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The interaction between a two-level molecule and the field of a standing transverse wave of reso
nance frequency is considered. It is shown that conditions exist for which the molecular energy 
increases at the expense of the field energy. As the result of a nonlinear treatment, the internal 
energy and translational energy of the molecule are determined. 

As is well knownr 1• 2l, a charged particle, placed in an 
inhomogeneous RF field, is acted upon by a force which 
is quadratic in the field amplitude and leads to deflec
tion of the particle away from regions of higher field 
intensity: 

e• cl 
(f)=- BMro• dr lEI' 

( e is the charge, M is the particle mass, w is the 
frequency, and I E I is the field amplitude). This force 
is increased by a factor of [ 1 - 0/ w rl if the charged 
particle is an oscillator of natural frequency 0 close 
to the resonance frequency of the field. The possibility 
of this effect in the case when the oscillator is formed 
by a charged particle in a magnetic field was pointed 
out inr 3' 4l, and the limiting case w = 0, when it is not 
possible to use the averaging method, was examined 
inrsJ. 

In the present work it will be shown that the effect 
investigated in[3-sJ may also take place in the case of 
an uncharged particle possessing a dipole moment. We 
shall proceed from the general formula for the force 
acting on a dipole in an inhomogeneous electric field rsJ 

F= V(dE) = (dV)E+ [drotE], (1)* 

and as the dipole system we shall consider a two
level molecule. The equation describing the interac
tion of a two-level system with an electric field has 
the form [7- 91 

·a + Q'd = 2:· < ao'Q' - Q'd' - il•J ''·E, (2 > 

where d0 = max I d I, 0 is the resonance frequency of 
the molecule, and fi is Planck's constant. 

First we shall assume that the field has the form of 
a traveling wave: Ex= E0 sin O(t- z/c), and seek the 
solution of (2) in the form dx = doa(t)cos O(t- z/c). 
Then, for the amplitude a(t) of the dipole moment and 
the molecular velocity z (taking account of (1)) we ob
tain the following system of equations 

., doEo(i •j" .. cloEoQ ( {3) .. =-T -a "• z=-~a t). 

According to (3), the amplitude of the dipole moment 
changes with time according to the law a =sin(doE 0t/fi) 

*[d rotE] = d X curl E. 
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and the difference of the populations of the levels 
w = ( 1 - a 2 ) 1/ 2 = -cos ( d0Eot/fi) periodically assumes 
positive values (as also in the case of a homogeneous 
RF fieldr 10l). At the same time the particle is acted 
upon by an average (over the period of the RF field) 
force: 

cloEoQ . d0E0 
- -c-sm-1i-t, 

as a result of which the molecule can be accelerated. 
However, com pari~ the dimensionless parameters 

q = d0 Eo/fi0 and J.J. = d0 E0 /Mc 2, which respectively 
characterize the change in the internal energy of the 
molecule and its acceleration, we arrive at the conclu
sion that the latter effect is insignificantly small in 
comparison with the former. In fact, for Eo~ 105 esu, 
d0 ~ 10-18, 0 ~ 101\ M ~ 10-24 and c = 3 x 1010, we find 
q = 10-1 and J.J. = 10-10• 

As will be shown below, the effectiveness of the 
acceleration of a dipole in an inhomogeneous RF field 
can be significantly increased by placing the particle 
in the high-frequency potential well formed by the field 
of the standing wave Ex = E 0 sin wt sin (wz/ c). In this 
case, substituting 

clx = cl,[a(t) sin rot+ b(t) cos rot] (4) 

into Eqs. (1) and (2), and averaging over the period of 
the RF field, we obtain 

a= !:J.b, 6 + !:J.a = -q(i- a2 - b2 )'"sin 6. 

f = '/211a cos 6, 
(5) 

where we have introduced the notation 
roz Q cl,E. d.E. 

-r=rot, 6=-c-, !:!.=1--;;;-, q= !iQ' J1= Me•· 

An interesting fact, following from (5), is that 
change in the amplitude of the dipole moment is asso
ciated with a displacement of the particle along the 
~-axis; if at the initial moment of time the molecule is 
at the bottom of the "well" (i.e., at the point ~ = 0, 
where the electric field vanishes) and is unpolarized; 
a( 0) = b( 0) = 0, a small displacement along the ~-axis 
leads to polarization of the molecule, and this leads in 
turn to an increase in the shift, and so on. The begin
ning of the process (a« 1, b « 1, ~ « 1) can be in
vestigated by linearizing Eq. (5). As a result we find 
the following equation for ~ : 
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s;<•> + ~·~· + · t.A11qs = o. (6) 

Substituting ~ = ~ oe.\ T in (6 ), we find 

(7) 

