Ex so that the signs of A(E~ >) and 

A(E~h>) do not agree. In this connection the dependences 
have the ''composite'' form shown in Figs. 3c and 3d. 

It is also necessary to include among the actual situ
ations those such that (for A(Ex) > 0 and in the pres
ence of three inflection points) no critical fields of the 
type Ec exist inside the interval of field strengths 

(EH >, E~> ), i.e., Eq. (11) does not have any solutions. 

The case is illustrated in Fig. 3e. The situations shown 
in Figs. 3a-3e completely exhaust all possible forms of 
the dependence of .J on Ex (except for trivial cases) 
under the assumption that the dependence L(.J) is given 
only by curves of the type shown in Figs. 2a and 2b, and 
under the assumption that the number of critical fields 
Ec does not exceed two. For more complicated depend
ences L(.J) even richer .J(Ex) can be obtained; however, 
it is necessary to attribute them to unrealistic situa
tions. 

From Fig. 3 it is clear that even in the simple situ
ations under consideration, up to five different sta
tionary values of J(Ex) may exist. As is shown in Sec. 2, 
in sufficiently thick samples and under the assumption 
that iJ.(II) does not fall off faster than II- 1 / 2 with in
creasing II, then those solutions for which 

tgQL < tgQR, (18) 
are stable with respect to quasineutral perturbations, 
where nL(.J) denotes the angle of inclination of L(.J) to 
the axis of abscissas, and nR(.J) denotes the angle of 
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inclination of R(J). On Fig. 3 and everywhere in what 
follows below, the solutions which are stable in the 
sense of the criterion (18) are plotted as solid lines, 
and the unstable solutions are plotted as dotted lines. 
Thus, in the interval of field strengths (E~ >, E.Jh>) the 
solution J = 0, corresponding to the state with uniform
ly populated valleys, is always unstable, but anisotropic 
states having a preferential population of one of the 
valleys are stable. In the case indicated in Fig. 3a 
(henceforth referred to simply as case a), the transi
tion from the isotropic state to an anisotropic state oc
curs continuously: the angle (} increases smoothly 
from zero. In cases b, c, and d the transitions occur 
abruptly, where the sudden establishment (or disap
pearance) of the anisotropic state is accompanied by a 
sudden change in the current through the sample (and 
also by a sudden change of certain other properties of 
the sample). In the intervals of field strengths (E~l>, 
E<.f/) and (or) (E'~>, E~>) there exists hysteresis of 
the current and in the anisotropy angle (} as functions 
of the field I Ex I; thus, in cases c and d there should 
be single-valued hysteresis and in case b a twofold 
hysteresis on the current-voltage characteristics (IVC). 

It is not difficult to investigate the IVC of a sample 

near the points E~ > and E~h> in case a (and near the 
points associated with a change in the number of solu
tions of type I in cases c and d) when the angle (} is 
changing continuously. For arbitrary values of cp the 
IVC is given by the formula 

( tg8 ) J = eE,[i 1- , 
tg(2q>- 8) 

For cp = rr /4 near the critical field strengths 

J-J, = [-1 +___!__( df1 ) -R(K)] (E,-Eo); 
/, E, [1 dE, E,~E, 

(19) 

/, = l(Eo). 
(20) 

If the coefficient inside the square brackets is negative, 
then a region of negative conductivity is formed near 
the point Ec (for Ex> E~ > or (and) for Ex < E:}t> ), 
and the formation of this region may be associated with 
the appearance of an additional instability which is not 
considered here. The region of negative conductivity ap
appears for sufficiently large values of a and apparent
ly occurs in a small (in comparison with E~>) interval 
of field strengths. (For example, for <I>(II) ~ exp- y II 
and for an unessential dependence of "j]. on II, this re
gion appears near E~ > = 1/a ..f2y for 6a2 > 1.) 

