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The interaction between a two-level molecule and the field of a standing transverse wave of reso-
nance frequency is considered. It is shown that conditions exist for which the molecular energy
increases at the expense of the field energy. As the result of a nonlinear treatment, the internal
energy and translational energy of the molecule are determined.

Asis wen known»2] a charged particle, placed in an
inhomogeneous RF field, is acted upon by a force which
is quadratic in the field amplitude and leads to deflec-
tion of the particle away from regions of higher field
intensity:
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(e is the charge, M is the particle mass, w is the
frequency, and | E| is the field amplitude). This force
is increased by a factor of [1 — &/w]™ if the charged
particle is an oscillator of natural frequency £ close
to the resonance frequengy of the field. The possibility
of this effect in the case when the oscillator is formed
by a charged particle in a magnetic field was pointed
out in[3"’], and the limiting case w = §, when it is not
po[s?ible to use the averaging method, was examined
inl®1,

In the present work it will be shown that the effect
investigated int®%] may also take place in the case of
an uncharged particle possessing a dipole moment., We
shall proceed from the general formula for the force
acting on a dipole in an inhomogeneous electric field!®]

F = V(dE) = (dV)E + [drot E], 1)*

and as the dipole system we shall consider a two-
level molecule. The equation describing the interac-
tion of a two-level system with an electric field has
the form!™®!

d+40d= 2—;’“@;92 — Qd* — &) UE, (2)
where do = max|d|, @ is the resonance frequency of
the molecule, and h is Planck’s constant.

First we shall assume that the field has the form of
a traveling wave: Ex = Eosin Q(t - z/ c), and seek the
solution of (2) in the form dx = dea(t)cos  (t — z/c).
Then, for the amplitude a(t) of the dipole moment and
the molecular velocity z (taking account of (1)) we ob-

tain the following system of equations
d.E, doE,Q
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According to (3), the amplitude of the dipole moment
changes with time according to the law a =sin(d.Eqt/H)

3)

a(t).

*[drotE] =d X curl E.
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and the difference of the populations of the levels

w= (1 -a?)"2 = —cos (doE¢t/l1) periodically assumes
positive values (as also in the case of a homogeneous
RF field!'®7), At the same time the particle is acted
upon by an average (over the period of the RF field)
force:
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as a result of which the molecule can be accelerated.

However, comparing the dimensionless parameters
q= doEo/HQ and p = doEo/Mcz, which respectively
characterize the change in the internal energy of the
molecule and its acceleration, we arrive at the conclu-
sion that the latter effect is insignificantly small in
comparison with the former. In fact, for E, ~ 10° esu,
do~ 1078 @~ 10", M ~ 10* and c = 3 x 10", we find
q=10"" and p = 107°,

As will be shown below, the effectiveness of the
acceleration of a dipole in an inhomogeneous RF field
can be significantly increased by placing the particle
in the high-frequency potential well formed by the field
of the standing wave Ex = E,sinwt sin (wz/c). In this
case, substituting

d. = do[a(¢) sin 0t + b(t) cos wt]

(4)

into Eqgs. (1) and (2), and averaging over the period of
the RF field, we obtain
a=Ab, b+ Aa= —q(1—a*—b*)ksink,

(5)

g = '/,ua cos §,

where we have introduced the notation
Q __ doE, By
P TO R TP

An interesting fact, following from (5), is that
change in the amplitude of the dipole moment is asso-
ciated with a displacement of the particle along the
§-axis; if at the initial moment of time the molecule is
at the bottom of the ‘‘well”’ (i.e., at the point £ = 0,
where the electric field vanishes) and is unpolarized;
a(0) =b(0) = 0, a small displacement along the £-axis
leads to polarization of the molecule, and this leads in
turn to an increase in the shift, and so on. The begin-
ning of the process (a K< 1, b € 1, £ < 1) can be in-
vestigated by linearizing Eq. (5). As a result we find
the following equation for §£:

=1—

0wz
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c



786

&9+ A%+ /:Augt = 0. (6)
Substituting £ =

A=

£0,eT in (6), we find
— o7 = (s — YoApg)h. )

We are interested in the roots of Eq. (7) which have
a positive real part; these correspond to the increase
in the energy of the molecule. These roots occur for
both signs of the frequency detuning. However, for
A < 0 increase in the energy of the oscillator occurs
whatever the relation between the parameters pq and
A, whereas for A > 0 there is a threshold value A¢
= (2uq) 3. For A S Ag, Eq. (7) has two roots with a
positive real part:

- (BT (T) @

From formulas (7) and (8) we can determine the
maximum value of the increment ¢y = Re », depending
on A:

Vmaz = (':00)"  Dmex = —('opgq)’,

Ymee = YsV3(10)',  Ama= "2 (ug)".

