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Static correlations at the critical point are investigated quantitatively by field theory methods. The 
correlation functions in the three-dimensional Ising, Heisenberg, and Bosegas models are found in 
the form of expansions in powers of a small parameter related to the critical index 11· In the sub­
critical region of distances r >> r 0 , ln ( r/ r 0 ) ~ 1, the scaling laws are found to be valid only within 
an accuracy of ~ 11. In the critical region, ln ( r / r 0 ) » 1, there are two possible asymptotic behav­
iors, depending on the magnitude of 11. For 11 < 11 1 ~ 10-3 and ln r - oo, the corrections to the 
Ornstein-Zernike theory tend to zero and, in particular, 11eff- C x 10-3 ln-2 r, where C = 0.50 
(Ising), 0.64 (Bose) or 0.76 (Heisenberg). For 11 > 71 1 and ln r-oo, the effective indices tend to 
universal constants 71 2 ••• , which depend only on the symmetry of the system; deviations from the 
scaling laws tend to zero as a small power of ro/ r. 

1. INTRODUCTION 

THE hypothesis of scale invariance in the critical re­
gion of temperature and momenta (T- Tc, k- 0)[11 
has made it possible to describe phenomenologically a 
broad class of critical phenomena by means of two 
indices giving the behavior of the order parameter and 
of the correlation length. In the two-dimensional Ising 
model this hypothesis agrees with the exact solution; 
the critical region turns out to be broad and the asymp­
totic behavior is attained at momenta of the order of 
several reciprocal lattice constants: k $ r 01• In the 
two-dimensional model the indices and correlation func­
tions differ markedly from those predicted by self­
consistent field theory (Ornstein-Zernike correlation). 

In a three-dimensional system, however, the situa­
tion is evidently different. Calculations using extrapo­
lation of high-temperature expansionsr 21 show that the 
correlation of the spins at the critical point (the Green 
function G(k)) differs little from the Ornstein-Zernike 
function in its momentum-dependence 

G k) =z(lnkr,) (1) 
( k' , T = T,. 

Here z( ln kr 0 ) is a slowly-varying function of the mo­
mentum k. The effective index, according to[ 2J, is of 
order 10-2 

TJeff (ln kro) = z' (ln kr,) / z(ln kro) ~ 10-'. (2) 

The thought naturally arises-is it not possible to 
use the small parameter 11 to construct a quantitative 
theory? 

First of all one should understand which properties 
of the correlations are associated with a small value of 
the index 11. For this it is convenient to go over from 
the correlation functions Qn = -onF/oh 1 ••• 1ihn (F is 
the free energy, and hi= h(ki) is a magnetic field in 
the language of the Ising model) to the vertex parts: 

Q"(k,, ... , k.) = G(k,) ... G(kn)f.(k,)ll(~k,), 

Q,(k,, k,) = G(k,)ll(k, + k,). 
(3) 

From the standpoint of phenomenological theory, the 
vertices - rn(ki) are the Landau coefficients of the 
expansion of the free energy 'Ilk = G(k) hk in powers of 
the order parameter (or, in the Ising language, of the 
magnetic moment). The usual scaling forms in coordi­
nate space for the correlation functions(!] 

Q.(r,, ... ' r.) = r"<'-'+•)f'q.(r,fr) (4) 

correspond in momentum space to the following forms 
for the vertex parts: 

r.(k,) = (z(k))-"1'kd+n(!-d/Z)yn(k,j k), k, ~ k-+0; (5) 

z(k) = k'G(k) ~ k•. (6) 

In a three-dimensional system ( d = 3 ), the estimate 
(5) for n = 4 shows that the pair interaction is small, 
r 4 ~ z-2k- 0, i.e., the bare pair interaction Vo is 
screened at small momenta k << ro1 ( ro is the interac­
tion radius of the pair forces): 

Veff = f.(k, = 0) = V, 

+ (contribution from diagrams) = 0. (7) 
In the three-body interaction ra (in the Ising model 

language, the correlation of six spins), no screening 
occurs and r 6 depends slowly on the momenta: 

r, ~ z-'(k)- (slow function of k) (8) 

One must remember that, apart from the "main 
part" ~z3 ~ k-311, there is in ra a bare constant r~o) 
= g0 , which will be unimportant only at exponentially 
small momenta k ~ g~/31j. This means that the usual 
scaling laws can be true only in an exponentially narrow 
region and that in the subcritical region attainable in 
practice they are somehow modified and cease to be 
universal (g0 is different for different systems). The 
fact that three-body forces play a distinct role for 
11 « 1 was noted by Patashinskii [31. 

As regards the remaining bare constants, they begin 
to be unimportant in the subcritical region k « r~\ 
ln kr 0 ~ 1, inasmuch as the vertex parts rn for n > 6 
are large: r n >6 ~ k3-n 12 >> canst. 

552 



CORRELATION FUNCTIONS IN THE THEORY OF PHASE TRANSITIONS 553 

The above properties of systems with small 17 make 
the problem more difficult rather than easier, but 
there is one more property which does lead to appreci­
able simplification, namely, that the smallness of the 
quantity 17 implies that the effective interaction is 
small: 

zni'k"1'-'r n (k,) = Yn(k, I k) ~ 1 for 1] ~ 1. (9) 

This can be understood if we make use of the relativis­
tic analogy of the papers of Polyakov[ 4J and the 
author[ 5 J and write the "unitarity condition" for 
Im G(k2 < 0): 

2Im6(k2<0i= --e- + ~ + 

Here dr n(k, ki) = kn-3 dTn( 1, ki/k) is an element of the 
phase space of two-dimensional relativistic particles 
with zero mass. The details can be found in[ 5J; for our 
purposes, only the positiveness of each term in (10) is 
important. 