2) cp < rr/ 4 (Fig. 4). In this case, as before R(O) = 0, 
but ltan (}2 i>tan (} 1 and L(J)=O for e=-1/J=-(rr/4) 
+ cp. Therefore negative roots of Eq. (8) are conceivable 
only for (} 2 < - if!, i.e., in the following range of the 
angles cp: 

n I 4 - arctg a < <p ~ n I 4. (21) 

(The regions corresponding to the possible roots of 
Eq. (8) for <I>'< 0 and for <I>'> 0 are indicated below 
on Fig. 6.) If L(J) has a single inflection point corre
sponding to a change of the curvature with increasing J 
from positive to negative (Fig. 4a), then the existence 
of a region of field strengths (E:f> (if;), E~h>(if;)) is possi
ble in which Eq. (8) has two "unusual" negative roots 
e,':: < e/:: (of which only e,':/ is stable) in addition to 
the "usual" positive root (}<+>· The interval (E~>(if;), 

L R 

b 

L R 
ll 

..,!f ~;. -a <+•I 'rit~Z.S <+•I 

FIG. 4. Dependences of the left-hand and right-hand sides of Eq. 
(8') on{} for <P < "Tr/4 and for different values of Ex. 

FIG. 5. Possible dependence of 
{}on Ex for <P < "Tr/4. 

:1 
Q 

~ 
b 

4:~ 

E~h>(if;)) lies inside the interval (El}>, E~h>) considered 
above. The qualitative dependence of J(Ex) for this 
case is shown in Fig. 5a, and a chart of the roots e(cp) 
for different values of Ex is shown in Fig. 6a. The part 
of this chart for which the conditions 

IIJll, lSI <iii; a, 

are satisfied can be calculated by solving the cubic 
equation: 

AS'+B8-C1p = 0, 

(22) 

(23) 

which approximately represents Eq. ( 8) upon fulfillment 
of the conditions (22); here A is determined by formu
la (12): 

!DID' !IJ 
B=--(1+ ) 

Ex2 2a2Ex2 Cl>' ' 

where the function <I> and its derivatives are evaluated 
at the point II = Ei. The condition for the existence of 
three real roots has the form 

B' I AC' < -"f,IJl'. (24) 

For if! = 0 this condition takes the form (13) if A < 0, 
and it takes the form (14) if A> 0. 

If L(J) has three inflection points (see Fig. 4b) then, 
as is indicated in Fig. 5b and Fig. 6b, the interval be
tween the critical fields E~/>(if;) and E~h>(if;) is expanded 
in comparison with the case if! = 0 (this is evident from 
inequality (24) for A> 0). The fields Et/• h> are now 
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!r+aTctna'!f ~ . E 
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FIG. 6. Dependences of the anisotropy angle 0 on <P for different 
values of Ex. 

different for the positive and negative roots, where 

(Ev~2)(1jJ ), E D(~(ljl)) :=;) (Ev (l~Ev(h}) :=;) (Evi~)(ljl) ,Ev~~)(ljl)). 

The intermediate situations corresponding to cases 
3c-3e for cp = 1T/4 are indicated, respectively, by 
Figs. 5c-5e. 

The value of the stationary values of 13 makes it 
possible to calculate the values of II1 , 2 from formulas 
(7), and from these one can determine all parameters 
of the valleys, including T(II1 , 2) and \I>(II1 , 2). 

2. STABILITY OF STATIONARY TWO-VALLEY 
DISTRIBUTIONS WITH RESPECT TO SMALL 
QUASINEUTRAL PERTURBATIONS 

In Sec. 1 some of the obtained stationary distribu
tions were called stable, and the others were called un
stable. On Figs. 3, 5, and 6 the stable values of the 
anisotropy angle 13 are indicated by solid lines, and the 
unstable values by dotted lines. In all of these cases one 
has in mind stability (or instability) with respect to 
small quasineutral redistributions of the carriers rela
tive to the stationary distributions, whose Fourier com
ponents we denote by 

lln, (k) = -~n, (k) = v (k) · (2 5) 

The time evolution of v(k) (and also the field ,'{ (k) and 
the currents 11 , 2(k) in each of the valleys associated 
with these deviations) is determined by the following 
equations: 

i[k+i] = 0, (26) 

