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It is shown that an inhomogeneous plasma with a finite ratio of plasma pressure to the magnetic-
field pressure is unstable against perturbations whose increment depends on the thermal conductivity 
of the electrons. Instabilities of this kind can develop even if VT0 = 0 (To is the plasma temperature). 
They are caused by the density and magnetic-field gradients. An almost force-free high-pressure 
plasma is likewise unstable if the pressure gradient is directed towards the density gradient. The 
investigated instabilities can lead to increased particle and heat losses in thermonuclear installations. 

1. INTRODUCTION 

THE instabilities of an inhomogeneous plasma with 
finite and large values of the parameter {3 = 87Tp0 /B~, 
where Po is the plasma pressure and Bg/81T is the pres­
sure of the magnetic field existing in the plasma, are 
investigated theoretically in this paper. We note before­
hand that only a plasma of this type is of interest when 
it comes to development of thermonuclear reactors with 
positive yield (see, for example, U1 ). 

Much less is known at present concerning instabili­
ties of an inhomogeneous plasma with finite and large {3 
than concerning the instabilities of a plasma with {3 ~ 1. 
In particular, the instabilities built up by different dissi­
pative factors in a plasma with {3 ~ 1 have hardly ever 
been analyzed. The only exception is a paper by the 
present authorsr2 J, where the buildup of oscillations due 
to ion viscosity was analyzed. 

As is well known (see, for example, the review of 
Galeev et al. r3J ) , the finite character of the electronic 
thermal conductivity plays the role of a dissipative fac­
tor that causes buildup or damping of oscillations in an 
inhomogeneous plasma. An important problem of the 
theory of plasma oscillations is the determination of the 
conditions under which the finite electronic thermal con­
ductivity gives rise to the buildup of oscillations and 
hence to instability. Such a problem was considered by 
Galeev, Oraevski1, and Sagdeevl4 l in the approximation 
{3 = 0. It was shown that instability occurs if there ex­
ists in the plasma a gradient of the temperature To 
directed opposite to the gradient of the density n0 , 

7J = a ln T0 /a lnno < 0. 
We show in this paper that at finite values of {3, the 

dissipation connected with the finite character of the 
electronic thermal conductivity can lead to a buildup of 
oscillations when a ln T0 /a lnn0 2:. 0, and particularly 
when VTo = 0. The corresponding type of instability can 
produce additional difficulties in the problem of stable 
containment of a plasma with finite {3. We also investi­
gate the instabilities of an almost force-free plasma 
(Vpo- 0) of high pressure, {3 » 1. 

2. INITIAL EQUATIONS 

Let us assume that the static magnetic field Bo is 
directed along the z axis, and the plasma density n0 , 
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temperature T0 , and magnetic field intensity Bo are not 
uniform along the x axis. The gradients of these quanti­
ties are connected by the equilibrium condition 

~ (p,. + p" + B,'/Sn)= 0, (2.1) 

where Poe =Poi = noTo is the pressure of the electrons 
and ions. 

We consider deviations from this stationary state, 
assuming a space- time dependence of the perturbations 
in the form exp [- iwt + i J kxdx + iky y + ikzZ) . We as­
sume the frequency w to be small compared with the 
frequency of the ion- ion collisions Vi; this makes it 
possible to use Braginskii'' s hydrodynamic description 
of the plasmal5l. We assume the longitudinal phase 
velocity w/kz to be large compared with the ion thermal 
velocity vTi· Just as inl4 l, we can then neglect the 
longitudinal motion of the ions and assume their per­
turbed longitudinal velocity v~i to vanish, 

VJ = 0. (2.2) 

The perturbations of a finite-pressure plasma at finite 
w/kzvTi were investigated by Mikha'llovskayareJ. 

We use the following equations for the field and the 
plasma. 