The unitarity condition leads to a "sum rule" for 
the index 17, since the imaginary part Im G( k2 ) 

= k-2 Im z ( ln fk2) is proportional to the effective index: 
z-1 Im z(lnf[k;T + in/2) =Y2 rrz'/z. All powers of z and 
k in this sum rule are obviously cancelled if the scaling 
laws (1) and (5) are taken into account, and dimension­
less vertices Yn(ki/k) appear in the sum rule: 

nz'/z = ri1Jeff = L, J IY:+,(kjk) jd-rn(f,k/k). (11) 

It is now clear that the smallness of the quantity 17eff 
means that each vertex Yn is small, i.e., the effective 
interaction in the subcritical region is weak. 

We emphasize that the smallness of 11eff has no 
connection with the magnitude of the bare pair constant 
V 0 or the other dimensional constants rho>. Only the 
dimensionless constant g0 (three-body forces) must be 
small. Then all the vertices r n will be given by dia­
grams containing g0 and will, as we shall see, have the 
form (5) with small Yn· 

2. THREE-BODY FORCES IN THE SUBCRITICAL 
REGION 

We thus arrive at the following model describing the 
correlations in the subcritical region of momenta 
(kr 0 « 1, -ln kr 0 Z 1): 

Z[h] = J li<p(r}exp [- ~ J d'r[-}<pV'<p + :! g,<p'- <ph]] . (12) 

Here Z is the partition function (a continuous inte­
gral), q; ( r) is the order parameter (magnetic moment 
in Ising model language), h(r) is the source (magnetic 
field), T is the temperature, and g0 « 1 is the coef­
ficient of the three-body forces. The correlation func­
tions Qn are defined by variation with respect to the 
source h( r ): 

Qn(r,, ... , rn) = ll" ln Z I llh(r,) ... lih(rn). 

If one wishes, one can write (12) as the mean value 
Z =(0 IS I 0) of the S-matrix of a relativistic two­
dimensional field ;p. For this one must go over to the 
pseudo-Euclidean metric r =(it, p). The Laplace op-

erator V 2 goes over to the d 'Alembert operator o 
= 'lp - a2;ae, and the factor i in the integral f d3r 
= i Jdtd 2p ensures the unitarity of the S-matrix. In 
place of the continuous integral (12) one can write a 
T-product; a diagram technique for the correlation 
functions Qn( ri) = (0 I T';jl ( ri) ... ;p ( rn) I 0) is then 
constructed in the usual way using Wick's theorem. 

We shall consider the first perturbation-theory cor­
rections to the correlation functions. These correc­
tions, as we shall see, are proportional to g~, g~ ln kr 0 , 

so that in the sub critical region ( -ln kr0 ~ 1) pertur­
bation theory is applicable at sufficiently small g0 • 

(We recall that ordinary perturbation theory in the 
pair interaction V0 q; 4 gives an expansion in the large 
parameter V0 /k[ 6 J. But since we know that the pair 
interaction is screened ( Veff( T = Tc) = 0 ), it is not 
necessary to take these·terms into account). 

In the zeroth (Ornstein-Zernike) approximation, we 
shall normalize the Green function Q2 = G(k) to 1/r in 
coordinate space: 

G,(r)=1lr, G,(k)=4n!k'. (13) 

(Changing the normalization of G(k) is equivalent to 
redefining the charge g and does not affect the dimen­
sionless quantities in which we are interested). Then 
the correction of first order in g2 is given by the dia-
gram 

i!B(k)=--@-

=G,'(k)Lf(2n)'ll(k-\"'lk,)Il' ~G,(k,). (14) 
5! L..J '=' (2n)' 

Integrals of this type are easily evaluated in coordinate 
space: 

llG(k) = ( 4n )'Lf~ d'r (e"' -1)-+-(~)' £ s'" d'r (kr)' (14') 
k' 5! r' k' 51 r' 2 · 

r 0 r 0 

The subtraction at k = 0 in (14') corresponds to rede­
fining the transition point as a result of the contribu­
tion of the small distances r ~ r 0 • To sum up, we have 
in the first approximation: 

4n ( " n'g' ) G(k)=- 1+-lnkr, . 
k' 45 

(15) 

In this same order ( g 2 ) the vertex parts r 4 , r 8 and 
rlO appear: 

r, = ~+(CRC) 

Fs = ~+(CRC) 

r,0 = ~ ( +(CRC) 

(16) 

(17) 

(18) 

(CRC = contributions from the remaining channels). 
Evaluation of these diagrams in coordinate space 

gives 
r, = g' ~J a'r~[ e~k;+r.,>•- 1] + (CRC) 

4! r' 
112g2 

= - 24( I k, + k,l + 1 k, + k, 1 + 1 k, + k, 1>, 
r, = g'~J d'r~e~•,+>,+>,+>,)• + (CRC) 

2! r' 

= n'g'/jk, + k, + k,+ k,j + (CRC) 
r,. = 4ng' I (k, + k, + k, + k, + k,)' + (CRC) 

(16a) 

(17a) 
(18a) 
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The number of channels is equal to 3, 15 and 126 
for r 4, r 8 and r 10 respectively' and in the general 
case is given by the formula 

(number of channe Is for the transition, n, _. n,) ; 
=== J (n, + n,) f/n,ln,l, n, "/=- n,, (19) 

1!(2n,) !/2(n,!)', n, = n,. 