± iki,, 2 = - v(-r,-• + -r,-•)- ~(1] 1 -1]2 ) + iwv, (27) 
'rt 

i .. , = -..J1·"[nl,,(i + IM1,z) ± vE ± i~1,,kv], (28) 

where {3 1 2 ~ < 1• 21 = D1 2; D1 2 are the coefficients of 
' ' ' the diffusion tensor; TJ 1 2 and K 1 2 are determined by 
' A (1 2 ) 'A ( 1 2 ) ' -1 -1 

the eq~twns OJl • = Jl ' K 1 , 2 o(T 1, 2) = - T 1 , 2 TJ1, 2 • 

Since Jl (1, 21 and T1 2 are entirely determined by the 
' quantities II1 , 2 , then 

"'·' = ~~.,llll,,,, 1]1,2 = ·s•.,IHI1,,, ( 29) 

where 

and also from Eqs. (7) and (3) 

1 d-rl 2 

;,,, = -- dii. , 
'ti,2 i,2 

n,,,11<'·'>( 1 + ~ .. ,rr •. ,) 6II1,2 ± 11<'·'lvii1,2 = - (j1,,i + i,,,E). (30) 

Let us assume that the field Ex is stringently given, 
i.e., 

8.=0. (31) 

(In the case of a negative differential resistivity when a 
domain· instability of the field Ex may occur, condition 
(31) may not be fulfilled.) In the presence of condition 
(31) kx = 0 and i1x = -i2y· From expressions (26) 
through (30) we obtain the equations which determine 
orrl 2 and 1! 1 = v(nl + n2)/n1n2: 

' 

where 

'rl't'z ' = ~·~ .. ~. 11.);:·'> ~znl + fl~n, (3 ) 
't'o = ~~ + ~,' "' , .a.,=--. f3 = 4 • • n, . 11(1,2) nl + n. 

Setting the determinant of Eqs. (32)-(34) equal to zero 
determines w (k), and also the quantity of interest to us, 
Im w, is obtained in the form 

lm w(k) =- B, +B1k', 
B, (3 5) 

B <I>, d<I>, <D, d<DI <D,<D, 
o=--~+---+ 2, (a,<D,+a,<D2), <D, dii, <D, dii, " 

where 

B, = ~ ( ).'~.~. + a,a,<Dt'<Dz' + 1;,ll>,'a, + ~2<1>/a, 
2A' 2 

+ ~,-r,fl,a,<D.' + ~.-r,fl,a,!ll,') 

2((3z'rl + fl,-r,) ' 
<D,<I>, 

B, = 1;,<D, + ~,<D, + ~(a,<D, + a,<D,). 

The condition Im w(k) < 0, whose fulfillment is neces
sary for stability of the stationary solutions, has the 
form 

(B, + B,k') I B, > 0. (36) 

First let us consider the special case when Jl does 
not depend on II (!;'1 = (;'2 = 0). Then in B1 and B 2 there is 
only a single term, which is actually positive, which 
survives, and condition (36) reduces to 

B > " a,a,<D,'<D,' 
0 -I' 2J.' k'. (37) 

It is not difficult to see that 

B, = -<!3' (8) (tg QL- tgQ.)' (38) 

where nL is the angle of inclination of the left-hand 
side of Eq. (8') and nR is the angle of inclination of its 
right-hand side to the axis of abscissas on Figs. 2 and 4 
at the point of intersection of L and R. In Eq. (34) the 
right-hand side has a maximum at k2 = 0; thus, in very 
thick samples the criterion for stability (37) reduces to 
the condition (18). 

In thin samples, where a minimum value k~in 
~ 1/d2 exists (d denotes the thickness), condition (37) 
reduces to 

,.., ,.., "k' a(1-a'cos2 2cp)(ll>,a>,)'l, ,(39 ) 
tg"R - tg>OL > - p min ::;:::-~~7:-~::G=:=~==~=::::::;=~ 

(<I>,+ <D,)'cos 8l'a'sin'(2cp- 8)- sin' 8 

so that the solutions corresponding to certain parts of 
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the "dotted" sections on Figs. 3, 5, and 6 adjoining the 
"solid" sections become stable. As is evident from ex
pression (39), the characteristic length with which one 
must compare d is the length for intervalley scatter
ing, IE =..JDT, so that criterion (18) is valid for 
d >>:e. 