We are interested in the roots of Eq. (7) which have 
a positive real part; these correspond to the increase 
in the energy of the molecule. These roots occur for 
both signs of the frequency detuning. However, for 
A < 0 increase in the energy of the oscillator occurs 
whatever the relation between the parameters J.Lq and 
A, whereas for A > 0 there is a threshold value A c 
= (2j.Lq)113• For A$ Ac, Eq. (7) has two roots with a 
positive real part: 

( t. )'''{[ ( ~ )''•]'I· . [ ( ~ )''•]'I'} A= -J.Iq~ 1- - ±! 1 + T 
8 ~' ' 

(8) 

From formulas (7) and (8) we can determine the 
maximum value of the increment y = Re .\, depending 
on A: 

Ym= = 1/4}'3(J.Iq) '1•, ~"'= = 1/2 (J.Iq) 'I•. 
(9) 

To find the maximum energy acquired by the oscil
lator, it is necessary to examine the system of Eqs. 
(5) in a nonlinear approximation. In the general case, 
when the relationship between the parameters J.L, q, 
and A is arbitrary, a solution can be found by means of 
numerical integration. Below we give analytic solu
tions of this system, which can be obtained if the con
ditions y « Ymax are fulfilled. 

In the range of frequencies less than the resonance 
frequency (A < 0), assuming that the condition a« Aa 
is fulfilled, expressing a in terms of ~ from the second 
of Eqs. (5): 

a= l~l sins( 1+ ~. sin'sf'' 

and substituting this quantity into the equation of 
motion, we obtain 

" 1 qf.L • ( q• . 2 ) _.,, 

6=2msm6cos6 1+--xzsm 6 . 

The first integral of this equation 

. 11141 [( q' )''• ( q' )'I•] 6'=-q- 1+-xzsin'!; - 1+-xzsin'so 

(10) 

(11) 

(12) 

allows us to determine the maximum displacement of 
the molecule. Substituting ~(~max>= 0 in (12), we 
find ~max = 11 + ~o· If the condition q2 « A 2 is ful
filled, expanding the righthand side of (12) in a series 
and integrating, we find 

. 2ytg(6o/2)e" q . ( 1 11q )''• 
s= 1+tg'(~o/2)e'"' a=~6. y= TW . (13) 

According to (13), the velocity of the particle increases 
exponentially at the beginning of the process (at 
~ - ~ 0 ) and attains its maximum value ~max = y when 
the particle is displaced to the maximum of the electric 
field~= 11/2 (inatime Tmax=-y-1 lntan(~ 0/2). 
The amplitude of the polarization vector attains its 
maximum value a max = qj I A I « 1 at this time). 11 

'>we should note that even at lower values of the frequency detuning 
llll - q, the quantity a, according to (I 0), cannot exceed unity, i.e., the 
molecule cannot go over into an inverted state. 

After this the molecule moves into a retarding field 
and begins to lose energy. 

The nonlinear approximation under cons ide ration is 
correct provided that (J.Lq) 113 « lA I, i.e., when the 
increment is small in comparison with its maximum. 
For an estimate we take 'Y - ymax = ( Y2 J.Lq)1/ 3 and go 
over to dimensional variables; we find 

( 1 d,•E,' )'I• 
Vm= ~ C 2 Mc'ii'Q . 

Using the values given above for the parameters 
occurring in (14), we obtain vmax- 107 em/sec. 

(14) 

We shall now consider the range of frequencies 
greater than the resonance frequency of the oscillator: 
A. > 0. In this case, using the relation 

(~' -A'a'- d')''• = ~ + qasin 6- qJ.I-·~·. (15) 

it is possible to transform the system (5) to the follow
ing form: 

d" ·~ ·~ 1 " (16) ---· _.:__+ t.•~ = --q[L\IJ + q(2~tg!;- t')]sin~. 
d-e' cos~ cosf, 2 · 

An analytic solution of Eq. (16) can.be obtained close 
to the instability threshold, i.e., for A $ Ac = ( 2 J.Lq)113, 

where the increment is small compared with Ac· A 
solution of (16) in this case can be sought in the form 
~ = ~ 0(T)cos (AT/f2)[sJ. Substituting ~ into (16) and 
averaging the resulting expressions over the period 
A.~\ we find: 21 

6.-y's•=-; ( ~,' +3q')6o'.v'=~''(~~· -1)>o. (17) 

Integrating (17), we determine the maximum displace
ment of the particle: 

(18) 

Assuming that A~ « q2 and taking Ymp- (J.Lq)113 

for the estimate, we find bax- q-1(J.Lq)1/ • 

Thus, if the principal effect in the field of a travel
ing wave is an increase in the internal energy of the 
molecule (~max- j.L ), in the field of a standing wave 
an increase in the translational energy of the molecule 
occurs, the conditions for acceleration being more ef
fective in the region of frequencies w < 0 (~max 
- J.L 113 in comparison with ~max- J.L 213 for w > ll). 
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