In (16a) we have made the subtraction at ki = 0, in 
accordance with the initial assumption (7) (r4(ki = 0) 
= 0). This assumption means that the bare constant 
Vo is cancelled by the contribution of the distances 
r- r 0 in the diagrams, and this must, of necessity, 
occur for 11 < }"2 • Various exactly soluble field-theory 
models[7 1 show that such a cancellation does not re­
quire a set of bare constants and occurs in a self­
consistent manner, as in the two-dimensional Ising 
model. The reason for the screening is that Bose par­
ticles must necessarily repel each other ( Vo < 0 ), so 
that the diagrams are of alternating sign and cancel 
each other. An essential point is that no logarithmic 
terms appeared in r 4• r s, and r 10, inasmuch as all the 
integrals converge in a power-law fashion. This also 
applies to the remaining vertices rn, except for the 
unique dimensionless rs. 

The correction to r 6 is given by the diagram 

We thus arrive at a logarithmic situation, charac­
teristic of renormalizable field theories[ 81, and if the 
constant g is insufficiently small it is necessary to 
sum the principal logarithmic terms. 

Knowing the order of magnitude of the effective sub­
critical indices 11 - 10-2, a - 10-1, 11 = 0.64 found in(2 l 
by extrapolation of high-temperature expansions, we 
can estimate the order of magnitude of g. Thus it is 
clear from (15) that the effective critical index 11 is, 
in the first approximation, 

TJ~~ = 'l .. n'g'. (21) 

Thus, g2 - 10-1 • 

Another independent method of finding g is to esti­
mate the correlation of the energy densities D = (H), 
which determines the specific heat 

C ~ J D(r)d'r ~ D(q ~ r,-•), 

(rc is the correlation length). In momentum space 
D(q) at T = Tc behaves asr 1 • 4 • 5l 

D(q) = const·q-at•, (22) 

where a - Ys is the specific heat index, C - ( T - Tcra, 
and 11 = 0.64 is the correlation length index, rc 
- (T- Tct11 • According to the unitarity condition 

2Im1Jttf<OF::~ + · .. 

= const · Jr(p,q)!l'p~(p')~((p-q)'). (23) 

Consequently, the vertex T( p, q) behaves as 

T(p, q) = p<•-at•J"t(q 1 p). (24) 

For q « p, the vertex T(p, q) is proportional to 
D( q)(s,9]: 

T(p, q)-+ fT(p, O)D(q) = const·p<•-atv)l'(p I q)a1•. (25) 

We shall now find T( p, q) in our theory. The vertex 
T( p, q) satisfies the equation 

, ~ ;l ~ ~·· +A~ 
+s d'k T(k,q)(4nz)'f,(p,-k,k+q,-p-q) (26) 

= const . 
(2n)' 2lk' (k + q)' 

Using for r 4 the first approximation (16a), putting 
z = 1 in the zeroth approximation (the results do not 
depend on the normalization of z) and going over to the 
correlation function 

S T(p,q) e1•' d'p (27) 
(a,e.a,) =F.(r)= p'(p+ q)' (2n)', 

we obtain for Fq(r) the equation 

[ n'g' ] 2n'g' 
V,'(V,+iq)'F.(r)= ll(r) const---qF.(O) +--r-•F.(r). 

24 3 (28) 
For qr « 1, according to (25) and (27), 

f== 1/2(1-a/v). 

Substituting (29) into (28), for qr « 1 we obtain the 
relation 

(29) 

(30) 

(!+ 1)/(f-1) (!- 2) ='l,n'g'=30TJ + O(TJ'). (31) 

In the latter equality we have made use of the formula 
(21), which is true in our approximation - g2 • 

The experimental data a = Ys, 11 = 0.64 give f R: 0.4 
and then an estimate for 11 follows from (31): 

TJ ~ '/ .. (! + 1)/(f- 1) (!- 2) ~ 0.02. (32) 

We see that the various estimates of g do not con­
tradict each other and that the relation (31) gives a 
reasonable value (32) for 11· 

It is interesting that the agreement with experiment 
was obtained as a result of the large numerical coef­
ficient 30 in (31 ), which arose in a purely combinatorial 
manner: in (26) there are fewer factors of the type 
1/nl than in the correction (14), (15) for 11· Thus, even 
when 11 = 2 x 10-2 , the interaction is great enough for 
the singularity in the specific heat to be weakened from 
a = 7'2 (at 11 = 0) to a = Ys- 0. Here, of course, cor­
rections of the next order in g2 in (31), associated with 
corrections to r 4 , can also turn out to be magnified, 
so that (31) is valid only in order of magnitude. One 
must also bear in mind that corrections -g4 to 11 for 
g2 - 10-1 have the same order of magnitude as (21) and 
therefore in the subcritical region ln kr0 - 1 it is dif­
ficult to obtain exact relations. (Crudely speaking, the 
perturbation theory expansion parameter is not g2 but 
( 7rg)2 .) However, in the critical region -In kr0 » 1, as 
we shall see in the next section, the interaction will be 
weaker and perturbation theory in the effective charge 
g( ln k) will work better. 
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3. CORRELATIONS IN THE CRITICAL REGION 
(jlnkrol»1) 

We shall now consider the region of momenta kr0 

« 1 so small that ln kro can be regarded as a large 
parameter. We shall use the logarithmic approximation 
• 2 ( ( , 1.e., assume that z = k G k) and r 6 ki) are slow 
(logarithmic) functions of the momenta. This approxi­
mation is justified by the small experimental value of 
1'/eff and in addition is found to be self-consistent-
from our equations it will be seen that 1'/ is small: 
1'/ link-- -oo ~ 10-4 (i.e., even smaller than in the sub­
critical region). 

In the logarithmic approximation the unitarity con­
ditions for r6 lead, as for (11), to a differential equa­
tion of the form 

r,'(l)=fo(l)F(r,(l)z'(l)), l=ln(1/kr0). (33) 

For a better understanding of the meaning of this equa­
tion and the properties of the function F( g), we shall 
derive it by a more usual method, namely, by direct 
summing of diagrams. The diagrams for r 6 can be 
divided into three classes: 

1) Convergent diagrams, e.g., 

~~ (34) 

In these diagrams the important internal momenta are 
those of the order of the external ki; they therefore 
depend on the ratios ki/kj, so that the logarithmic ap­
proximation is not applicable to them. 