If the mobility depends on n, then a new situation 
arises only in the case when 11. decreases with heating 
(t1 , 2 < 0). We note that for 

~+~<-1, 
Y, Y, (40) 

where 
21..' 

Y,,, = 1 + --~1 ,,, 

a1,2(!):.z 

B1 becomes negative, and for 

a,Y,<D, + a,Y,<D, < 0 (41) 

B2 is negative. 
If Bl> B2 < O, then just as in the case l:u l;2 ?: 0) the 

right-hand side of Eq. (3 5) has a maximum for k2 = 0, 
and the criterion for the stability of the stationary solu
tions in thick samples has the form of the inequality op
posite to (18), i.e., the solutions corresponding to the 
dotted sections on Figs. 3, 5, and 6 are stable, and the 
solutions corresponding to the solid sections are un
stable. 

If the quantities B1 and B2 have opposite signs, then 
for large values of k2 the right-hand side of (3 5) may 
become positive for all reasonable values of B0 , so that 
all stationary solutions found in Sec. 1 (both the ones 
corresponding to solid lines as well as the ones corre
sponding to dotted lines) are unstable. Apparently in 
this case the stable stationary distributions are inhomo
geneous in y. 

Let us consider the signs of B1 and B2 associated 
with <p = 1T/4 for the trivial solution (} = 0. In this con
nection Il1 l;1 = Il 2 l;2 = - m (in the case of a power -law 
dependence of 11. on n one has 11. ~ n-m), and the cri
teria (40) and (41) have, respectively, the forms 

1 < 2a'm < 2, 

2a'm> 1. 

(40') 

(41') 

Thus, for a 2m> 1 the quantities B1 and B2 have oppo
site signs whereas upon fulfillment of (40') both of these 
quantities are negative. We note that condition (41') 
means that iJ.(Ex) must decrease with the field more 
rapidly than K;? so that in this connection negative dif
ferential conductivity of the sample will exist. Thus, 
our analysis breaks down only in the case Bu B2 > 0. 

3. THE HALL EFFECT UNDER THE CONDITIONS 
FOR THE MULTIVALUED SASAKI EFFECT 
(TWO-VALLEY MODEL) 

If in our arrangement it were possible to continuous
ly vary the angle <p near the value 1T/4, then as it is not 
difficult to see from Fig. 6 the dependence of Ey on 1/J 
would have the form of one of the curves shown in 
Fig. 7. It is possible to obtain a similar pos~ibility with 
a known approximation by using a magnetic field di
rected along the z axis (Hz =H). Such a magnetic field, 
as long as it is small, leads to a small Hall e.m.f., 

f'H 

a 

b 

FIG. 7. Possible dependences of the transverse field Ey on the Hall 
angle 1/JH for <P = w/4. 

which is superimposed on the Sasaki e.m.f. However, 
with an increase of H in one of the directions up to a 
certain critical value, a jump occurs from one stable 
Sasaki state to another, which becomes apparent in a 
discontinuous increase of the Hall e.m.f. 

Without specifying the form of .P(ll) one can compute 
the value of the critical angle only near the critical field 
Ec. In a small (in the sense of the magnitude of the Hall 
angle in each of the valleys) magnetic field Eq. (8) is 
replaced by the equation 

ai{E.' sec' a[1- acos2(rp- a)]} asin(2rp- 8) +sin a-~ cos 8 

(ll{E.' sec' a [1 +a cos 2(cp- 8)]} a sin(2ql- 8)- sin 8 + w<.:,> cos 8 ' 

(42) 
where ~ = 1r(1 - AH2) T, A denotes the coefficient of 
magneto-conductivity, 1/JU' 2> = 1/JH(ll1 , 2) = P1 , Jl 
are the Hall angles in each of the valleys. For cp = 1T/4 
and I (Jj << a the angle (} is determined by Eq. (23), in 
which it is necessary to replace 1/J by 1/JH· The condi
tion 

(43) 

determines the critical value of the magnetic field, at 
which the field Ey changes discontinuously. In the case 
A < 0 (Fig. 7a) tlie angle ( lfJH>cr• which is determined 
by condition (43), qualitatively completely characterizes 
the behavior of a semiconductor in a magnetic field. 
For A> 0 with the aid of (43) one can only find the 
magnetic field determining the transitions from states 
with small (} to states with large (} (Fig. 7b), so that a 
complete qualitative picture can be obtained only for 
specific dependences .P(ll). 

