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Spherically symmetric inhomogeneous solutions of the Einstein equations for an expanding universe 
filled with radiation with the equation of state p = E/3 are considered. For the case of small perturba­
tions imposed on the background of a homogeneous and isotropic Friedmann model a method of solu­
tion is employed which differs from the method of Lifshitz [41 who utilized a Fourier expansion. The 
system of Einstein equations in this approximation reduces to a single third order equation for the 
perturbation of the density which by simple substitution is reduced to the wave equation describing 
the propagation of perturbations with the velocity of sound cj/3. The general solution of this equa­
tion enables one to investigate simply the problem of the behavior of a local perturbation. An analy­
sis is given also of the self-preserving solutions with the variable ~ = r /3j2 ft. A system of ordi­
nary differential equations is derived for finding the self-similar solutions. An analytic solution of 
this system is obtained in the linear approximation and its properties are investigated. 

1. INTRODUCTION 

IN order to investigate the question important in con­
nection with the problem of the formation of galaxies 
concerning the development of inhomogeneities at an 
early stage of the expansion of the universe when the 
density of radiation exceeds considerably the density 
of matter inhomogeneous cosmological solutions are 
needed. Of exceptional interest is the verification of 
the possibility of a strong inhomogeneity of an early 
stage in the evolution of the universe, in particular of 
the hypothesis of Novikov concerning nuclei delayed in 
the expansion. lll In the hot model accretion of radiation 
by the delayed nuclei is inevitable. If it turns out to be 
catastrophically large then this hypothesis will contra­
dict observations. [al 

The only known inhomogeneous solution in the case 
of expanding matter with the equation of stage p = E/3 
is the approximate solution obtained by Lifshitz of the 
linearized equations of the gravitational field for small 
perturbations of the Friedmann universe. However, 
within the framework of the Lifshitz method it is diffi­
cult to go over to the investigation of nonlinear inhomo­
geneous solutions. Moreover, Lifshitz' solution is ob­
tained in a form convenient for the investigation of spec­
tral properties, but not directly applicable to the inves­
tigation of the behavior in time of an individual pertur­
bation with given characteristics. 

In the present paper a different approach is utilized 
for finding inhomogeneous solutions for matter with an 
ultrarelativistic equation of state. We consider a spher­
ically symmetric problem. Unfortunately, the solution 
of the gravitational equations even in the spherically 
symmetric case with the equation of state p = E/3 is 
associated with great mathematical difficulties and, 
apparently, will be effectively carried out with the aid 
of electronic computers. However, this does not exclude 
the possibility of obtaining special and approximate ana­
lytic solutions, and the present paper is devoted to this 
undertaking. 

2. SMALL PERTURBATIONS 

An arbitrary spherically symmetric gravitational 
field can be described in a synchronous frame of refer­
ence by the metric 

ds' = dt'- te'<'· '>di'- tre"(•. '>(tie'+ sin' a dql'). (1) 

The metric coefficients are so defined that ~ = 1J. = 0 
corresponds to a Friedmann solution with a flat comov­
ing space filled with matter with the equation of state1 > 

p = E/3. 
The equations for the gravitational field and the equa­

tions of relativistic hydrodynamics contained in them in 
this case represent a complex system of nonlinear par­
tial differential equations in five unknowns: the metric 
coefficients ~ and IJ.; the energy density E = E0( 1 + 15), 
E0 = 3/4e in the units adopted; the temporal u0 and the 
radial u1 components of the 4-velocity. Without writing 
out in full this system of equations we go directly to 
special cases when the problem becomes simplified. 

First of all we consider small perturbations of the 
Friedmann universe~. IJ., 11., [J., ~', IJ.', 15, u1 << 1. In the 
linear approximation in terms of small quantities the 
three equations: (0°)-component of the equations of the 
gravitational field written in form 

Rt = T.'- '/.6.'T, (2) 

and also the equations of hydrodynamics in the form 
analagous to the equation of continuity uiTf;k = 0 and to 
the Euler equation (uiuk- of)Tft.z = 0 form a closed 
system of equations for the quantities 15(r, t), u1(r, t), 
h(r,t)=~+IJ.: 

t•Ji + tft = -'{,6, 
' 3 o ,.. I 

r'tr ( h + 2 {J) = 2 ( T u, ) • 

(3a) 