1. Electrodynamic equations. Departing fromr4 J, we 
take into account the perturbations of the magnetic field 
B and the non- electrostatic character of the perturba­
tions of the electric field E; to this end it is necessary 
to use the complete system of Maxwell's equations, 
which, neglecting the displacement currents, takes the 
form 

4n 
rot.cB=-h, (2.3) 

c 

4n , 
(2.4) rot,B =- e.n, V ,., 

c 

ne' = n/, (2.5) 
iffi 

(2.6) rotE'=- B', 
c 

divB =0. (2.7) 

Here n~ and ni are the perturbations of the electron and 
ion densities, j 1 is the perturbation of the density of the 
electric currents across the static magnetic field, and 
ee is the electron charge. 

2. Equations for the electronic component. The elec-
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trons are described by the equations of continuity, mo­
tion, and heat 

on 
at+divnV,=O, 

1 
ne,(E+~[V,,B+B,])-Up + R,=O, 

(2.8) 

(2.9)* 

0:; +(V,V)p,+yp,divV.+(v-1)divq,=0, (2.10) 

where y = 5/3, Re is the friction force, and qe is the 
heat flux; these are defined by the relations 

Re = -Sne VTe- 'Veffle V,ee:, 

Pe !J Pe 
q,=-3,16--V 11T,+- --[hVT,], 

me'Ve 2 meWBe 

BJ. 
V11 ==h(hV),h=(B+Bo)/IB+Bol ~e.+-, B, 

s = 0.71, w., = e,IB + Bol I m,c. 

(2.11) 

If we linearize the z-projection of Eq. (2.9) and ex­
press B~ in it in terms of V~e by means of the following 
relation, derived from (2.4): 

(2.12) 

then we find that V~e is proportional to the parameter 
~ ( ck 1 /wpe) 2 : 

k 2 2k 2 k 2 2 

( c J. ) c J. m, , vT, m, Vze',_S- ==--,---,--
rope 4nnoe (l) me 

(2.13) 

Since k1. « 1/pi> where Pi is the Larmor radius of 
the ions, it follows that ~(ck1 /wpe) 2 » ~me/mu3, so 
that when {3 ~ ~me/mi, this parameter should be re­
garded as small. We shall neglect small terms of this 
order. Then the terms with V~e can be omitted every­
where from the equations (2.8)-(2.11). The magnetic 
field B~, as seen from (2.12) does not contain such a 
small parameter and must therefore be taken into ac­
count-it enters in (2.9)-(2.11). Using (2.9), we can ex­
press this field in terms of the perturbations of the 
electric field E~ and the perturbations of the density 
and pressure of the electrons: 

Bx' = ik,B, (i)r< {w + w:,(1 + s)- sw'n,}-' • 
XT 

{ icE/ XT p,' n' } 
X ----. --(1+s)+s-

Bo WTi Poe no 
(2.14) 

Taking this equation into account, as well as the ex­
pression derived from (2.9) for the transverse electron 
velocity 

1 [ v p, ] V1.,=-- h,---e,E 
meWBe n 

(2.15) 

we transform the linearized equations (2.8) and (2.10) 
into 

. n' . pe' • cEu' .B/ * 
-lw-+t-w., +-8 (x.-x.)+t-(w-w •• )= 0, (2.16) 

no Poe o Bo 

· p.' ( 2 '+·A (i)+wn,') . n' ( , ·A ro+w.,') 
-1- (1)- '\'WBe ~Ll -~- YWne -Hl 

Poe w nn w 

+ cE.' ( . A xT ) . B,' , + , - 8 x.-yx.+!Ll- +1y-(w-2w., Wn, )=0. 
o iil B, (2.17) 

*!Ve, B +80 ] =VeX (B +80 ). 