One may obtain analogous discontinuous transitions 
between the stable Sasaki states by deforming the semi
conductor in such a manner that an energy gap appears 
between the bottom of the first and the bottom of the 
second valleys. 

4. DISTRWUTION OF THE ELECTRONS OVER THE 
VALLEYS IN n-Ge AND n-Si 

In a real, many-valley cubic crystal, the sample of 
which is cut out such that 
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(44) 

both components of the transverse field, E y and Ez, 
will generally be different from zero. In addition, in the 
general case it is necessary to deal with more than two 
valleys: with four valleys in germanium and with three 
pairs (each of the pairs may be considered as a single 
valley) in silicon. Therefore a complete analysis of the 
intervalley redistribution, similar to the one carried 
out in Sees. 1 and 2 for the two-valley model, becomes 
difficult. Here we confine our attention to only the 
cases when in n-Ge the current is directed along the 
crystallographic axes of fourth and second orders, and 
also the case when the current is along the axis of 
third-order in n-Si. 

1. Germanium, 100 direction. Let us line up the 
direction of the x axis with the 100] direction, and the 
y and z axes with the two other directions of the fourth
order axes ([010], [001]) so that the mobility tensors of 
the electrons in each of the four valleys turn out to be 
the following:31 

1 *a =a 
+ + 

+a 1 ±.a (45) !11,2,3,. = 111,2,3,. =F 

=a fa 

+ 
where (the choice of signs from above downwards cor-
responds to the indices 1, 2, 3, 4) 

211, + 11• 11• - fl• 
f1t,z,s,•=f1(ll,,z,s,•), 11=-3--, a----

-211•+11•' 

ILl (II) and !Lt (II) are the longitudinal and transverse 
mobilities in the valley, and just as in Sec. 1 it is as
sumed that a does not depend on lla = Pale!La (O< a 
<% ). We note that in n-Ge a is always close to 'iz. 

From conditions (44) it follows that 

where 

K+aK,K, 
E, = aE. 1- a'K,' • 

K,+aK,K 
E,=aE. 1 'K' -a , 

«D, + «D. - «D,- «D. 
K ""' K,,,,,,, ""'<D, + !l>, + <D, + <D, , 

(46) 

K1 = K1 2• 3 4 ; ~ = K 1 4 • 3 • 2 ; as before cl>a = Ta !La• 
and also 4>~ = <I>(lla), wher~ 

[ + E. "'j:' E, E/ + E,'=J= E.E,] (47) n,,,,3,,=E,' 1._2a-E +2aE-+ E' +E' · + X X X - X 

The unknown values of Ey and Ez are determined from 
Eqs. (46). There are three types of solutions for these 
equations: 

a) the trivial solution: 

E,=E,=O (ll, = ll,=lls= ll,); (48) 

b) fourfold degenerate solutions of the two-valley 
type: 

1,2: E,=±aiKI, E,=O (II,=II,~II,=II,); 

3,4: E,=±aiKI, E,=O (II,=II,~II,=II,); (49) 
c) fourfold degenerate solutions of the four-valley 

type: 

3lThe following numbering is adopted for the valleys: 1-[ Ill], 2-
[ I III, 3-[ IITI, 4-[ 1 TTJ. 