(3b) 

llWe introduce the arbitrary constant appearing in the Friedman so­
lution a =y'2a0 ct [3 ] into the definition ofr. The system of units is 
adopted in which c = 81rG = I ( c is the velocity of light, G is the gravi­
tational constant). 
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(..!!!._)' =-f {{. 
'It 4ji (3c) 

Eliminating from (3a) and (3b) the quantity h, and then 
dividing the equation so obtained by It and differentiat­
ing it with respect to time we obtain with the aid of (3c) 
the equation for o(r, t): 

... 5 .. ( f t ) . ( 1 t •) b 0 t•6 ~ 2 t 26- t 2 + T ~ b + 2 - 3 " = ; 

£'. =__!.~ '-r!._). 
r' or or 

(4) 

Among the solutions of Eq. (4) there are contained 
solutions which describe the perturbation of the energy 
density associated with the arbitrariness in the choice 
of the initial time-like hypersurface t = const. As is 
well known, [4l the form of such a solution can be estab­
lished without solving Eq. (4). For p = E/3 the coordi­
nate perturbations of the density have the form o 
= F(r)/t where F is an arbitrary function of the spatial 
variables. This enables us to reduce the order of Eq. 
(4). 

Introducing the new unknown function 

1 0 
Z=--=-(t6) 

it ot 
(5) 

and the independent time variable 71 = 2 If we obtain in 
place of (4) the wave equation21 

o'z 1 
----l'.z=O, 
Of12 3 

which describes the propagation of perturbations with 
the velocity of sound c/..f3 (c = 1). As is well known, 
this equation for the function rz reduces to the one 
dimensional wave equation which can be easily integrated 
if for the independent variables one chooses the 
characteristics r - 11 ..f3 and r + 71 j..f3 . The general 
solution for z has the form 

/ 1 (r- t]/'/3i + j,(r + tJ/i3) (6) 
r 

Thus, the function z represents the sum of a diverging 
and a converging spherical wave with an amplitude fall­
ing off as r-1. If at the initial instant the functions f1(r) 
and f 2(r) differed from zero only for 0 < r < r 0 then 
after a sufficiently long interval of time has elapsed 
the perturbation z(r, 71) will represent a diverging wave 
with a leading and a trailing wave front. 

The behavior of the perturbations of the density aris­
ing at time t 0 in accordance with (5) and (6) is described 
by the formula 

3 Ylf { 2 viT.-r • vils+r } 
6 (r, t) = 4Tt i /1 (x) (x + r)2 dx + i /2 (x) (x- r)2 dx (7) 

2 t't, s-r 2 Ytois+r 
to + tb0 (r, t0). 

(The last term describes the aforementioned perturba­
tions of the density associated with coordinate transfor­
mations.) 

2lOne can show that this equation, as well as (4), is also valid for 
perturbations of arbitrary form (not necessarily spherically symmetric). 

The density at the point r at time t is determined in 
the diverging wave by the values of the function f1(x) for 
all x from 2v'to/3 - r to 2v't/3 - r and in the converg­
ing wave by the values of f 2(x) in the interval from 
2v't0j3 + r to 2v't/3 + r. If the perturbation has reached 
a given spatial point, then it no longer stops at that point. 
But the amplitude o in the region encompassed by the 
perturbation for sufficiently large values of the time 
falls off as t-1, since if f1(x) and f 2(x) are not equal to 
zero in a finite volume, then for any fixed value of r 
the integrals (7) depend on the time only as long as 
2v'tj3 - r < r 0• After that o ~ C\ i.e., the small local 
perturbations that arise will finally be damped out. 

The solution obtained above agrees with the results 
of E. Lifshitz[Sl as can be easily verified by solving the 
wave equation for z by the Fourier method or by inves­
tigating directly the solution (6). For example, in the 
case of a large scale perturbation, the dimensions of 
which rlf exceed the dimensions of the horizon of t 
(r » If), expansion of the function z in a series in 
terms of the parameter If /r with an accuracy up to 
terms of the first order of smallness and subsequent 
integration yield 

6 ~ A.(r)t +A,(r)'/t+ A,(r) 
t 

(Au A2, A3 are expressed in terms of f1(r), f2(r), their 
derivatives and o0(r).) This agrees with the time de­
pendence obtained by Lifshitz for the longwave Fourier 
components of the perturbations of the density. The 
growth of perturbations described by this formula is 
restricted by the time If ~ r. 