2) Divergent irreducible diagrams 

~~~~-(35) 
In these diagrams the large internal momenta k~ » ki 
k / // -1 • 1 , i --..--.. ro are the 1mportant ones, so that the external 
momenta do not appear in the propagators and only de­
termine the lower limit of the logarithmic integral 
1/ro J dk'/k'. Therefore, for ki ~ k the divergent dia-
k 

grams depend on one variable l = ln ( 1/kr0), For ex-
ample, diagrams (35)a, band c respectively give the 
contributions 

2n ' 1'' dk' 2n 1 

3 J k' r,'(k')z'(k') = 3 J dl,r,'(l,)z'(l,), (36) 
• 0 

I I 

- 11
3 J dt,r,'(l,)z'(l,), (37) 

0 

~· J dl,r,'(l,)z'(l,). (38) 
0 

These expressions must then be multiplied by the num­
ber of diagrams of one type which differ only in the ex­
ternal momentum configurations (for ki ~ k ...... 0, the 
contributions of diagrams of one type are, with logar­
ithmic accuracy ( ln ki = ln k), the same). The number 
of diagrams of the type (35)a, band c is 

N(a) = 6!/2·3!31 = 10, N(6) = 6!/2·1!1!4.1 = 15, 
N(s) = 6!/6·212!21 = 15. 

3) Divergent reducible diagrams, e.g., 

~g 
a b 

(39) 

These diagrams contain several logarithmic integra­
tions, corresponding to corrections to the internal 
vertices r 6· 

It is obvious that in the critical region l = ln( 1/kr0 ) 

...... oo, the divergent diagrams are the most important 
ones. They can be grouped in such a way that within 
them there are exact vertex parts r 6 in place of the 
bare go, and exact Green functions G(k') = z(k')/k'2• 

For the sum of the divergent diagrams r 6(l) we can 
write 

I 

r,(l) =go+ J r,(l,)K(l,)dl,. (40) 
0 

We shall show that the kex:nel K( h) possesses the 
property of renormalizability 

K(l,) =F(r,(l,)z'(l,)). (41) 

For the irreducible diagrams this property is obvi­
ous, since these contain only one logarithmic integra­
tion. The integrals over all the internal momenta 
k~, ... k~ apart from one, k~, converge, so that the 
factors r 6(ki) and z(ki) can be taken out for ki = k~. 
After this there remains a logarithmic integration over 
k~ of a function of the form [r 6(kD ]m+1 [z(k~Wm. For 
the reducible diagrams we must remember that the 
logarithmic part of the correction to the internal 
vertices r6(ki) is already accounted for in the irre­
ducible diagrams, and so we must make the corre­
sponding subtraction in the internal integrals for 
r 6(ki), after which the integrals over all the momenta 
k~ , ... kft will converge and we shall again obtain an 
integral over k~ of the form 

''" dk' J vr.(k') [r,(k')z'(k')]m. 
• 

For example! diagram (39)a contains two logarithmic 
integrations 1 

1 J d'k' 2n 3! -,;_;z r,(k)llr,(k) = 3 Jdt,r,(l,)llr,(l,)z'(l,). 
0 

(42) 

-'r - 1 J r 2 3 ... d'r 2n J "2 ' dr . "'·-- ,ze -=- r.z -smkr 
3! r' 3 kr' .. 

2n Jl ' 3 2n ' 3 [ ~ dr ] =3 
0
r,zdt,+ 3 r,(l)z(l) lnkro+Jk;i"s"inkr 

., 

= 2; Jr,'(l,)z'(l,)dl, + 211 r,'(l)z'(l) (1- C). 
0 3 (43) 

Here C is Euler's constant. In (43) we include the 

1llt is essential to note that in separating out the convergent part 
from the logarithmic integral for lir 6 the answer depends on the ratios 
of the mome~ta and on the method of cutoff. Therefore we can only 
obtain an estimate of the contribution of the reducible diagrams in this 
way. However, this estimate shows that the reducible diagrams make a 
relatively small contribution to the function F, e.g., the coefficient 
(60(1-c) X (27r/3)2 - 1.2 X 102 ) ofr~z6 in (44) is almost an order of 
magnitude smaller than the contribution of the irreducible diagram 
(38)- l57r4 /2 -7 X 102 • 
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first term in the divergent part r aU ); it is, therefore, 
already accounted for in the "second-order" diagram 
in (35). There remains the second term; it gives a 
"third -order" contribution 

2 2 I 

60(--i--) (1-C) ~r~'(l~)z'(l,)dl,. (44) 

The number of diagrams of the type (39)a is N(a) 
= 6 !/ 11 2 13 ! = 60. Similarly, we can verify that the 
reducible diagrams of higher orders also make a con­
tribution of the form (40), (41). We shall now investi­
gate Eqs. (11) and (33) as l - ao, First of all, it is ob­
vious that the right-hand side of Eq. (11) depends, like 
F in (33), only on the renormalized charge g( l) 
= z3(l)rs(l): 

z'(l)/z(l)=-TJ(g(l)). (45) 

Then, eliminating z and r 6 from the equations, we 
obtain our equation for the renormalized charge 21 : 

g'(t) = g[F(g)- 3TJ(g)] ==<!>(g). (46) 

As l - ao, as is known from the theory of differen­
tial equations, g(l) - g( ao ), where g( ao) is a stable 
root of the function cl>(g). Also the effective index 

Tleff = -z' I z ='I] (g(l)) 

tends to a constant 17 ( g( oo )), so that the scaling law 

G = const·k•-', r,-->- g( oo)z-'-->- const·k-'"· 

is asymptotically true. 
In order to estimate the index 17 00 and elucidate how 

the scaling laws are modified in the pre-asymptotic 
region ln ( 1/kr 0 ) » 1, we shall consider the expected 
graph of the function ci> (g): 

First of all, only one sign of g, corresponding to re­
pulsion, has physical meaning; in our normalization it 
is negative. (Attraction in a Bose-system would lead 