1, 2: E, = E, ~ 0 (ll, ~ n, = n, ~ n.); 

3,4: E,=-E.~o (n,~n.=n.~n.). (50) 

In order to investigate the conditions for the origin of 
distributions of a nontrivial type, let us assume that the 
anisotropic component of the field is small: 

E1.' """E,' +E,'....;E;. (51) 

Then from (46) for ~2 = E~/Ei we have (compare with 
(15)) 

(52) 

where as before Ec is determined by Eq. (11); in the 
case of the solutions of two-valley type it is necessary 
to use the coefficient R1(Ec) given by the right-hand 
side of Eq. (16), and in the case of solutions of the four
valley type-the coefficient R2(Ec) which differs from 
R1(Ec) by the replacement in the denominator of A(Ec) 
by 
A0 (E,) = [(ll>')'(1 +a')+ 2all><D" + 4a'K'(CI>'<D" -ll>ll>"'/3)]n=E~· 

(53) 
It is not difficult to see that the sign of A0 (Ec), which 
determines the behavior of the four-valley solutions, 
may differ from the sign of A(Ec)· For example, for 
c1> ~ exp -yn we have A(E~ 1 ) =-2fsy2 exp (-2Yllc) but 

A0(E~ 1) = y2[(1 + a)2 - %] exp (-2yiic), i.e., A0 > 0 for 

a > (2/-¥3) - 1. 
In the plane of I~ I and Ex the two-valley and four

valley type solutions are given by curves which start at 
the point [0; E~1 ) and end at the point [0, E~h>], simi
lar to one of the graphs in the upper half-plane in Figs. 
3a-3e ~epending on the signs of A(Eg• h 1) and 
AD(E~· l) ). 

The analysis, which is similar to the one carried out 
in Sec. 2, shows that in thick samples (dy, dz >> P 
the solutions of two-valley type are always unstable, and 
the trivial solution is unstable in the region of field 
strengths (E~ J, E~h 1) and stable outside ofthis interval. 
As far as the solutions of the four-valley type are con
cerned, they behave like the anisotropic solutions in the 
two-valley model, i.e., the states having the largest val
ues of I~ I are stable, those which are represented by 
solid lines in Fig. 3. 

2. Germanium, [110] direction. It is precisely this 
situation which was considered in l 2• 3 l. Let us keep 
the z axis, as before, directed along the (001] axis; 
then the direction of the y axis is lined up with the 
[110] direction. From symmetry considerations it fol
lows that 

E,=O, (54) 

so that, having introduced the notation Ez /Ex = tan 9 
=~.we have 

II,= II,= E.'(a +sec' 8), 

II,,, =E.'(sec'e- a=t= 2f2atg8), (55) 
since in the xz plane we have 

~ ,1-a +aV21 ~ 11+a01 
f11,3 = f11,3 +a y"2 1 , 112.• = 112.• 0 1 • (56) 

The stationary values of ~ are determined from the 
equation 

2 «D(II,)- «D(IIa) 
al( «D (II,)+ ClJ (IIs) + 2«!1 (II,) 
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which has, in addition to the trivial solution of two
valley type J. = 0 (Ill = lis < rr2 = I14), doubly degenerate 
solutions of the four-valley type: J.<-> = -J.<+>• The 
critical fields E~• h>, determining the instability region 
of the trivial solution, are found from the condition 

--4a2E2 (~) =1J..!l>{E~(1 -f-a)} (57) 
X !l> ' cl 0 

n~E~ (1-a) !l> {L>x (1- a)} 

which is the analog of condition (11). 
If the dependence of a; on I Ex I near the critical 

field is written in the form (15), then we have the fol
lowing expression for R(Ec): 

2[!l>{~(1 +a)}+ !l> {~(1- a)}] 2[ct1 (E~) + E~(dct,JdE~)Ex~E,] 
R (E,) =- E"A<t> (E) 

c c (58) 

where 
(!l>') 2 

2 ll=Ex(l-a) 

ctt(Ex) =- !l>{E!(1 -f-a)} +!l> {E~(1-a)}' 
(59) 