For a local perturbation, in which at the initial in­
stant the perturbation of the density and its time deriv­
ative differ from zero within a finite volume, this growth, 
as can be seen from the preceding, will be replaced by 
damping, 31 if, of course, the perturbation o has not 
reached the value of unity when nonlinear effects become 
essential. The phenomenon of catastrophic accretion of 
radiation by a small inhomogeneity which manifests it­
self in its uninterrupted growth does not occur within 
the framework of the linear problem. 

3. SELF-SIMILAR SOLUTIONS 

Another possible simplification of the problem is a 
search for self-similar solutions depending on a single 
variable. Since in this case the coordinate scale of the 
region encompassed by the perturbation varies propor­
tionally to t, while lengths increase with time as ..ff, 
the self-similar variable, as has been pointed out by 
Zel 'dovich [aJ must have the form ~ = r..f3/2..ff. The 
coefficient of proportionality is chosen to satisfy the 
condition that ~ would be equal to unity on the sound 
horizon, i.e., at the point where the velocity of the 
Friedmann (.\ = p. = 0) reference frame v = ..ff dr /dt 
becomes equal to the velocity of sound 1/..f3. 

We write out the system of the ordinary differential 
equations of the gravitational field and of hydrodynam­
ics (2) for the self-similar solutions .\(~), p.(~), o(~), 
uom, v' u1u1 (~): 

3lJn contrast to a shortwave monochromatic perturbation which 
represents a sound wave with an amplitude independent of the time [ 3]. 
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s'(J." + 2~") + w.' + 2~') + '/zs'(f..'' + 2~") = -66 + 8u,u'(1 + 6), 

1;'1." -1;(1.' + 2~') + r (!."+ !.'~')- 3e-' [ 2~" 
+ 4-(2fl'- 1.')+ fl'' -l.'fl'] = 26- 8u,u'(1 + 11), 

r 4 (;'~" -1;(1.' + 2~') + -(2~" + !.'~')- 3e-' {~" +- fl' 
2 1; 

}.' l.'fl' 3 - _, -y-z-]+~(e "-e )=26, 

£fl" + 2~'- !.' + 'M,(~"- ~'!.') = 2(1 + 6)u,l'1- u,u', 

1;'[(1 + 6)''•l'1- u,u'e'f2+•]' + -y"3[1;'(1 + 6)'/•u,e-'12+•]' =0, 
2 ---7 u,'£l'1 - u,u•- 2u,'u' + 2u,u'l.' 

+ [ 1 +3 ~3 u,Y1- u,u•- u,u'] 2(:,+ 6) = 0, 

uo' + u,u' = 1. 

(Sa} 

(Sb} 

(Sc) 

(8d} 

(Se) 

(Sf) 

(8g) 

Of course, this system is still sufficiently complicated. 
But its solution by means of electronic computers no 
longer presents any difficulties in principle. In the lin­
ear approximation we can find an analytic solution of 
this system. 4 > 

In a manner similar to the one employed above we 
obtain from equations (8a), (Be), (8f) the differential 
equation for o(~): 

( 1 -£') 1;6'" + 2 ( 1 - 21;) IS" + 2 (1; - 1 I 1;) 6' + 46 = 0. (9) 

It has two special power solutions: 0 - ~-\ 0 - e. (The 
second of them -r2/t is associated with the choice of 
the coordinate system.) With the aid of these solutions 
we can by two consecutive substitutions reduce (9) to a 
linear equation of the first order with respect to the 
quantity 

Q = [1;'(6 I£')']', 

which has the simple form 

(1- s'JQ'- 2W=O 

and can be easily integrated: Q = - 6C 1 /I ~ 2 -11 . 
turning to o we obtain 

6(\;)=C,[ 1+ (£'---f)tnl1-£1 

+(£'+-f)tn(1+£) ]+ ~' +C,(;'. 