To find the maximum energy acquired by the oscil-
lator, it is necessary to examine the system of Eqgs.

(5) in a nonlinear approximation. In the general case,
when the relationship between the parameters u, q,
and A is arbitrary, a solution can be found by means of
numerical integration, Below we give analytic solu-
tions of this system, which can be obtained if the con-
ditions y < ymax are fulfilled.

In the range of frequencies less than the resonance
frequency (A < 0), assuming that the condition a < Aa
is fulfilled, expressing a in terms of ¢ from the second
of Egs. (5):

©)

a—ITIsmE( +Z4 sng)"”’ (10)
and substituting this quantity into the equation of
motion, we obtain

v 1 =" (11)
E=— 3 |Al smgcosg (1+—sm E ) .
The first integral of this equation
L wlA] ¢ . \" (12)
13 _——q [(1+ sm§) (1—{-——25111 §o) ]

allows us to determine the maximum displacement of
the molecule. Substituting g(gmax) = 0 in (12) we
find £max = 7 + £o. If the condition q® < A? is ful-
filled, expanding the righthand side of (12) in a series
and integrating, we find
. 1 pg\*
o= (7|T|)

vtg/2e” g
1+ tg*(5/2) e’ viA|

According to (13) the velocity of the particle increases

exponentially at the beginning of the process (at

£ ~ £,) and attains its maximum value Emax v when

the particle is displaced to the maximum of the electric

field £ = 7/2 (in a time Tmax = —y " Intan (£,/2).

The amplitude of the polarization vector attains its

maximum value amayx = ¢/] A | < 1 at this time).?

t= 13)

DWe should note that even at lower values of the frequency detuning
|Al ~ q, the quantity a, according to (10), cannot exceed unity, i.e., the
molecule cannot go over into an inverted state.
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After this the molecule moves into a retarding field
and begins to lose energy.

The nonlinear approximation under consideration is
correct provided that (uq)¥® < |A|, i.e., when the
increment is small in comparlson with its maximum.
For an estimate we take y ~ ymax = (%> 4q)"® and go
over to dimensional variables; we find

1 deEg )'/- (14)

Umes X € (_2' )

Using the values given above for the parameters
occurring in (14), we obtain vmax ~ 10" cm/sec.

We shall now consider the range of frequencies
greater than the resonance frequency of the oscillator:
A > 0. In this case, using the relation

(A* — A% — @*)'h = A+ ga sin § — gp~'E, (15)

it is possible to transform the system (5) to the follow-
ing form:

L -

(16)

1 .
= ———g[Ap 4 q(2Etg§ —E*) ]sink
cosk 2

dt* cosk

An analytic solution of Eq. (16) can be obtained close
to the instability threshold, i.e., for A S A =(2 wq)Y?,
where the increment is small compared with Ac. A
solution of (16) in this case can be sought in the form

= £o(7)cos (AT/V2)®), Substituting ¢ into (16) and
averaging the resulting expressions over the period
A7}, we find:®
l) gnl,

(o]
YR LAl Al

& — vt = ( 3 3 (T—1)>0 17)
Integrating (17), we determine the maximum displace-
ment of the particle:

A

8

Eo me = 413V (A7 4 9¢7) 5. (18)

Assuming that Agz < ¢* and taking Ymax ~ (nq)v®
for the estimate, we find &max ~ q (pq)Y>.

Thus, if the pr1nc1pa1 effect in the field of a travel-
ing wave is an increase in the internal energy of the
molecule ({max ~ 1), in the field of a standing wave
an increase in the translational energy of the molecule
occurs, the conditions for acceleration being more ef-
fectlve in the region of frequenc1es w < (imax
~ uY® in comparison with &max ~ n?*for w > £2).
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