to a first-order phase transition.) The behavior of 
cl>(g) as g-- 0 is determined by perturbation theory: 

<!>(g)-->-"l,ng'+ (-10')g"+ (-10')g'+.... (47) 

Thus, the zero root g = 0 is doubly degenerate and 
stable. 

The first root g1 of the equation ci>(g) = 0, as can 
be seen from the figure, is unstable: ci>'{g 1) > 0. The 
second root g2 will be stable. The order of magnitude 
of g1, 2 can be estimated by the Pade method or as the 
ratio of the Taylor coefficients of the function 
g2/ ci>( g). The first terms of (47) give a very small 
value, which justifies the logarithmic approximation 

g,, 2 - 10-2, 'l]oo - 'l.,n2g,2 - 10-•. 

We can now analyze the qualitative behavior. of the 
renormalized charge g(l) and of the effective index 
17(g(l)) on increase of l = ln (1/kr0 ). 

2>Equations (33), ( 45) and ( 46) are equations of the Lie renormali­
zation group. 

1. If the bare value g0 is in the interval g1 < g0 < 0, 
g( l ) increases monotonically and tends to "-0" in 
accordance with the law: 

3 3 
g(l)-+--_ = . (48) 

20nl 20n In kr, 

The effective index 17eff tends to zero in accordance 
with the law 

'IJeff-->- rt2g2 I 45-+ 1 I 2000 (In kro) 2. (49) 

In this case, perturbation theory in the effective 
charge g( l) gives an expansion in inverse powers of 
ln kro and is applicable even when ln kr0 ~ 1. 

2. If the bare constant g0 < gh then g( l) tends to 
g2 in accordance with the law: 

g(l)-+ g2 + const·exp{$'(g,)l} = g, + const· (kr,)-"''<••1. 

The effective indices 17, a, etc., also tend to their 
asymptotic values in accordance with the same law: 

1J eff-+ 1J (g,) + const· (kr0 ) -<>'<•u. (50) 

If we take the estimate g ~ 10-2 which follows from 
the first terms of the expansion of «<>(g), perturbation 
theory will be applicable for 17(g). For example, the 
diagram 

contributes to 17 (g) 

Bn' ( n'g' )' .s'IJ =- -- - w-•- w-' 
3 24 ' 

which is two orders of magnitude smaller than the 
main contribution (21): 

1J - n'g2 I 45 - 10_... 

(51) 

The reason for this is that there are fewer diagrams 
in the Green function than in the vertex r 6 , so that, 
although the higher-order corrections to ra (i.e., to 
«<>(g)) are not small for g ~ 10-2, the corrections to the 
Green function (i.e., to 17(g)) will be small. 

We note that for g ~ 10-2, i.e., 17 ~ 10-5, the specific 
heat index will already be close to the classical value 
a = 11 = %, so that, in this case, in the critical region 
ln k » 1 the index a ( ln k) must begin to increase. 

Thus, we see that two solutions are possible, de­
pending on the magnitude of the bare constant g0 : at 
sufficiently small g0 < 0, the effective interaction 
tends logarithmically to zero and the indices slowly 
approach the free values (i.e., from the Landau theory); 
with stronger repulsion, the interaction g(l) and the 
indices 17(l), a(l) and 11(Z) tend to universal constants, 
as was suggested earlier[sJ. The asymptotic index 17 is 
very small in both cases and therefore the logarithmic 
approximation used is justified. In this one can assume 
for practical calculations, that 11 = 0, G = 41T/k2 and 
calculate only the function F(g) in (46). The small 
values of 17ao and g00 are associated with the rapid 
growth of the Taylor coefficients in the function F(g), 
i.e., with the increase in the number of high-order dia­
grams. We can hope, nevertheless, that it will be pos­
sible to determine the position of the zero of the func­
tion F(g) sufficiently accurately by the Pade method, 
in a manner analogous to the determination of the 
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transition point Tc from high-temperature expan­
sions(loJ. 

4. GENERALIZATION TO OTHER SYSTEMS 

First we shall explain why our methods are not ap­
plicable to the two-dimensional Ising model, i.e., why 
the index TJ cannot be small in a two-dimensional sys­
tem. The point is that as 1J - 0 the spin correlation 
in two-dimensional space increases indefinitely: 

r r-'11 
G(r) = Jd'k · k•-'e"• ~ --+ oo. 

'l') 

(52) 

Therefore, if we choose Go = 1/k2 as the zeroth ap­
proximation we obtain enormous corrections in the 
next approximation, proportional to ln R where R is 
the lattice dimension. This means that in the two­
dimensional system 1J must be fairly large and the 
logarithmic approximation is inapplicable. Also, it is 
clear why in the two-dimensional Ising model the 
scaling laws have a wide region of applicability 
(kr 0 2' 1) - self-consistent field theory has no region 
of applicability at all in two-dimensional space. Thus, 
the two-dimensional Ising model is not a completely 
felicitous analogy for the three-dimensional problem. 

The theory considered above was concerned with the 
three-dimensional Ising model, i.e., with systems with 
a scalar real order parameter (critical points of 
liquids, etc.). The generalization to the Bose-liquid 
(the ;\-point of helium) and the Heisenberg model (the 
Curie point of a ferromagnet) creates no difficulties. 

A Bose-liquid close to the ;\-point is described by a 
complex classical field 1/J or, equivalently, by a two­