Here 
_ 2 k!vT.' 2 T, , k.T, 

,', --5 y3,f6b--, VT< =-, WA =-, -XA, 
'Ve me mwn 

iJlnA, 
KA=--;;;-, Ao=(po,no,To,Bo), 

ill = W + Wn/(1 + s) - SWn/• 

3. Equations for the ionic component. By using the 
complete system of Maxwell's equations (2.3)-(2.7), we 
can obtain a closed system of equations without taking 
into account the continuity condition for the ions. This 
condition is satisfied automatically, as can be seen by 
taking the divergence of (2.3) and (2.4) with allowance 
for (2.8). The equation of ion motion is similar to (2.9), 
but with account taken of the inertial and viscous terms. 
We are interested in the motion of the ions only across 
Bo, since we have assumed above that V~i = 0, see (2.2). 
For w < WBi = eiBo/mic, we obtain approximately from 
the ion equation of motion a result similar to (2.15) 

1 [ Vp, ] VJ.•=-- h,--e,E . 
miwBi n 

(2.18) 

The ion-pressure balance equation is analogous to 
(2.10), except that the latter contains only the q-com­
ponent transverse to the magnetic field. Linearization 
of this equation using (2.18) yields 

p·' n' cE' 
-i-' (w-2yw.,')-i-yw • ."+-" (x,-yx.) 

p., no B, 

. B,' 2 ' ') 0 +ty-(w- w,, +·Wn< = . 
B, 

(2.19) 

We now show how to obtain the dispersion equation. 
By taking the x-projection of (2.3) and substituting in it 
h = eeno (V~e- V~i) with V~e and V~i defined by (2.15) 
and (2.18), we obtain the connection of B~ with p~ and pi: 

B,' = -4n (p,' + p/) I B,. (2.20) 

Once (2.20) is substituted in (2.16), (2.17), and (2.19), 
all the perturbations turn out to be expressed in terms 
of E~, n', pi, and p~. If we introduce the new variables 
X, Y, and Z used inl7 J, 

X = p',- p.' y = ~ p,' + p.' + icE.' 
Po ' Xll Po Bo ' 

' '+ I z = !!._-~ p, p. • 
no Kp Po 

(2.21) 

then (2.16), (2.17), and (2.19) take the respective forms 

w.,'X + (x.- Xn) Y- wZ = 0, 

{ it. • } y "' X (J) + 2"ii) ( (i) + Wni ) - i 2W XT 

+ Z {vw.,' + ~~ (ro + w,,')} = U, 

(2.22) 

X(w- 2yw.,•) + Y(x,- yx.) + yro.,•z = 0. 

The determinant of this system gives the sought dis-
persion equation 

where 

( 1+2i.){x2 + y~ 2y' (1- 2y(i+'/;y~)]} 
2 4 y(i + 1/2'\'~) 

x{x+y(1+s)-s} (2.23) 
+ ia{x2 (1 + 2/5y~) + x[1 + '/2'1'~ + 'l2yy~ (1 + '12~)] 

+'/,y~(1+2y+~y'-y-•y')} =0, 
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3. SUMMARY OF SOME PREVIOUSLY-KNOWN 
RESULTS THAT FOLLOW FROM (2.23) 

Equation (2.23) contains the dimensionless param­
eters {3, a andy. The first of them, {3 = 87TpoBg, charac­
terizes the relative pressure of the plasma; the second, 
a = (%) 3.16 k~ vTJ v ew;ri characterizes the longitudinal 
wavelength of the oscillations; the third, y = Kp/Kn, 

describes the relative pressure gradient. Heretofore, 
only particular cases of (2.23) were investigated, corre­
sponding to the approximations {3 = Ol41 ; a = ot7 ' 81 ; 

a= oo, {3 = oo, y = Ol9l; a= oo,lsl; a= 0, {3 = ollol. Let 
us note the main results of these investigations. 

1) The approximation of zero-pressure plasma, 
{3 = 0. When {3 = 0, Eq. (2.23) reduces to a quadratic 
equation in the frequency: 

ffi' + ffi[w./ + (1 + s)ffiT/ + i~] + i~{l),,," = 0. (3.1) 

Eq. (3.1) has solutions with Im w > 0, corresponding to 
instability if 

'1)<0. 

The increment is maximal at 

It is of the same order as the oscillation frequency: 

{lmffi)m= :=::: Re{l) :=::: ffiT;· 

2. Entropy (inertialess) waves in the approximation 
a = 0. When a = 0, the equation (2.23), which is cubic 
in x, breaks up into two equations, one of which is quad­
ratic and takes the form 

•2 ( )(B- Xn ) ffi 2 + Yffis; 1 + 2y = 0. 
)(p- Y)(B 

(3.2) 

If {3 « 1, the instability takes place if 

'IJ > 'I,, 'IJ < -1. 