A<1>(E,)=(!l>') 2 [(!l>') 2 + (!l>' + 8a'E~!l>"-t- 16/3a4E'!!l>"') • ] 
II=Ec(l-a) II=Ec(l+a) IT=Ec(l-a) 

and where the sign of A11>(Ec), just like in the case of 
the two-valley model, determines the type of change in 
the number of solutions at the critical field strength. 
For q,""" exp -yii the critical field E is almost ..f2 
times larger than in the case when the current is di
rected along the (100] axis, and also the type of change 
in the number of solutions should be different since 

A w(E~> ~ -% y exp (- 2yiic(1 - n)) < 0 (whereas 

A0(E~>) > 0). 
3. Silicon, (111] direction. Having directed the x 

axis and the current along the crystallographic direc
tion (111 J, and the y axis along the [Oil J direction, in 
the xz plane we obtain 

~ I 1 -al¥2,. ~ 11 y2al 
f.l•.•=f.t•.• -afi2 1+a/2 ' -f.t,=f.t• '(2a 1-a '(60) 

where we define f.1. and a in the same way as for ger
manium. 

Besides the trivial solution corresponding to a uni
form population of all three pairs of valleys, there exist 
two more types of triply degenerate solutions corre
sponding to an identical population of any two pairs of 
valleys at the expense of enriching (type I) or depleting 
(type II) the population of the remaining third pair of 
valleys. Let us select as an example one solution of 
each type, for which Ey = 0, and also 

where 

IT,= IT,* IT,, 

II,,,= E/[1- ay"2-tt + (1 +a I 2)-tt'], 

IT,= Ex'[1 + 2a)'Z t1 + (1- a)l'}']; 

(61) 

as before J. =tan 9 = Ez /Ex. The equation for J. has 
the form 

- aM 
1'1=''2-

r 1+aM' 
M= Cl>(IT,)-Cl>(IT,) . 

2ct> (IT,)+ ci> (IT,) 
(62) 

The solutions of Eq. (62) are disposed in the interval 
(-a..f2/(1- a), av'2/(2 +a)), over which the right-hand 
side of (62) varies monotonically. Carrying out the 
analysis, which is analogous to the one carried out in 
Sec. 1 for the simplest model, we arrive at the conclu-

FIG. 8. Possible dependences of" on 
Ex for the current along the [I I I] axis 
in silicon. b ~ lJ---TEC)'-1~---_-r'ED'-Ih) __ , Ex 

sion concerning the existence of an interval of field 

strengths (Eg>, E~>) in which two other (see Fig. 8) 

solutions exist in addition to the trivial solution J. = 0. 

in this connection, inside the interval (E</j, E~>) there 

may exist an interval of field strengths (E~>, E~h>) in 
which the trivial solution is unstable (Fig. Sa), so that 
the semiconductor necessarily is found in one of the 
stable anisotropic states. If the condition Ey = 0 is rig
orously ensured (i.e., if a short-circuiting regime is 
created in the y direction, like the regime in the z di
rection created in Sec. 1), then both sections repre
sented by the solid line on Fig. Sa are stable. However, 
if the appearance of a fluctuating field Ey is possible 
(i.e., iy =0), then the solution depicted by the curve in 
the upper half-plane in Fig. Sa turns out to be unstable 
and goes over into one of the states where the popula
tion of only one valley is enriched. If in order to calcu
late the fields Eo it is necessary to specify the form 
of q,(II), then just as before, expressions for the fields 
Ec can be obtained in general form after an expansion 
of q, 1 , 2 in terms of small J. on Ex near the critical 
field is given by the expression 

I'}= 4 y2 ct (llcJ+ IT. (dct/diT)rr~rr. I E., 1- E. ( 63) 
3ct (IT,) + 2a IT. (!l>"/Cl>)rr~ rr, E, 

where Ilc = E~. Since the denominator of expression 
(63) in real situations is apparently always positive, in 

the interval (~l>, E~h>) a semiconductor smoothly 
(without any discontinuity) changes into the state with 
J. > O, which corresponds to an identical enrichment of 
the first and second pairs of valleys at the expense of 
a depletion of the third pair, and which is stable only 
upon a stringent guaranty that Ey = 0. In the state of 
the opposite type-with a strong enrichment of the third 
pair at the expense of the first two pairs, only a dis
continuous transition is possible, as is clear from 
Fig. Sa. 