dimensional vector 'Pa = (Re 1/J, Im 1/J) (the lattice of 
plane dipoles of the paper by Yaks and Larkin[ 111 ). The 
gauge invariance of the complex field 1/J - eiOtljJ im­
plies invariance with respect to rotation of the vector 
cp in the two-dimensional space. This can be seen from 
the Hamiltonian 

1 1 1 
H =z-¢"(V'+T)'¢ +4! V,('iJ"¢)' +mg,(¢"¢)' + ... 

(53) 
=..!....Qlm(V'+T)q>m+ 4

1
1 Vo(q>m2)'+ 6\ go(Qlm')'+ ... • 

2 . . 
The partition function for T- Tc can be expressed as 
a continuous integral 

e-PtT = Z = J 6q>. exp{- ~ J d'r[H(<p)- <pmho]}, (54) 

and the Green functions are defined as functional de­
rivatives with respect to the source h = ha: 

B••••C_n 

Q. (r,, ... ,r.)=6•F/6hm,(r,) ... 6hm.(r.). (55) 

The Heisenberg model near the Curie point is de­
scribed by a classical vector field 'Pa (three-compon­
ent). (For the proof we can make use of the diagram 
techniquer 12 l and, as T - Tc and ki - 0, retain the 
zeroth terms in the sums over the frequencies.) The 
effective Hamiltonian of the classical field in the 
Heisenberg model has the form (53), where the con­
stants V0 , g0 , ••• depend on the spin S, and the vector 
cp Ot is three-dimensional. 

Thus the whole difference between the Bose-liquid 
and the Heisenberg ferromagnetic on the one hand, and 
the Ising model on the other reduces, close to the Curie 
point, to the fact that the corresponding classical field 

cp, i.e., the order parameter, has an internal degree of 
freedom, analogous to isotopic spin. The vertex parts 
rn(ki) will be tensors of rank n in the two- or three­
dimensional isotopic space, symmetric with respect to 
interchanges of any pair of variables kiOti- kjaj. 
(Here Oti = 1, 2 or 1, 2, 3 are the tensor indices.) This 
was noted by Larkin and Khmel'nitskii[ 13 l with four­
dimensional models as examples. 

After this the construction of the theory is analogous 
to that in Sees. 2 and 3. In the logarithmic approxima­
tion the Green function is equal to 

(56) 

The three-body interaction has the form (with logarith­
mic exactness) 

z'r,• .. "•(I) F= 1 I .,g(l) [6.,.,6.,m,6., •• + {14 interchange)]. (57) 

In second order in g the pair interaction is (diagram 
(16)) 

n'g' (a+4) 
z'f,(k,, a.)= -24--75- {4(ku + k., + k,) (6.,634 + 6,,624 + 6286,.) 

+(a+ 2) [k126.,6,. + k .. 6.,6" + k,6,6 .. ]} + O(g'). (58) 

Here a is the dimensionality of the isotopic space: 
a = 1 (Ising), a = 2 (Bose), or a = 3 (Heisenberg). The 
abbreviated notation 

6<1""" 6m1m1, k,s= jk, +kll· 

is used. The function g(l) is determined by Eq. (46), 
where cl>(g) depends on a in the following way: 

4n n• 
lll(g) ~ g'T5(3a + 22)+ g' 75 (2720 + 620a + 34a' +a')+ ... (59) 

The effective index TJ is 

( ) = n'u' (a+2)(a+4)+0(g') 
'l') g 45 15 . 

(60) 

It is interesting that the relation (31), which, in 
second order in g, relates the indices f = 7'2(1 - a/v) 
and TJ, is conserved. This is explained by the fact that 
in the diagrams for the vertex Taf3 =TOaf3 and the 
Green function, the sums over the tensor indices coin­
cide. Inasmuch as, in all systems in the subcritical 
region, a/2v :S 1/10, i.e., f R1 0.5, this means that, to 
an accuracy within terms ~ g4 ~ rJ 2 , the subcritical 
index TJ has the order of magnitude (32), irrespective 
of the symmetry of the system. 

In the asymptotic region ln ( 1/kr0 ) » 1, the critical 
indices and functions will depend only on the symmetry 
of the system, i.e., on the quantity a; if the asymptotic 
values g(oo) and 17(oo) are determined by the higher 
terms in g in the equations cl>(goo) = 0, TJoo = rJ(g00 ), 

they will be small and will depend weakly on a. The 
contributions of the higher terms in g are determined 
chiefly by the large number of the diagrams and not by 
their magnitude. This can already be seen in third 
order (59). In the case of weak coupling, when g ln k 
- 0 asymptotically, the effective index 1J will tend to 
zero in accordance with the law 

(a+2){a+4) 1 , (61 ) 
"'err-+ 48(3a + 22)' n- k. 

This formula will be obtained if we find g(l) from (46) 
and (59) and substitute it in (60). 

A separate analysis is required for the phase transi­
tion in uniaxial ferroelectrics [131, where the dipole-
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t;lipole interaction weakens the fluctuations of the dipole 
moment Pz and, in place of the Ornstein-Zernike law, 
the phenomenological theory at T = Tc reduces to the 
correlation [14 ' 131 

(P,(k)P,(-k)> = (k.1.' + k,' + a'k,'/ k.1.' + k,')- 1 

(62} 
= 1/2 (iak, + k,' + k.L') -I+ 1/2 ( -iak, + k,' + k.L')- 1• 

For sufficiently large momenta k 1 , kz » a, the prob­
lem reduces to the three-dimensional Ising model and 
our theory can be applied to it; in the critical region 
k1 , kz << a, however, the dipole-dipole term ±iakz 
substantially changes the situation. If we introduce a 
"time" t = iz and an "energy" ~:: = ikz, the theory be­
comes equivalent to quantum field theory in the two­
dimensional space (x, y) (kx, ky), but is now non­
relativistic-the spectrum of the particles has the form 