This instability is aperiodic, Re w = 0, and its incre­
ment is 

It is proportional to the parameter {3. When {3 » 1, the 
plasma is unstable if 

-4/~ < y < 0. 

Just as in the case of {3 « 1, the instability is aperiodic. 
Its increment is of the order of 

3. Inertialess waves in the approximation a = ao, 

y = 0, {3 = oo, The approximation y = 0 means that there 
are no pressure or magnetic-field gradients, and the 
temperature and density gradients have opposite direc­
tions and are such that Kn = -KT· This corresponds to 
the case of the so- called force- free plasma. When y = 0, 
a = oo, {3 = oo, Eq. (2.23) reduces to the quadratic equa­
tion 

(1 + y)ffi 2 + 2ywffi.;' + yffi./2 = 0. (3.3) 

The solutions of this equation are complex. One of the 
roots corresponds to hydrodynamic instability with an 
increment on the order of 

4. Inertialess waves in the approximation in which 
a - oo and {3 and y are finite. In this case we obtain the 
dispersion equation by equating the coefficient of a in 
(2.23) to zero. For {3 « 1, this dispersion equation takes 
the form 

2 • ~ •• [ )(p 1 ( )(p )'] w -(J)w., +v-(J)., 1+2--- - =0. 
4 Xn Y Xn 

(3.4) 

The roots of this equation are real. They differ in order 
of magnitude: One of them, 

ffi=Wne' 

does not depend on {3 and corresponds to the so- called 
"drift oscillations" of zero-pressure plasmalloJ, which 
have been investigated many times, while the other is 
proportional to the parameter {3 : 

5 • [ Xp 3 ( Xp ) 2 
] ffi=--~w., 1+2---;:-- . 

12 Xn D Xn 

For {3 » 1 and finite y{3, the dispersion equation with 
the approximation a - oo is 

(1 + y)w' + 2ywffi./(1 + ~y I 2) + yw.;'' = 0. (3.5) 

It is a generalization of (3.3) to the case of finite y{3. 
It follows from (3.5) that the instability described by 
(3.3) becomes suppressed if the pressure gradient is 
small. The instability is possible only if 

-~(Y~+1)<2..<2(,; 8 -t). ~ ;) Xn ~ v 5 

5. Electromagnetic perturbations with E II B0 at 
a = 0. If a = 0 (kz = 0) Eq. (2.23) describes not only the 
solutions of type (3.2), corresponding to perturbations 
with E l Bo, but one other type of perturbation with 
E II B0 • Their frequency is given by 

(J) = ffin,' + WT,'(f + s). (3.6) 

It is independent of the parameter {3. 

4. INSTABILITY OF A FINITE-PRESSURE PLASMA 
WITH VTo = 0 

In this section we consider the stability of an impor­
tant particular case of a plasma with Vno"' 0, VT0 = 0, 
and finite {3. (In the approximation {3 = 0, see Sec. 3 and 
andl41 , such a plasma is stable.) When VT0 = 0, Eq. 
(2.23) breaks up into two, one of which, w = w:J.e• des­
cribes stable oscillations. The second equation 

(1+ y~l2){ffi' +Yffis/'[1- 2y(1 + ~i2) I (1 +v~l2)]} (4 .1) 
+i~[w(1+'1,~) -2ffi .. *(1+'ln~)] =0 

has, at not too large {3, 0 < {3 < f3um• a solution with 
Im w > 0 corresponding to instability. Let us prove 
this. 