Re-

(10) 

This solution is contained in the general solution of the 
linearized equations (9) and corresponds to the choice 

f,(x) =-3C,lnlxi+3C,, f,(x) =3C,lnlxl. (11) 

Asymptotically for large ~ in frame of reference in 
which C3 = 0, o falls off as ~-\ if C2 * 0, and as ~-2 in 
the opposite case. Thus, formula (10) describes a per­
turbation that encompasses all of space. On the con­
trary, of physical interest are localized solutions which 
outside a certain finite volume coincide with the Fried­
mann solution. Such models enable one to construct a 
model of the universe which is homogeneous only on the 
average, and, in particular, to describe the picture of 
nuclei delayed in the expansion of a Friedmann universe. 

4>In the linear problem there exist self-similar solutions also of a 
more general form 6 = t'l' l'i(~), 'Y > -%. In the nonlinear case-only with 
'Y = 0. 

The linear self-preserving solution found above can, 
on giving up the continuity of the first derivatives of 
density and of velocity, be localized by means of joining 
it at the sound horizon ~ = 1 with the Friedmann solution 
which is valid for ~ > 1. Such a solution can describe 
the picture of the development of a local inhomogeneity. 
Indeed, if in homogeneously distributed matter a local 
increase of density occurs, then around it there will be 
formed a region of reduced density. At the boundary 
between this region and the unperturbed substance a 
wave of load redistribution arises which is propagated 
with the velocity of sound and in which, as is well known, 
the density and the velocity of the substance remain 
continuous, while their derivatives become discontinu­
ous. The condition (10) of joining at ~ = 1 to the Fried­
mann solution (o(1) = 0) imposes one relation on three 
arbitrary constants 

C,(1 +2ln2) +C,+C,,=O. 

However, the requirement of the change of sign of the 
perturbation of the density at ~ < 1 brings out one un­
pleasant characteristic of solution (10). It can easily be 
seen that o is a negative near the sound horizon for C1 
< 0. If this inequality is satisfied then the positiveness of 
ofor small ~.where o ~ C 1(3- 2~ 2 ln ~) + C2 /~ +C 3~ 2 

can be attained only under the condition C2 > 0. But the 
presence in the expression for the density of a term 
which increases for ~ - 0 as ~-\ denotes the presence 
at the center of a source of particles. 

Indeed, we write the equation uiTf.k = 0, which is 
analogous to the equation of continuity in nonrelativistic 
hydrodynamics in integral form which describes the 
variation of the number of particles inside the sphere 
of radius R: 

d 
dtN(R)= -P(R). 

Here 
R 

N(R) = J (1 + 6)'1•u,e'1'+•rdr 

is the number of particles inside a sphere of radius R, 

P(R, t) = R'(1 + o)'i•u'e-'1'+• 

is the flux of particles over the surface of the sphere. 
In the linear approximation P(R, t) =- u1(t, R)R2/t. 

The velocity appearing here can be obtained from equa­
tions (8): 

u,(6)=- -y: {c.[-: +(46-3- ;,)lnli-61 

+(4s+3+ ~,)tn(1+£J-81;lns]+ ~:+4C,£+C•}· 

For ~ - 0 the principal term in u 1(~) - ~-2 and the flux 
P(R, t) ~ C2ff/2/3 does not vanish if C2 * 0, and this 
is what denotes the presence of a source at r = 0. 

The presence of a source in the linear self -similar 
solution does not permit us to use it directly for de­
scribing the development of a local inhomogeneity. How­
ever, this singularity of the solution (10) is associated 
with extrapolating it into the region of small ~ where the 
validity of the linear approximation is violated. Appar­
ently the nonlinear solution will not contain such a sin­
gularity. In order to construct a nonlinear self-similar 
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solution it will be necessary to solve the system (8) 
numerically. In doing so it is useful to keep in mind 
that in the neighborhood of ~ = 1 the nonlinear terms in 
(8) are not essential and the linear approximation is 
valid.~> In the case of a numerical integration of the 
system (8) in the range 1 > ~ > 0 the region ~ ~ 1 will 
be described by the linear solution. 

5>From the continuity of the density and of the velocity on the 
sound horizon, as can be seen from the equations for the gravitational 
field in (8), follows the continuity of X, j.L, X', j.t', as~--> 1. Therefore, 
in the neighborhood of~- I the nonlinear terms in the equations are 
not essential (X'~ :\'2 ). 
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