t::(k) = ±k2/ a. The corrections to the phenomenological 
theory (62} will correspond to decays of one particle 
into several others: 

.. 6 .. ~ (63} 

a b 

A field theory formally analogous to this was con­
sidered inr1sJ (Sec. 5). The corrections of the higher 
approximations contain powers Y~ ln kro)n, where Yo 
is the amplitude of the "decay" ( 1 - 3). In this re­
spect the situation is the same as in the four-dimen­
sional Ising model. (This was noted by Larkin and 
Khmel'nitski'ir 13l.) For sufficiently small Yo< 0, I Yo I 
« 1 summing the leading terms of the form 
(Yo in k)n leads to zero charge Yeff- const/ln k[ 131 . 
In the general case, the behavior of the effective 
charge Yeff ( ln k) is given by an equation of the type 
(46}, where the function 4>( Y) will have the qualitative 
form shown in the figure. Then, if the bare constant 
Yo < 0 is greater in absolute magnitude than the criti­
cal value y 1o the renormalized charge Yeff( ln k) will 
tend to a constant Y( - oo) = Y 2, as in our theory. For 
the same reasons as those given above (the increase of 
the Taylor coefficients of the function 4>(Y}), there­
normalized charge Y eff( - oo) = Y 2, the index 1J will be 
numerically small, and the logarithmic approximation 
will be applicable in the whole region k « a. For cal­
culations in the logarithmic approximation, one can, as 
inr 13l, use the analogy with the four-dimensional Ising 
model (the quantity akz/k plays the part of the fourth 
momentum component in (62}). 

Then, in second order in Y (diagram a in (63}), we 
obtain the following value of the effective index 1J: 

TJ eff = Ifan'V' (64} 

(we use the normalization G0(k) = ( 21T)~-2, Go( r) = r-2 

in the four-dimensional Ising model}. 
The calculation of the index u/11 for the specific 

heat C ~ ra/11 is analogous to that in Sec. 3 of our 
c 

paper. The calculations can be simplified if we as-
sume that a « 11 and 1J « 1, in agreement with exper­
iment. Then the vertex T(p, q) ~ p-a/211t(q/p) de­
pends slowly on p and q for p ~ q, and the logarith­
mic approximation can be applied to it (the behavior of 
the vertex is found from the unitarity condition, as with 
(23)): 

ImD(q)~ J T'd'pll(p')ll((p-q)')~ T' (p~q), 

ImD(q) ~ ReD(q) ~ q-"1". 

In the logarithmic approximation the equation for 
T( p, q) has the form 

T(p,q) = I + ~ 
1 11 '" d'k (2n)' 

= 1 +- Jv(Ink) ----T(k,q), 
2 , (2n)' k' 

0 

T(!npr,)= 1+n' J dln(kr,)V(lnkr,)Tilnkr,). (65} 
Jn PTo 

Hence the effective index a/211 is equal to 

~ = _ d!nT_(p ~ q) = n'V. (66} 
2v d!np 

Since 1r2Y is small and negative (repulsion), the index 
a will also be small and negative, i.e., the specific 
heat tends to a finite limit in accordance with the law 
c -Co+ (T- Tcra. Eliminating Y from (64} and 
(66}, we find a connection between the effective indices 
1], a and 11, accurate up to terms of order Y2 ~ 1]: 

a= -2vY3-:;] + O(IJ). (67} 

The experimental data on ferroelectrics are insuf­
ficiently accurate to test this relation; we can, however, 
make use of the results of high-temperature expan­
sionsr16l for the four-dimensional Ising model: 

a = -0.12 ± 0.03, v = 0.536 ± 0.003, 

y = (2- TJ) v = 1.065 ± 0.003. 

These values give 7J = 0.014 ± 0.018, and the relation 
(67} is fulfilled within the large error limits of the 
calculations of Moorer 161 . 

It is interesting that the negative value of a allows 
us to reject the solution with zero charge; in this solu­
tion according tor131 the specific heat tends logarith-

' ' 1/3 mically to infinity: C ~ (ln ( T- Tc)) , and the ef-
fective index a =-d ln C/d ln (T- Tc) =-Y3ln (T- Tc) 
is positive. 

From the standpoint of our theory it is natural that, 
in the four-dimensional Ising model, the charge Y does 
not tend to zero; the bare interaction Yo in the Ising 
model is not small. In real ferroelectrics, the bare 
interaction Yo can be small (seer 131) and then the 
charge becomes zero. In the four-dimensional Heisen­
berg model or in the four-dimensional Bose-gas (plane 
dipoles in a four-dimensional lattice) the relation (67} 
will look like: 

(68} 

where a =3 (Heisenberg), a= 2 (Bose), or a =1 (Ising}. 
Systems which reduce to these four-dimensional models 
are as yet unknown, but it would be interesting to test 
(68} by means of high-temperature expansions. 

5. DISCUSSION OF THE RESULTS 

Our theory is based on the experimental fact that 
the fourth term Y0 cp 4 in the Landau expansion of the 
free-energy density in powers of the order parameter 
cp ( r) 
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F(r) = 1/2AqJL\qJ + V,<p'/4! + g,<p'/61 +... (69) 

vanishes at the transition point 

V,(T,) =0. 

Here the correlation of the order parameters at the 
transition point 

G(r) =(qJ(O)qJ(r) )= J ll<p qJ(O)qJ(r)exp [- J F a'r[T,] 

differs from the Ornstein- Zernike correlation 

G,(r) = J llqJ qJ(O)qJ(r)exp (-~ J(j)L\(j) d'r) = const 
2T, r 

(70) 

(71) 

(72) 

only because of the term gcp 6 in the free energy (69). 
The corrections to the Ornstein- Zernike law are cal­
culated by means of diagram technique ((69) plays the 