5. ESTIMATES OF THE DEPENDENCE OF THE 
INTERVALLEY TRANSITION TIMES ON THE 
HEATING POWER 

The intervalley redistribution was investigated theo
retically £2 l and experimentally rs l in appreciable elec
tric fields (Ex > 1 kV /em), when the average energy of 
the carrier exceeds the energy of an intervalley phonon 
Eo (in germanium, according to r7 l, the intervalley 
transitions correspond to a phonon with an energy 
T0 = 316° K), so that the T a depend on the heating power 
comparatively weakly. Some "acceleration" of this de
pendence may occur, as noted in rsJ, due to transitions 
between equivalent valleys by means of higher minima 
of the conduction band. 

We consider that a more favorable region for the ob
servation of the multivalued Sasaki effect and the spe
cial properties of the electrical conductivity and of the 
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Hall effect associated with it is the region of extremely 
low lattice temperatures (kT << E0 ) and of such field 
strengths Ex that the average energy of a carrier re
mains below E0, so that the dependence of T a on the 
heating power is close to exponential. For this region 
of field strengths and temperatures, let us estimate the 
function .P{Il) which determines the field Ec and the 
entire behavior of the semiconductor. 

Let us assume {since Eo is smaller than the energy 
of an optical phonon) that in the case under considera
tion the only mechanism of intravalley scattering of 
electrons is scattering by acoustic phonons (for which 
extremely pure crystals are required; an experimental 
situation close to the one being considered was studied 
by Kastal'skii and Ryvkin ra 1). Such a situation was con
sidered in the article by Gantsevich, r9 1 and from his 
formulas one can obtain the following expression for the 
drift time of electrons from the valley labelled a: 

:• = { j R ( x) ( 1 + : ) '• dx + j R (X) ( 1 + X : :• ) '• dx} ( 64) 
0 0 

X { ~ nR(x)dx) (j yie-" 11 +_:_)'"ax r', 
Yn o o g. 

where 
e-r,~-t(O) 

x, = e,/kT, R(x) = e-•"fx(x + x0 ), ga =~II., 

and the Ti are energy relaxation times. For Xo >> 1, gO! 
from Eq. {64) it follows that 

for ga<< 1 

To _ 1 [ ( Xo ) '•] • --- 1+-
'ta 2 ga. ' 

for Xo >> ga >> 1 _ 
't"o ( Xo ) '• "f :rt 

-:;;:- = g: 2'1. f('/,)ga'l· . 

The quantity .P' /.P entering into the expression for 
the critical field is equal to the sum (T'/T) + (JJ.'/JJ.), 
where in our case 0 > IJ.' / IJ. > -1/4II, and T 1 /T 
= - gK(g)/II, where K{g) is a slowly varying factor: 

ln(x,/g) -1 
x(g)= 1 +(g/xo)' 

x (g) = ln ( eg / Xo) 

for g<!{ 1, 

for g ~ 1 

(here e is the base of the natural logarithms). Thus, 
the critical field is determined from the condition 

{65) 

One root of Eq. {65) is located near gc f'>l 1/2a2 ln Xo so 

that the field E~> approximately coincides with the field 
at the beginning of the heating up or is even somewhat 
smaller than it (gc < 1). The second root of {65) is lo
cated at gc >> 1 when K(gc) f'>l 0, so that the field E~h> 
corresponds to a situation when the average energy 
approaches E0 • 

We further note that near the root E<h> the function c 
.P f'>l x;g = exp - yii, where 

e-r,~-t(O) 
v=~lnx,. 

The estimates of A, A0 , and A< 1 > made above using 
such a .P{Il) indicated that in germanium, for the direc
tion of the current along the (110] axis and also along 
the [100] axis, upon provision that Ez = 0 there is a 
change in the number of solutions at the points E~> 
of type I, but if the current is along the (100] axis and 
Ez * 0 then changes of type TI may occur. The latter 
property justifies the detailed analysis of this type of 
changes, which was carried out in Sec. 1. 
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