In the case {3 « 1, this equation simplifies to 

w'- "f offis/' + i~(ffi- 2w.;') = 0. (4.2) 

At small kz we have t:./ w!u « 1, from which it follows 
that 

Rew =±l'35w.,*/3, lmffi =-1f.L1(1±6I"f35). (4.3) 

We see that one of the roots has a positive imaginary 
part, Im w > 0. The increment is numerically small: 
Im w ~ t:./144. At large kz, t:. » wBi• it follows from 
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(4.2) that the perturbations that increase in time have a 
frequency and an increment 

Re ro = 2ro.;", Im ro = w.:' / 9A. (4.4) 

The instability described by (4.1) does not develop at 
too large values of {3. By equating to zero the real and 
imaginary parts of ( 4.1) at Im w = 0, we obtain the in­
stability limit 

~ = ~ lim = 1,2. (4.5) 

When {3 > f3lim• the plasma is stable. 
It follows from the foregoing analysis that a plasma 

with V'T0 = 0 and finite {3 is unstable. The instability is 
due to the fact that in a plasma with finite albeit small 
{3 there exists a branch of very slow oscillations 

(magnetic-drift oscillations), which are built up as a 
result of the negative dissipation due to the finite elec­
tronic heat conduction. The longitudinal wave number 
of this instability is of the order of 

and the maximum increment is numerically small com­
pared with the frequency 

k.cT, o ln n, 
Imw >::: 0, 1Rero >::: 0, 1~ ---- . 

eBo ox 
It is interesting to note that the oscillation modes that 

build up are essentially connected with temperature 
perturbations, and the presence of a stationary-tem­
perature gradient is not obligatory. A similar situation 
was discussed earlier for a different class of instabili­
ties by Moiseevl11 J. 

5. ALMOST FORCE- FREE PLASMA OF HIGH 
PRESSURE 

In the approximation of infinitely large electronic 
thermal conductivity a = oo, a force-free plasma, y = 0, 
of high pressure, {3 >> 1, is unstable, see Sec. 3, Item 
3. If y ¢ 0, the instability of the approximation a ="" is 
suppressed, see Sec. 3, Item 4. A plasma withy< 0 is 
also unstable against perturbations with a = 0, but this 
instability exists only at small values of the parameter 
y{3, see Sec. 3, Item 2. It is therefore of interest to 
check on the possible appearance of additional instabili­
ties connected with the finite value of the parameter a, 
in a plasma that is stable in the approximations a = oo 

and a= 0. 
At finite a and finite y{3, the oscillations of a plasma 

with {3 » 1 are described by the following dispersion 
equation derivable from (2.23): 

[x'- y~y( 1 + 1/4 ~y) ](x- s) 
+ 1/2iay-'[{1 +'l')x' + 2y{l + ~y/2)x+v1 = 0. 

(5.1) 

Let us examine the solutions of this equation for y{3 
» 1. If {3y » 1, two of three roots of (5.1) are large, of 
the order of {3y. They correspond to damped oscilla­
tions. The third root is given by 

1 + 2ia/y~y 
X = S --'-------'-...:.:...:...,.... 

1 +(2a/y~y)' 
(5.2) 

When y > 0 (Kp I K n > 0), this root corresponds to per-

turbations that increase in time with an increment 

(5.3) 

The increment is maximal at 

It is of the order of 

Im ro >::: I ro.,'l. 

It is interesting to note that the oscillation mode with 
frequency (5.2) is determined by the presence of the 
thermal force in the equations of motion (2.9) and (2.11). 
The importance of the class of instabilities connected 
with the thermal force was pointed out earlier by 
Moiseevl111 • 

6. CONCLUSION 

We have shown that a finite-pressure plasma ({3 < 1.2) 
is unstable even in the absence of a temperature grad­
ient, Sec. 4. This instability is due to the density and 
magnetic- field gradients. The instability appears as a 
result of dissipative buildup of magnetic-drift oscilla­
tions resulting from the finite thermal conductivity of 
the electrons. The same type of instability is also ob­
served in a plasma with a positive temperature gradient, 
a ln To/& ln no > 0. 

The instability of a zero-pressure plasma with nega­
tive temperature gradient, a ln T0 /a ln no < 0, previously 
investigated by Galeev et al.l4 1 , exists at all values of {3, 
particularly at {3 » 1. According to Sec. 5, this insta­
bility should play a major role in the transport of an 
almost force-free plasma of high pressure with 
a ln p0 /a ln n0 > 0. 
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