role of the Lagrangian) and for g0 « 1 these correc­
tions are small: 

rG(r) =const·(1-1]lnr), 1]='/.,n'g,'+O(g,'). (73) 

Therefore there is a broad subcritical region r >> r 0 , 

ln (r/ro) ~ 1 in which the Ornstein-Zernike law is 
valid. The density correlation (cp 2(r1)cp 2(r2)) in this 
region varies more strongly: 

D(r) = (<p'(O)<p'(r)) = const·r-'+"1". (74) 

The index a/11 is connected with the index 1J by the 
relation (33), (34) (accurate up to terms ~1) 2 ). Because 
of the large numerical coefficient 30 in (31 ), the index 
a/11 ~ 0.2 differs markedly from the classicttl value 
a/ 11 = 1. The relation (31) is not very sensitive to the 
magnitude of a/ 11 and to find a/ 11 from the magnitude 
of 1J and explain the small experimental value a/ 11 
~ % is difficult in practice. 

The effective indices 1Jeff =- d ln rG/d ln r and 
(a/ 11 )eff = d ln r 3D/ d ln r in the sub critical region 
ln (r/ro) Z 1 are not universal (g0 depends not only on 
the symmetry but also on the parameters of the sys­
tem) and depend logarithmically on r. In the asymp­
totic region ln (r/r0 ) » 1, there will be either strong 
or weak coupling, depending on the magnitude of the 
constant go. In the case of weak coupling the effective 
interaction g ln r tends logarithmically to zero, while 
the effective indices tend to their classical values in 
accordance with the law 

11eff-->- c-10-'(lnr) -z__,_ 0, (a I v)err-+ 1- 3011eff-+ 1, (75) 

where c = 0.5 (Ising), 0.64 (Bose), or 0.76 (Heisenberg). 
In the case of strong coupling the effective interac­

tion g ln r tends to a universal constant g( oo) in ac­
cordance with the power law (50); the indices behave 
analogously and the asymptotic values 1Jco, (a/11)00 

should be not very different from the classical values. 
(From the standpoint of the bootstrap equations of[sJ, 
this means that the renormalized vertex 9" c ( p2) de­
pends weakly on the momentum, i.e., Fe~ const, 
so that the index 1J = 2[1- Fc(O)/Fc(-1)] is numer­
ically small. The constancy of the vertex F( p2 ) is 
connected with the fact that the amplitudes r 4 , 

r e, ... ,r n are small as 1J - 0 and therefore in the 
unitarity condition for F c ( p2) the imaginary part 
Im Fe ~ lJ f F nr ndTn will be small, so that 5" c( p2 ) is 
determined by the constant real part.) 

The values of the indices known from experiments 

and high temperature expansions are, apparently, 
evidence in favor of strong coupling. 

Concerning estimates of the index 1J from high­
temperature expansions, we should, however, make the 
following remark. There are grounds for hoping that 
these expansions can give good estimates of the behav­
ior of thermodynamic quantities (specific heat, sus­
ceptibility, spontaneous moment, etc.) which have one 
singularity T = Tc· But high-temperature expansions 
for the correlation functions, especially in the region 
T- Tc « k 1111 , are inapplicable for the following 
reason. As was remarked in[4 • 5l, the correlation func­
tions have complex temperature singularities at 

T= T, ± con:,t·e'"1'"(k/n)'1", n= 1, 2, 3,.... (76) 

For 11 > 0.5 these singularities are on the physical 
sheet of the T-plane and are concentrated towards 
T = Tc. Therefore, high-temperature expansions are 
valid up to the first singularity, i.e., for IT- Tc I) 
const x k 1111 , whereas in the region I T - Tc 1 ~ k1/11 
the correlation functions change their structure (e.g., 
they have minima and maxima[9l) and the expansions 
have no meaning. 

Therefore, the statement of Ferer, Moore and 
Wortis [2J about the violation of the scaling laws in the 
region IT - Tc I « k 1111 and the estimate 1J = 0.041 
seem doubtful. More reliable are the statements[ 2• 16 l 
on the violation of the relation 01. = 2 - d11, inasmuch 
as the correlation length r c ~ ( T - T c )- 11 can be found 
exactly from the asymptotic behavior rG(r)- e-r/rc 
in the region of "applicability" IT - Tc I » r 1/11 of the 
high-temperature expansions. 

The reasons for the violation of the relation aeff 
= 2 - 3Veff can be seen within the framework of our 
approach; this relation should be fulfilled only in the 
asymptotic region ln r, ln ( T - Tc) » 1, while in the 
subcritical region the interaction leads to corrections 
~ 1). 

To summarize, one can say that the phenomenologi­
cal theory of Landau is a more successful analogy for 
critical phenomena than the two-dimensional Ising 
model, provided that we take into account that the free 
energy expansion starts at the sixth power of the order 
parameter, and with a small co effie ient. After this, the 
corrections to the phenomenological theory from fluc­
tuations will be small and it is not difficult to find 
them. 

In the next paper this idea will be used to give an 
account of critical phenomena above and below Tc in 
an external field. 

In conclusion I wish to thank A. A. Abrikosov, A. I. 
Larkin, A. Z. Patashinskil, V. L. Pokrovskii and A. M. 
Polyakov; discussions and debates with them have been 
of great benefit to me. 
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